Show all your work in a neat and organized manner.

1. Compute \(\int_0^1 \frac{1}{1+4x} \, dx \)

 Solution:
 In \(\int_0^1 \frac{1}{1+4x} \, dx \), the complication is the denominator, \(1+4x \). Let’s try the substitution
 \[
 u = 1 + 4x
 \]
 \[
 du = 4 \, dx \quad \text{or, equivalently}
 \]
 \[
 \frac{1}{4} \, du = dx
 \]
 The limits of integration change also:
 \[
 x = 0 \quad \Rightarrow \quad u = 1 + 4 \cdot 0 = 1
 \]
 \[
 x = 1 \quad \Rightarrow \quad u = 1 + 4 \cdot 1 = 5
 \]
 Then
 \[
 \int_0^1 \frac{1}{1+4x} \, dx = \int_1^5 \frac{1}{u} \frac{1}{4} \, du
 \]
 \[
 = \frac{1}{4} \int_1^5 \frac{1}{u} \, du
 \]
 \[
 = \frac{1}{4} \ln |u| \bigg|_1^5
 \]
 \[
 = \frac{1}{4} (\ln 5 - \ln 1)
 \]
 \[
 = \frac{1}{4} \ln(5)
 \]

2. Suppose that the rate at which a chemical product is formed in a reaction is
 \[
 \frac{dP}{dt} = 6e^{-3t}
 \]
 where \(t \) is measured in minutes and \(P \) in moles. If there is no product at time 0, write the solution for all time.

 Solution:
 \[
 P(t) = \int 6e^{-3t} \, dt
 \]
 \[
 = 6 \int e^{-3t} \, dt \quad \text{we will set} \quad u = -3t, \ du = -3 \, dt \quad \text{or} \quad \frac{1}{3} \, du = dt
 \]
 \[
 = 6 \int e^u \frac{1}{3} \, du
 \]
 \[
 = -2 \int e^u \, du
 \]
 \[
 = -2e^u + C
 \]
 \[
 = -2e^{-3t} + C
 \]
 Since \(P(0) = 0 \), we have
 \[
 0 = P(0)
 \]
 \[
 = -2e^{-3 \cdot 0} + C
 \]
 \[
 = -2 \cdot 1 + C
 \]
 which will give us \(C = 2 \). This means \(P(t) = -2e^{-3t} + C \) should be written as \(P(t) = -2e^{-3t} + 2 \), or, as is the custom, \(P(t) = 2 - 2e^{-3t} \).