
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006; (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1040

The Argus prototype:
aggregate use of load modules
as a high-density supercomputer

Xizhou Feng1, Rong Ge2 and Kirk W. Cameron2,∗,†

1Department of Computer Science and Engineering, University of South Carolina,
Columbia, SC 29208, U.S.A.
2Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, U.S.A.

SUMMARY

This paper describes the ARGUS prototype, a high-density, low-power supercomputer built from an IXIA
network analyzer chassis and load modules. The prototype is configured as a diskless distributed system
that is scalable to 128 processors in a single 9U chassis. The entire system has a footprint of 0.25 m2 (2.5 ft2),
a volume of 0.09 m3 (3.3 ft3) and maximum power consumption of less than 2200 W. We compare and
contrast the characteristics of ARGUS against various machines including our on-site 32-node Beowulf
and LANL’s Green Destiny. Our results show that the computing density (Gflops ft−3) of ARGUS is about
30 times higher than that of the Beowulf and about three times higher than that of Green Destiny with a
comparable performance. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 21 April 2005; Revised 8 September 2005; Accepted 24 September 2005

KEY WORDS: performance evaluation; high-density computing; cluster system; parallel and distributed system;
parallel computer architecture

1. INTRODUCTION

Mainstream high-performance computing systems often consist of clusters of symmetric multi-
processors (SMP) communicating across fast interconnects. Computing resources may be for a specific
purpose (e.g. Earth simulator) or general purpose (e.g. a network of workstations). While these high-
end systems often provide unmatched computing power they are extremely expensive, requiring special
cooling systems, enormous amounts of power and dedicated building space to ensure reliability.

∗Correspondence to: Kirk W. Cameron, Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, U.S.A.
†E-mail: cameron@cs.vt.edu

Contract/grant sponsor: National Science Foundation
Contract/grant sponsor: Department of Energy
Contract/grant sponsor: IXIA Corporation

Copyright c© 2006 John Wiley & Sons, Ltd.



X. FENG, R. GE AND K. W. CAMERON

It is common for a supercomputing resource to encompass an entire building and consume tens of
megawatts of power.

In contrast, low-power, high-throughput, high-density systems are typically designed for a
single task (e.g. image processing). These machines offer exceptional speed (and often guaranteed
performance) for certain applications. However, design constraints including performance, power and
space make them expensive to develop and difficult to migrate to future generation systems.

We propose an alternative approach augmenting a specialized system (i.e. an IXIA network analyzer)
that is designed for a commodity marketplace under performance, power and space constraints.
Although the original IXIA machine is designed for a single task, we have created a configuration
that provides general-purpose, high-end parallel processing in a Linux environment. Our system
provides computational power surpassing Green Destiny [1,2] (another low-power supercomputer)
while decreasing volume by a factor of three.

2. SYSTEM DESIGN

Figure 1 is a detailed diagram of the prototype architecture we call ARGUS. This architecture consists
of four sets of separate components: the IXIA chassis, the IXIA load modules, the multi-port fast
ethernet switch and a network file system (NFS) server.

The chassis contains a power supply and distribution unit, a cooling system and runs windows
system and proprietary software (IX server and IX router). Multiple (up to 16) load modules plug into
the chassis and communicate with the chassis and each other via an IxBus (mainly used for system
management being too slow for message transfer). Each load module provides up to eight RISC
processors (called port processors) in a dense form factor and each processor has its own operating
system, cache (L1 and L2), main memory and network interface. In addition, field programmable gate
array (FPGA) elements on each load module aid real-time analysis of network traffic. Although the
performance abilities of these FPGAs have merit, we omit them from consideration for two reasons:
(1) reprogramming is difficult and time consuming; and (2) it is likely that the FPGA elements will not
appear in succeeding generation load modules to reduce unit cost.

There is no disk on each load module. We allocate a small portion of memory at each port to store an
embedded version of the Linux OS kernel and application downloaded from the IX server. An external
Linux machine running a NFS file server is used to provide external storage for each node. A possible
improvement is to use networked memory as secondary storage but we did not attempt this in the
initial prototype. Due to cost considerations, although the load modules support 1000 Mbps ethernet
on copper, we used a readily available switch operating at 100 Mbps.

The first version of the ARGUS prototype is implemented with one IXIA 1600T chassis and
four LM1000TXS4 load modules (see http://www.ixiacom.com/library/catalog/ for specification) [3]
configured as a 16-node distributed memory system, i.e. each port processor is considered as an
individual node.

Another option is to configure each load module as an SMP node. This option requires use of the
IxBus between load modules. The IxBus (and the PowerPC 750CXe processor) does not maintain
cache coherence and has a limited bandwidth. Thus, this option was eliminated from consideration at
an early stage since software-driven cache coherence will drastically limit performance. We opted to
exchange data between all processors through the Ethernet connection. Hence, one recommendation

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



THE ARGUS PROTOTYPE

P C M

P C M

P C M

P C M

F

P

G

A

P C M

P C M

P C M

P C M

F

P

G

A

IX
 S

e
rv

e
r

IX
 R

o
u
te

r

Load Module #1

Load Module #N

IX
 B

u
s

IXIA Chassis

M
u
lt
ip

o
rt

 s
w

it
c
h N

F
S

 S
e

rv
e

r
T

o
 E

x
te

rn
a

l 
N

e
tw

o
rk

Figure 1. The hardware architecture of ARGUS prototype. Up to 16 load modules are supported in a single IXIA
1600T chassis. A single bus interconnects modules and the chassis PC while external disks and the cluster front-

end are connected via an Ethernet switch (P, processor; C, cache; M, memory).

for future implementations is to significantly increase the performance and capabilities of the IxBus.
This could result in a cluster of SMPs architecture allowing hybrid communications for improved
performance.

Each LM1000TXS4 load module provides four 1392 MIPS PowerPC 750CXe RISC processors [4]
and each processor has one 128 MB memory module and one network port with an auto-negotiating
10/100/1000 Mbps copper ethernet interface. The 1392 MIPS PowerPC 750CXe CPU employs
0.18 µm CMOS copper technology, running at 600 MHz with a 6.0 W typical power dissipation.
This CPU has independent on-chip 32 KB, eight-way set associative, physically addressed caches for
instructions and data. The 256 KB L2 cache is implemented with on-chip, two-way set-associative
memories and a synchronous SRAM for data storage. The external SRAM are accessed through a
dedicated L2 cache port. The PowerPC 750CXe processor can complete two instructions per CPU
cycle. It incorporates six execution units including one floating-point unit, one branch processing unit,
one system register unit, one load/store unit and two integer units. Therefore, the theoretical peak
performance of the PowerPC 750CXe is 1200 MIPS for integer operations and 600 Mflops for floating-
point operations.

In ARGUS, message passing (i.e. Message Passing Interface (MPI)) is chosen as the model
of parallel computation. We ported gcc3.2.2 and glib for PowerPC 750 CXe to provide a useful
development environment. MPICH 1.2.5 (the MPI implementation by Argonne National Lab and
Mississippi State University) and a series of benchmarks have been built and installed on ARGUS.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



X. FENG, R. GE AND K. W. CAMERON

Following our augmentation, ARGUS resembles a standard Linux-based cluster, running existing
software packages and compiling new applications.

3. RELATED WORK

According to design priorities, general-purpose supercomputers can be classified into four
categories:

(1) performance: these are traditional high-performance systems (e.g. ASCI Q) where performance
(Gflops) is the absolute priority;

(2) cost: these are systems built to maximize the performance/cost ratio (Gflops $−1) using
commercial-off-the-shelf components (e.g. Beowulf);

(3) power: these systems are designed for reduced power (Gflops W−1) to improve reliability
(e.g. Green Destiny) using low-power components;

(4) density: these systems have specific space constraints requiring integration of components in
a dense form factor with specially designed size and shape (e.g. Green Destiny) for a high
performance/volume ratio (Gflops ft−3).

Although high performance systems are still the most common system in the HPC community;
low-cost, low-power, low-profile and high-density systems are emerging. BlueGene/L (IBM) [5]
and Green Destiny (LANL) are two examples that are designed under cost, power and space
constraints.

From a design priority and capability perspective, ARGUS is the most comparable supercomputer
to Green Destiny. Both systems rely on components targeted at commodity markets and prioritize
reliability (i.e. power consumption) and space constrains. Both systems can be categorized as Beowulf
clusters but differ from regular Beowulf clusters in their reliability and density. However, ARGUS and
Green Destiny differ in several areas.

(1) Green Destiny is built on RLX ServerBladesTM that result in a relatively small form factor.
In contrast, the ARGUS is built on IXIA load modules whose design prioritizes space but
provides a general-purpose functionality unusual in space-constrained systems.

(2) Green Destiny uses the Transmeta Crusoe TM5600 CPU for low-power and high-density.
ARGUS uses the PowerPC 750CXe embedded microprocessor that consumes less power but
matches the sustained performance of the Transmeta Crusoe TM5600.

(3) In contrast with Green Destiny, which combines server hardware, such as CPU, memory, and
the network controller into a single expansion card, ARGUS achieves much higher density at the
expense of mechanical parts (namely a local disk) and multiple processors on each load module
(or blade). For perspective, 240 nodes in Green Destiny fill a single rack (about 25 ft3); ARGUS
can fit 128 nodes in 3.3 ft3. This diskless design makes ARGUS more dense and mobile yet less
suitable for applications requiring significant storage.

4. METHODOLOGY

As ARGUS and Green Destiny are similar in many aspects, we use the total cost of ownership (TCO)
metrics proposed by Feng et al. [1] as the basis of evaluation. For completeness, we also evaluate our
system using traditional performance metrics of benchmarks.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



THE ARGUS PROTOTYPE

4.1. Cost, power and space metrics

TCO refers to all expenses related to acquisition, maintaining and operating the computing system
within an organization:

TCO = AC + OC (1)

AC = HWC + SWC (2)

OC = SAC + PCC + SCC + DTC (3)

Equations (1)–(3) provide TCO components including acquisition cost (AC), operations cost (OC),
hardware cost (HWC), software cost (SWC), system-administration cost (SAC), power-consumption
cost (PCC), space-consumption cost (SCC) and downtime cost (DTC). The ratio of TCO and the
performance (Gflops) is designed to quantify the effective cost of distributed system.

According to a formula derived from Arrhenius law, component life expectancy decreases 50% for
every 10 ◦C (18 ◦F) temperature increase. Since system operating temperature is roughly proportional
to its power consumption, a lower power consumption implies a longer component life expectancy
and a lower system failure rate. Since both ARGUS and Green Destiny use low-power processors, the
performance to power ratio (Gflops W−1) can be used to quantify power efficiency. A high Gflops W−1

ratio implies a lower power consumption for the same number of computations and hence a lower
system working temperature and much higher system stability and reliability (i.e. a lower component
failure rate).

Since both ARGUS and Green Destiny provide small form factors relative to traditional high-end
systems, the performance to space ratio (Gflops ft−2 for footprint and Gflops ft−3 for volume) can
be used to quantify computing density. Feng et al. propose the footprint as the metric of computing
density [1]. While ARGUS performs well in this regard for a very large system, we argue it is more
precise to compare volume. We provide both measurements in our results.

4.2. Performance metrics

We use an iterative benchmarking process to determine the system performance characteristics of the
ARGUS prototype for a general comparison to a performance/cost design (i.e. Beowulf) and to target
future design improvements. Benchmarking is performed at two levels.

• Micro-benchmarks. Using several micro-benchmarks such as LMBENCH [6], MPPTEST [7],
NSIEVE [8] and Livermore LOOPS [9] we provide detailed performance measurements of the
core components of the prototype CPU, memory subsystem and communication subsystem.

• Kernel application benchmarks. We use LINPACK [10] and the NAS Parallel Benchmarks
(NPBs) [11] to quantify performance of key application kernels in high-performance scientific
computing. Performance bottlenecks in these applications may be explained by measurements at
the micro-benchmark level.

For direct performance comparisons, we use an on-site 32-node Beowulf cluster called DANIEL.
Each node on DANIEL is a 933 MHz Pentium III processor with 1 GB memory running Red Hat
Linux 8.0. The head node and all slave nodes are connected with two 100 Mbps Ethernet switches.
In general, we expect DANIEL to out-perform ARGUS, although normalizing our results for clock rate

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



X. FENG, R. GE AND K. W. CAMERON

Table I. Performance comparisons under cost, power and space efficiency metrics (for Green
Destiny, the first value corresponds to its tree code performance, the second value (in parenthesis)
is the estimated LINPACK performance. All other systems use LINPACK performance.)
The downtime cost of DANIEL is not included when computing its TCO since it is a research
system and often purposely rebooted before and after experiments. The TCO of the 240-node Green

Destiny is estimated based on the data of its 24-node system.

Machine DANIEL Green Destiny ARGUS64 ARGUS128

CPUs 32 240 64 128
Performance (Gflops) 17 39 (101) 13 34
Area (ft2) 12 6 2.5 2.5
TCO ($1000) ∼100 ∼350 ∼100–150 ∼100–200
Volume (ft3) 50 30 3.3 3.3
Power (kW) 2 5.2 1 2
Gflops/proc 0.53 0.16 (0.42) 0.20 0.27
Gflops per chassis 0.53 3.9 13 34
TCO efficiency (Gflops/$1000) 0.17 0.11 (0.29) ∼0.08–0.13 ∼0.17–0.34
Computing density (Gflops ft−3) 0.34 1.3 (3.3) 3.9 10.3
Space efficiency (Gflops ft−2) 1.4 6.5 (16.8) 20.8 54.4
Power efficiency (Gflops ft−3) 8.5 7.5 (19.4) 13 17

(i.e. using machine clock cycles instead of seconds) shows that performance is comparable given that
DANIEL is designed for performance/cost and ARGUS for performance/space.

In direct measurements, we use standard UNIX system calls and timers when applicable as
well as hardware counters if available. Whenever possible, we use existing, widely-used tools
(e.g. LMBENCH) to obtain measurements. All measurements are the average or minimum results
over multiple runs at various times of day in order to avoid outliers due to local and machine-wide
perturbations.

5. EXPERIMENTAL RESULTS

5.1. Measured cost, power and space metrics

We make direct comparisons between ARGUS, Green Destiny and DANIEL, based on the
aforementioned metrics. The results are given in Table I. Two ARGUS systems are considered:
ARGUS64 and ARGUS128. ARGUS64 is the 64-node update of our current prototype with the
same load module. ARGUS128 is the 128-node update with the more advanced IXIA application
load module (ALM1000T8) currently available [3]. Each ALM1000T8 load module has eight 1856
MIPS PowerPC processors with a gigabit Ethernet interface and 1 GB memory per processor. Space
efficiency is calculated by mounting four chassis in a single 36U rack (excluding I/O node and Ethernet
switches so as to be comparable to Green Destiny). The LINPACK performance of ARGUS64 is

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



THE ARGUS PROTOTYPE

extrapolated from direct measurements on 16-nodes and the performance of ARGUS128 is predicted
using techniques similar to Feng et al. as 2 × 1.3 times the performance of ARGUS64.

All data on the 32-node Beowulf DANIEL is obtained from direct measurements. There is no direct
measurement of LINPACK performance for Green Destiny in the literature. We use both the tree code
performance as reported in [2] and the estimated LINPACK performance by Feng [12] for comparison
denoted with parentheses in Table I.

We estimated the acquisition cost of ARGUS using prices published by IBM in June 2003
and industry practice. Each PowerPC 750Cxe costs less than $50. Considering memory and other
components, each ALM load module will cost less than $1000. Including software and system design
cost, each load module could sell for $5000–10 000. Assuming the chassis costs another $10 000, the
128-node ARGUS may cost $90 000–170 000 in AC. Following the same method proposed by Feng
et al., the OC of ARGUS is less than $10 000. Therefore, we estimate the TCO of ARGUS128 is below
$200 000. The downtime cost of DANIEL is not included when computing its TCO since it is a research
system and often purposely rebooted before and after experiments. The TCO of the 240-node Green
Destiny is estimated based on the data of its 24-node system.

Although TCO is suggested as a better metric than acquisition cost, the estimation of DTC is
subjective and the acquisition cost is the largest component of TCO. Although, these three systems have
similar TCO performances, Green Destiny and ARGUS have larger acquisition cost than DANIEL due
to their initial system design cost. System design cost is high in both cases since the design cost has
not been amortized over the market size—this would effectively occur as production matures.

The ARGUS128 is built with a single IXIA 1600T chassis with 16 blades where each blade contains
eight CPUs. The chassis occupies 44.5 × 39.9 × 52 cm3 (about 0.09 m3 or 3.3 ft3). Green Destiny
consists of 10 chassis with each chassis contains 10 blades and each blade has only one CPU. DANIEL
includes 32 rack-dense server nodes and each node has one CPU.

Due to the large difference in system footprints (50 ft3 for DANIEL, 30 ft3 for Green Destiny and
3.3 ft3 for ARGUS) and relatively small differences in single processor performance (711 Mflops
for DANIEL, 600 Mflops for Green Destiny and 300 Mflops for ARGUS), ARGUS has the highest
computing density, 30 times higher than DANIEL and three times higher than Green Destiny. As space
efficiency is almost equivalent to computing density, we observe the same facts as above.

Table I shows ARGUS128 is twice as efficient as DANIEL and has a similar efficiency to Green
Destiny. This observation contradicts our expectations that ARGUS should fair better against Green
Destiny in power efficiency. However, on further investigation, we suspect that (1) the ARGUS cooling
system is less efficient (or works harder given the processor density), (2) our use of peak power
consumption on ARGUS compared with average consumption on Green Destiny is unfair, (3) the
Green Destiny LINPACK projections (not measured directly) provided in the literature are overly
optimistic or (4) some combination thereof. In any case, our results indicate power efficiency should
be revisited in succeeding designs although the results are respectable, particularly given the processor
density.

5.2. Results of traditional benchmarks

A single RLX System 324 chassis with 24 blades from Green Destiny delivers 3.6 Gflops computing
capability for the tree code benchmark. A single IXIA 1600T with 16 load modules achieves 34 Gflops
for the LINPACK benchmark. Due to the varying number of processors in each system, performance

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



X. FENG, R. GE AND K. W. CAMERON

Table II. Memory subsystem performance.

Parameters ARGUS DANIEL

CPU clock rate 600 MHz 922 MHz
Clock cycle time 1.667 ns 1.085 ns
L1 Data cache size 32 KB 16 KB
L1 Data cache latency 3.37 ns ≈ 2 cycles 3.26 ns ≈ 3 cycles
L2 Data cache size 256 KB 256 KB
L2 Data cache latency 19.3 ns ≈ 12 cycles 7.6 ns ≈ 7 cycles
Memory size 128 MB 1 GB
Memory latency 220 ns ≈ 132 cycles 153 ns ≈ 141 cycles
Memory read bandwidth 146–2340 MB s−1 514–3580 MB s−1

Memory write bandwidth 98–2375 MB s−1 162–3366 MB s−1

per chassis and performance per processor are used for performance comparisons. Table I shows
DANIEL achieves the best performance per processor and ARGUS achieves the worst. ARGUS has
poor performance on double MUL operation (discussed in the next section) that dominates operations
in LINPACK. ARGUS performs better for integer and single precision float operations. Green Destiny
outperforms ARGUS on multiply operations since designers were able to work with Transmeta
engineers to optimize the floating point translation of the Transmeta processor.

5.2.1. Microbenchmark results

Memory hierarchy performance (latency and bandwidth) is measured using the lat mem rd and
bw mem xx tools in the LMBENCH suite. The results are summarized in Table II. DANIEL, using
its high-power, high-profile off-the-shelf Intel technology, outperforms ARGUS at each level in the
memory hierarchy in raw performance (time). However, normalizing with respect to cycles shows how
the clock rate partially explains the disparity. The resulting ‘relative performance’ between DANIEL
and ARGUS is more promising. Argus performs 50% better than Daniel at the L1 level, 6% better
at the main memory level but much worse at the L2 level. Increasing the clock rate of the PowerPC
processor and the L2 implementation in ARGUS would improve raw performance considerably.

IPC is the number of instructions executed per clock cycle. Throughput is the number of instructions
executed per second (or IPC × clock cycle). Peak throughput is the maximum throughput possible
on a given architecture. Peak throughput is only attained when the ideal IPC (optimal instruction-
level parallelism) is sustained on the processor. Memory accesses, data dependencies, branching and
other code characteristics limit the achieved throughput on the processor. Using microbenchmarks, we
measured the peak throughput for various instruction types on the machines under study.

Table III shows the results of our throughput experiments. Integer performance typically outperforms
floating point performance on ARGUS. For DANIEL (the Intel architecture) floating point (F-xxx in
Table III) and double (D-xxx in Table III) performances are comparable for ADD, MUL and DIV
respectively. This is not true for ARGUS where F-MUL and D-MUL are significantly different as
observed in our LINPACK measurements. We expect the modified version of the PowerPC architecture

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



THE ARGUS PROTOTYPE

Table III. Instruction performance with LMBENCH (IPC,
instructions per clock; MIPS, millions of instructions per second;
I, integer; F, single precision floating point; D, double precision

floating point).

ARGUS DANIEL

Instruction Cycles IPC MIPS Cycles IPC MIPS

I-BIT 1 1.5 900 1 1.93 1771
I-ADD 1 2.0 1200 1 1.56 1393
I-MUL 2 1.0 300 4 3.81 880
I-DIV 20 1.0 30 39 1.08 36
I-MOD 24 1.0 25 42 1.08 24
F-ADD 3 3.0 600 3 2.50 764
F-MUL 3 3.0 600 5 2.50 460
F-DIV 18 1.0 33 23.6 1.08 42
D-ADD 3 3.0 600 3 2.50 764
D-MUL 4 2.0 300 5 2.50 460
D-DIV 32 1.0 19 23.6 1.08 42

(with an additional floating point unit) present in IBM BlueGene/L to equalize the performance
difference with the Intel architecture in future systems. CPU throughput measurements normalized for
clock rates (MIPS) show that ARGUS performs better than DANIEL for integer ADD/DIV/MOD, float
ADD/MUL and double ADD instructions but worse for integer MUL and double DIV instructions.

The performance of message communication is critical to overall parallel system performance.
We measured network communication latency and bandwidth with the MPPTEST tools available in
the MPICH distribution. Results show that ARGUS performance is slightly worse yet comparable to
DANIEL. MPI point-to-point latency is 104 µs (about 62 387 CPU cycles) on ARGUS and 87 µs
(about 80 184 CPU cycles) on DANIEL. Both systems use 10/100 Mbps Ethernet switches so this is
somewhat expected. However, we observed a larger message injection overhead on ARGUS as message
size approaches typical packet size. This is most likely due to the memory hierarchy disparity already
described.

For further comparison, we measured the performance of two additional sequential benchmarks:
NSIEVE and Livermore Loops. NSIEVE is a sieve of Eratosthenes program that varies array sizes to
quantify the performance of integer operations. Livermore loops is a set of 24 DO-loops extracted from
operational code used at the Lawrence Livermore National Laboratory.

The NSIEVE benchmark results show that for a small array size ARGUS has a higher MIPS rating
(980 MIPS) than DANIEL (945 MIPS). However, as array sizes increase, the relative performance of
ARGUS against DANIEL decreases. This reflects the differences in L2 cache performance between
ARGUS and DANIEL.

The performance results from Livermore loops are summarized in Table IV. We observe DANIEL
achieves 1.5–2 times higher Mflops rating than ARGUS for most statistical values and ARGUS
achieves the best worst-case execution time for this benchmark. For instance, in real time codes where
worst-case performance must be assumed, ARGUS may be a better choice. However, examining

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



X. FENG, R. GE AND K. W. CAMERON

Table IV. Livermore loops performance (NORM, normalized performance,
obtained by dividing the Mflops by CPU clock rate).

ARGUS DANIEL

Mflops NORM Mflops NORM

Maximum rate 731.5 1.22 1281.9 1.37
Quartile Q3 225.0 0.38 377.6 0.40
Average rate 174.5 0.29 278.9 0.30
Geometric mean 135.5 0.23 207.2 0.22
Median Q2 141.6 0.24 222.2 0.24
Harmonic mean 106.6 0.18 133.6 0.14
Quartile Q1 66.4 0.11 132.6 0.14
Minimum rate 46.2 0.08 20.0 0.02
Standard deviation 133.8 0.22 208.5 0.22
Average efficiency 18.52% 16.16%
Mean precision (digits) 6.24 6.35

Table V. Linpack benchmark results on ARGUS.

NP Problem size Gflops Gflops/processor Speedup

1 3000 0.297 0.297 1.00
2 3000 0.496 0.248 1.67
4 5000 0.876 0.219 2.95
8 8000 1.757 0.221 5.91

16 12 000 3.393 0.212 11.42

performance normalized for clock rates (NORM) on this benchmark, the two systems perform
similarly.

5.2.2. Parallel performance

The ARGUS prototype architecture can execute both commercial and scientific applications. In this
paper, we focus on scientific applications and provide results for two benchmark suites: LINPACK [10]
and the NPBs [11]. Since we have already established the performance difference between ARGUS and
DANIEL for single node (see the previous section), we will only discuss the parallel performance of
ARGUS.

LINPACK is arguably the most widely used benchmark for scientific applications and its
measurements form the basis for the Top 500 list [13] of fastest supercomputers in the world.
Our measurements use HPL, a parallel version of the linear algebra subroutines in LINPACK that
solve a (random) dense linear system in double precision (64-bit) arithmetic on distributed-memory
computers. HPL provides the ability to scale workloads for better performance by adjusting array
sizes. To ensure good performance, we compiled and installed the BLAS libraries with the aid of

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



THE ARGUS PROTOTYPE

Table VI. NAS parallel benchmark results on ARGUS.

Performance (MOP s−1)

CODE NP = 1 NP = 4 NP = 16

CG 19.61 46.04 88.12
EP 1.69 6.75 24.08
IS 4.06 3.62 18.02
LU 48.66 188.24 674.62
MG 45.50 84.51 233.36
BT 40.04 131.76 436.29
SP 28.72 90.99 299.71

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of processors

N
o
rm

a
liz

e
d
 M

O
P

/s
e
c
o
n
d
/p

ro
c
e
s
s
o
r

CG EP IS LU MG SP BT

Figure 2. The scalability of NPBs on ARGUS. The curves show the strong
scaling of NPB 2.4.1 Class W at fixed working set size.

automatically tuned linear algebra software (ATLAS). Table V shows the LINPACK benchmark results
on the 16-node ARGUS prototype. The prototype achieves 3.4 Gflops, about 210 Mflops at each node
or 70% peak throughput of ‘double MUL’ operations.

The NPB are a set of eight programs designed to help evaluate the performance of parallel
supercomputers. This benchmark suite consists of five application kernels and three pseudo-
applications derived from computational fluid dynamics applications. These benchmarks are
characterized with different computation/communication ratios described in [11]. The raw performance
of NPB 2.4.1 with a problem size of W on ARGUS is shown in Table VI. To better identify the

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



X. FENG, R. GE AND K. W. CAMERON

performance trends, Figure 2 provides the scalability of ARGUS under strong scaling (i.e. fixed
problem size and increasing number of processors).

For 16 nodes, EP and LU show the best scalability. EP should achieve linear speedup since
little communication is present. LU achieves super-linear speedup that appears to be levelling off.
As working set size remains fixed with an increase in the number of processors, communication is
minimal (i.e. strong or fixed-size scaling). Super-linear performance is achieved as the working set
gets smaller and smaller on a per node basis.

The curve of IS initially drops but then grows with the number of nodes. These codes stress
communication performance. The levelling off of performance indicates the communication costs are
not saturating the Ethernet interconnect up to 16 nodes.

The other four curves SP, BT, CG and MG have similar trends but different slopes. The performance
of these codes reflect the communication to computation ratio. EP and LU are dominated by
computation whereas IS and FT are dominated by communication. The SP, BT, CG and MG codes
sit somewhere in between. Trends here are similar (though less pronounced) than the communication-
bound codes. SP, BT, CG and MG are more sensitive to the number of nodes as it affects the number
of communications. Performance is then likely to move downward with the number of nodes until a
plateau is reached prior to network saturation (i.e. similar to the plateau in IS and FT performance).
At some later point all of these codes will reach the limits of either the input data set size (Amdahl’s
law) or the interconnect technology (saturation) where performance will drop drastically again.
Our system is too small to observe these types of problems, so this is the subject of future work.

6. SUMMARY AND CONCLUSIONS

ARGUS exemplifies an architectural design with trade-offs between performance, cost, space and
power. In our work, we implemented the ARGUS prototype as a new approach to cluster computing
that uses the aggregate processing elements on network analysis load modules for parallel computing.
Our work shows that this architecture has advantages such as high scalability, small volumetric
footprint, reduced power, high availability and ultra-high processor density.

ARGUS achieves higher computing efficiency than Green Destiny, a comparable system with similar
power efficiency. ARGUS is presently capable of packing more processors per blade than Green
Destiny, although future versions of both machines will undoubtedly address this issue.

The benchmarking measurements and comparisons with DANIEL indicate that the current
ARGUS prototype has two major performance limitations due to the architectural characteristics of
embedded PowerPC processor: L2 cache latency and hardware support for double precision. Also,
the communication overhead on the processing node should and could be improved through system-
specific hardware and software tuning of MPI. Furthermore, results from a larger prototype with a
faster interconnect would allow more comprehensive scalability analyses.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful comments and Duncan Buell for access to the DANIEL
Beowulf. We also thank the National Science Foundation, the Department of Energy and the IXIA Corporation
for supporting this work.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe



THE ARGUS PROTOTYPE

REFERENCES

1. Feng W, Warren M, Weigle E. The bladed Beowulf: A cost-effective alternative to traditional Beowulfs. Proceedings of the
IEEE International Conference on Cluster Computing (CLUSTER’02), Chicago, IL, 2002. IEEE Computer Society Press:
Los Alamitos, CA, 2002.

2. Warren MS, Weigle EH, Feng W. High-density computing: A 240-processor Beowulf in one cubic meter. Proceedings of
the 15th IEEE/ACM SC2002 Conference, Baltimore, MD, 2002. IEEE Computer Society Press: Los Alamitos, CA, 2002.

3. IXIA. IXIA product catalog, 2003. http://www.ixiacom.com/products [2 December 2005].
4. IBM. PowerPC 604e User’s Manual, 1998.

http://www-3.ibm.com/chips/techlib/techlib.nsf/products/PowerPC 604e Microprocessor/ [2 December 2005].
5. Adiga N et al. An overview of the BlueGene/L supercomputer. Proceedings of the Supercomputing Conference 2002,

Baltimore, MD, 2003. IEEE Computer Society Press: Los Alamitos, CA, 2003.
6. Mcvoy L, Staelin C. Lmbench: Portable tools for performance analysis. Proceedings of the USENIX 1996 Annual Technical

Conference, San Diego, CA, 1996. USENIX Association: Berkeley, CA, 1996.
7. Gropp W, Lusk E. Reproducible measurements of MPI performance. Proceedings of the 6th European PVM/MPI’99 User’s

Group Meeting, Barcelona, 1999.
8. Gilbreath J. A high-level language benchmark. BYTE 1981; 6:180–198.
9. Mcmahon FH. The Livermore Fortran kernels: A computer test of numerical performance range. Technical Report UCRL-

53745, Lawrence Livermore National Laboratory, December 1986.
10. Dongarra J et al. Linpack User’s Guide. SIAM: Philadelphia, PA, 1979.
11. Bailey D et al. The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center, December

1995.
12. Feng W. Making a case for efficient supercomputing. ACM Queue 2003; 1:54–64.
13. University of Tennessee, University of Manheim and NERSC. Top 500 supercomputer list. Proceedings of the 18th

International Supercomputer Conference, Phoenix, AZ, 2003. ACM Press: New York, 2003.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; (in press)
DOI: 10.1002/cpe


	1 INTRODUCTION
	2 SYSTEM DESIGN
	3 RELATED WORK
	4 METHODOLOGY
	4.1 Cost, power and space metrics
	4.2 Performance metrics

	5 EXPERIMENTAL RESULTS
	5.1 Measured cost, power and space metrics
	5.2 Results of traditional benchmarks
	5.2.1 Microbenchmark results
	5.2.2 Parallel performance


	6 SUMMARY AND CONCLUSIONS

