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Abstract 

 
Left unchecked, the fundamental drive to increase peak performance using tens of thousands of power 

hungry components will lead to intolerable operating costs and failure rates. High-performance, power-aware 
distributed computing reduces power and energy consumption of distributed applications and systems without 
sacrificing performance. Recent work has shown application characteristics of single-processor, memory-
bound non-interactive codes and distributed, interactive web services can be exploited to conserve power and 
energy with minimal performance impact. Our novel approach is to exploit parallel performance inefficiencies 
characteristic of non-interactive, distributed scientific applications, conserving energy using DVS (dynamic 
voltage scaling) without impacting time-to-solution (TTS) significantly, reducing cost and improving 
reliability. We present a software framework to analyze and optimize distributed power-performance using 
DVS implemented on a 16-node Centrino-based cluster. We use our framework to quantify and compare the 
power-performance efficiency for parallel Fourier transform and matrix transpose codes. Using various DVS 
strategies we achieve application-dependent overall system energy savings as large as 25% with as little as 
2% performance impact. 

1 Introduction 
Over the last decade, power has emerged as a critical design constraint in modern microarchitecture. In many 
cases system power consumption is increasing exponentially. Such demands and market forces1 cause 
microprocessor manufacturers to pursue aggressive designs that lower power requirements or enable transitory 
power states that adapt to changing workloads to conserve energy. Power modes are increasingly pervasive 
and appear in power conscious disk drives, banks of memory, and network cards. 

Many high-end distributed systems use increasing numbers of power-hungry commercial components (e.g. 
Itanium) in clusters of SMPs to achieve high-performance. Teraflop computers, capable of executing one 
trillion (1012) floating point operations per second (TFlops), have emerged. Petaflop systems (1015) are 
expected by the end of the decade. Such solutions will be highly parallel with tens of thousands of CPUs, tera- 
or peta-bytes of main memory, and tens of peta-bytes of storage[2]. 

The power needs of those high-end distributed systems making use of tens of thousands of commodity 
components to increase peak performance will become impractical for two reasons. First, it will lead to 
intolerable operating costs. Earth Simulator requires 18 megawatts of power. Petaflop systems may require 
100 megawatts of power[3], nearly the output of a small power plant (300 megawatts). At $100 per megawatt 
($.10 per kilowatt), peak operation of this petaflop machine is $10,000 per hour. Pessimistically, annual 
operational costs surpass $85 million! These estimates ignore the additional cost (~40%) of dedicated cooling. 

Second, it leads to intolerable failure rates. Commodity components fail at an annual rate of 2-3%[4]. A 
petaflop system of about 12,000 nodes (CPU, DRAM, NIC, disk) will sustain hardware failures once every 
twenty-four hours. Component life expectancy decreases 50% for every 10° C (18° F) temperature increase. 

                                                      
1 Historically technologies matured in desktops then migrated to laptops. Laptops now outsell desktops[1] NewYork(AP), "Laptop sales beat 

desktops for first time," The Associated Press, 2003. and technologies migrate in both directions. For example, Intel’s speedstep technology (DVS) first 
available only in mobile processors is now present and enabled in Xeon server line.  
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Reducing a component's operating temperature the same amount (consuming less energy) doubles the life 
expectancy. 

While energy conservation for large-scale systems has been considered, current approaches are not 
applicable to the high-performance community. The low-power approach[5] uses low-power components (e.g. 
Transmeta Crusoe) in a distributed system to save power and energy. While this approach may be useful in 
systems designed for power and reliability, it is not acceptable to computational scientists interested in 
decreasing simulation execution time to solution since performance is poor. 

For high-end systems where performance is crucial, power-aware[6] approaches are more promising. 
Power-aware systems provide components that operate in various power states. Power-aware approaches have 
been used to reduce energy consumption for interactive workloads (e.g. web services) in distributed systems. 
Unfortunately, these approaches react to and schedule independent process workloads that vary in time. 
Scientific applications are non-interactive, often dependent processes that vary according to algorithm. 

In this paper, we study the use of dynamic voltage scaling to conserve energy in high-end computing 
systems and applications where performance is critical. Our contribution is two-fold. First, we present an 
environment and tools we created for analysis and control of a power-aware Beowulf cluster. Second, we 
apply this framework to quantify and optimize power-performance efficiency using various dynamic voltage 
scaling strategies for parallel benchmarks of general interest to the high-end community. 

2 Motivation and Metrics 
In this section, we propose metrics for quantifying power-performance efficiency in distributed systems. 

The goal is to quantify distributed power-performance efficiency for use in selecting a “best” operating point 
given the energy and performance characteristics of an application. 

2.1 Motivation 
The operating frequency (f) of a CMOS processor is proportional to the supply voltage (V) [7] 

 ( ) /tf V V V∝ −  (1) 
where (Vt) is the threshold or switching voltage. Frequency increases or decreases with supply voltage directly. 
The resulting power consumption (P) of a CMOS processor is proportional to the product of total capacitance 
load (c), frequency (f), and the square of the supply voltage (V2): 
 2P cfV∝  (2). 
While power describes consumption at a discrete point in time, energy (E) specifies the number of joules used 
for time interval (t1,t2) as a product of average power (Pavg) over the interval or delay (D=t2-t1): 
 2 1( )avg avgE P t t P D= × − = ×  (3) 

Many general purpose processors enable frequency scaling by reducing the supply voltage to the CPU. 
Examples include Intel’s Speedstep[8] and AMD’s PowerNow[9] technologies. System tools can be created to 
dynamically set the frequency (i.e. voltage) to conserve power over time to reduce energy consumption. 

The impact of these dynamic voltage scaling (DVS) technologies on performance varies with application. 
Generally, decreasing clock frequency hurts performance since CPU throughput is reduced. However, during 
idle or slack times the CPU is busy waiting on slower components such as memory, disk, or the network 
interface, fast frequencies requiring peak power may not be necessary. During these application-dependent 
slack periods execution at reduced power operating points (frequencies) may save energy without affecting 
performance drastically. 

Figure 1 provides a concrete example for two sequential codes (mgrid and swim) from the SPEC CFP2000 
benchmark suite. Measurements are obtained on an Intel Centrino processor dynamically set to 5 frequency 
operating points from highest (1.4 GHz) to lowest (600 MHz) for the duration of the program. The values 
plotted on the y-axis are normalized to the highest (i.e. fastest) frequency operating point respectively for 
energy (i.e. power times delay) and delay (i.e. time-to-solution). The energy-delay “crescendo” for mgrid 
shows a small decrease in energy consumption corresponding to a significant increase in delay (i.e. time-to-
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solution), while the energy-delay “crescendo” for swim shows a steady decrease in energy consumption 
corresponding to increases in delay of various magnitudes. For codes like swim which make less efficient use 

of the processor, energy savings can be achieved with little performance impact. Specifically, 8.14% energy is 
saved with performance degradation of only 1.40% running at 1.2 GHz for swim. If this kind of savings could 
be achieved in a parallel application on our 100 megawatt hypothetical petaflop system it would save about 
$163 per hour at a performance cost of 50 additional seconds per hour.  

Distributed applications that suffer from poor performance efficiency despite aggressive optimizations, are 
candidates for increased power efficiency. Distributed applications often achieve a low percentage of 
theoretical peak system performance. Gordon Bell Award winning applications, recognized for superior 
performance through aggressive optimizations, suffer efficiencies between 35% and 65% of peak[4, 10] . For 
the five most powerful machines over the past decade, the average percentage of peak for LINPACK[11], 
arguably the most heavily optimized high-performance code suite, ranged between 54% and 71%[12]. 
Average scientific codes on today’s high-performance parallel systems commonly achieve only 5-10% of peak 
performance. 

2.2 Metrics 
Metrics are needed to allow the user input to quantify power-performance efficiency and choose a best 

operating point which provides maximum energy saving within acceptable performance degradation. Energy-
delay2 product (or ED2P) suggested by Martonosi et al.[13] is a suitable metric to measure power-performance 
efficiency under DVS, which is expressed as  
 2ED2P E D= ×  (4). 
By Equation (2) 3P f∝  and ideally 1D f∝ . From Equation (3) 2E f∝  and hence constDE ∝× 2  is 
independent of frequency. However, it is desirable to allow users input on the importance of energy and delay 
(i.e. performance). For instance, performance degradation of more than 15% may not be acceptable for some 
high performance computing applications even though the energy conservation might be as much as 50%. In 
contrast, for long running jobs where performance is 
important but energy savings could lower cost and 
reduce the risk of failure, 15% performance 
degradation may be acceptable to conserve 50% 
energy. In the same instance, 25% performance 
degradation may not be reasonable. 

We propose to generalize the ED2P metric as  
 ( ) ( )1 2 1weighted ED2P E D−∂ +∂= ×  (5). 

Table 1. Best operating points for mgrid and swim 
operating point(MHz) mgrid swim 

HPC 1400 1000 
energy 600 600 

performance 1400 1400 

    
Fig. 1. SPEC CFP2000 Codes. The energy-delay crescendo’s for mgrid and swim 
exemplify the effect of application-dependent slackness on energy and performance. (a) For 
mgrid reduced energy consumption comes at considerable performance loss. (b) For swim, 
energy conservation can be achieved with (at times) reasonable performance loss. 



 4

Here ∂  is a weight factor set by the user such that 1 1− ≤ ∂ ≤ . This metric favors performance when 
10 ≤∂< , favors energy when 01 <∂≤− , and treats them equally or reduces to ED2P when 0=∂ . In the 

extreme cases of 1−=∂  and 1=∂ , weighted ED2P reduces to quadratic energy consumption (E2) or all 
weight for energy efficiency and biquadratic performance (D4) or all weight for performance respectively.  

To determine the “best” operating point which promises maximum power-performance efficiency under 
any ∂  constraint, we take the minimum weighted ED2P value over n operating points: 

 ( ) ( )( )1 2 1

1,
"best" operating point min

i n i
E D−∂ +∂

=
⎡ ⎤= ×
⎣ ⎦

 (6). 

We experimentally determined .2∂ =  for HPC to express power-performance efficiency in high-
performance systems in our case. However, our techniques are general and settings can be changed to suit the 
needs and priorities of any user. For two operating points that differ in performance by 5%, .2∂ =  requires a 
14% energy savings to make the lower energy point the “best” operating point. Table 1 provides the “best” 
operating points for mgrid and swim under each of three ∂  settings. The “energy” and “performance” settings 
in our results correspond to 1−=∂  and 1=∂  respectively. 

The remainder of this paper is a study of DVS strategies to conserve performance and energy by exploiting 
inefficiencies in distributed scientific applications. We present a framework for measurement and analysis we 
created to study the impact of various distributed DVS strategies. We use the metrics defined in this section to 
present our results for several high-performance benchmarks. We also study microbenchmark applications to 
identify the factors that contribute to inflection points in these graphs. 

3 Energy Measurement Framework 
Our environment framework is comprised of three components, and they are experiment platform, 

measurement tools, and data collecting and analysis software.  
16-node DVS Cluster. For our base node, we chose laptop systems equipped with Intel Pentium M 

processors with Enhanced Speedstep technology for DVS. 16 laptops are constructed as a Beowulf-like cluster 
connected by 100M Cisco System Catalyst 2950 series. MPICH 1.2.5 serves as message passing interface. 
Each node is a Dell Inspiron 8600 laptop equipped with a 1.4 GHz Intel Pentium M processor using Centrino 
mobile technology to provide high-performance with reduced power consumption. The processor includes on-
die 32K L1 data cache, on-die 1 MB L2 cache, and each node has 1 GB DDR SDRAM. Enhanced Intel 
Speedstep technology allows the system to dynamically adjust the processor among five supply voltage and 
clock frequency settings given by Table 2. The lower bound on Speedstep transition latency is approximately 
10 microseconds according to the manufacturer[14]. 

Open-source Linux Fedora Core 2 release is installed on each node. We use version 2.6 that includes ACPI, 
CPUFreq and cpuspeed. ACPI is the Advanced Configuration & Power Interface, which provides an industry-
standard interface for OS-directed configuration and power management on laptops, desktops, and servers. 
CPUFreq is a Linux kernel subsystem which provides an 
interface for application-level control of the operating frequency 
and supply voltage of a processor. Cpuspeed uses CPUFreq to 
adjust CPU frequency automatically to conserve power or 
provide performance according to the CPU idle percentage 
derived from the Linux /proc/stat file.  

Energy Measurement. For redundancy and to ensure 
correctness, we use two independent techniques to directly 
measure energy consumption. The first direct power 
measurement technique is to poll the battery attached to the 
laptop for power consumption information using ACPI. An 
ACPI smart battery records battery states to report remaining capacity in mWh (1mWh=3.6Joules). This 
technique provides polling data updated every 15-20 seconds. The energy consumed by an application is the 
difference of remaining capacity between execution beginning and finishing when system is running on DC 

Table 2. Frequency operating points and 
supply voltage for the Pentium M 1.4GHz 
processor. 

Frequency Supply voltage
1.4GHz 1.484V 
1.2GHz 1.436V 
1.0GHz 1.308V 
800MHz 1.180V 
600MHz 0.956V 
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battery power. To ensure reproducibility in our experiments, we do the following prior to all power 
measurements: 1) fully charge all batteries in the cluster, 2) remotely (automatically) disconnect all laptops 
from wall outlet power, 3) allow batteries to discharge for approximately 5 minutes to ensure accurate 
measurements, 4) run parallel applications and record polling data.  

The second direct power measurement technique uses specialized remote management hardware available 
from Bay Technical (Baytech) Associates in Bay St. Louis, MS. With Baytech proprietary hardware and 
software (GPML50), power related polling data is updated each minute for all outlets. Data is reported to a 
management unit using the SNMP protocol. Energy is calculated using Equation (3). We additionally use this 
equipment to connect and disconnect building power from the machines as described in technique #1. 

PowerPack software. While direct measurement techniques are collectively quite useful, it was necessary 
to overcome two inherent problems to use them effectively. First, these tools may produce large amounts of 
data for typical scientific application runs. Second, we must coordinate power profiling across nodes and 
hardware polling rates within a single application. To overcome these difficulties, we created a software tool 
suite called PowerPack. PowerPack is software for controlling and recording power measurement in 
distributed systems. PowerPack has several microbenchmarks (used later in this paper) to profile the power 
and performance use of various system components (e.g. the memory hierarchy) individually. PowerPack also 
includes several portable libraries for (low-overhead) timestamp-driven coordination of power measurement 
data and DVS control at the application-level using system calls. ACPI and multimeter measurements are 
obtained and coordinated using our libraries libbattery.a and libxutil.a respectively. Lastly, we created 
software to filter and align data sets from individual nodes for use in power and performance analysis and 
optimization. The data in this paper is primarily obtained using our ACPI-related libraries; however data is 
verified using the Baytech hardware. 

4 Experimental results 
We study three distributed DVS strategies in this paper. 1) 

cpuspeed: This is the default strategy allowing the cpuspeed 
daemon complete control over the DVS of each individual node 
independently. 2) static DVS: This is a straightforward strategy 
where the user synchronizes and sets the frequency for all nodes 
to a single value for the duration of the program. 3) dynamic 
DVS: This is the strategy of varying DVS frequency from within 
the application according to its performance characteristics. 

We study and analyze two parallel applications of particular 
interest to the high-performance community. FT from the NAS 
parallel benchmark suite contains the computational kernel for a 
three dimensional parallel Fast Fourier Transform using all-to-all 
information exchange. We also studied a parallel matrix 
transpose implemented with non-scattered decomposition or pure 
block distribution algorithm, which features large data set 
communication and load imbalance. 

To ensure accuracy in our energy measurements using ACPI, 
we collected data for long program durations measured in 
minutes. In some cases (e.g. NAS FT) we used large problem 
sizes (e.g. Class C workload). In other cases we iterate 
application execution. This ensures the relatively slow refresh 
rates (e.g. 15-20 seconds) accurately record the energy 
consumption of the battery. As mentioned we used additional hardware (e.g. Baytech equipment) to confirm 
results. Also, we repeated each experiment at least 3 times to identify outliers (more as necessary). 

cpuspeed vs. static DVS: As mentioned, the cpuspeed daemon relies on processor utilization information 
available in typical Linux configurations in the /proc/stat file. This led us to believe the cpuspeed daemon 

 
Fig. 2. Normalized energy and delay of 
FT.B on 8 nodes.  
 
Table 3. Best operating points for FT 
class B on 8 nodes 

Operating points (MHz) FT 
HPC 1000 

Energy 600 
Performance 1400 
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would not provide significant energy savings for parallel scientific applications characterized by reasonable 
CPU efficiency. Figure 2 confirms our intuition. Here we compare the energy-delay crescendo for static DVS 
to cpuspeed on 8-nodes in our cluster. The leftmost data points for the application FT (problem size B) from 
the NAS parallel benchmarks provide the energy and delay for the cpuspeed daemon version. The crescendo 
beginning at 1.4 GHz provides the data points for various operating points of the static DVS approach.  

Energy consumption decreases with CPU frequency in static DVS mode while application execution time 
increases. For static DVS, the normalized energy and execution time at 600MHz is 0.655 and 1.068 
respectively - significant energy savings (34.5%) with possibly reasonable performance loss (6.8%). For the 
cpuspeed strategy, the energy and execution time are 0.966 and 0.988 respectively2 – note the similarity to 
static DVS at 1.4 GHz. Table 3 shows the best operating points for HPC, energy and performance respectively. 
The best energy-conscious HPC operating point for static DVS is 1.0 GHz where the weighted power-
performance efficiency (ED2P) is 16.9% higher than the maximum frequency (1.4 GHz). 

There are two problems with using the cpuspeed daemon for scientific applications. First, the prediction 
scheme for DVS relies on a simple CPU efficiency metric which does not consider application specific 
characteristics. For example, the CPU efficiency derived from /proc/stat in cpuspeed can be 99% for a memory 
bound application encouraging little DVS while significant energy savings may be possible. Second, cpuspeed 
is probably quite useful for interactive applications where recent history often reflects future use. However, in 
non-interactive scientific applications recent and present program states may vary significantly within short 
spans of time making history-based predictions less effective. 

 
Static vs. dynamic DVS for FT. Figure 3 presents comparisons of energy consumption and execution time 

between static DVS, hand-tuned dynamic DVS and cpuspeed (for completeness) for benchmark FT in class C 
running on 8 processors. In our dynamic DVS strategy, we insert calls to our PowerPack libraries before (to 
lowest speed) and after (to original speed) the function fft(). Function fft() ran fairly inefficiently on the 
processor since it mainly consists of communication. Further, DVS transition at function level avoids overhead 
for mode transitions (ideally 10 microseconds).  

Similar to the Class B problem set, static mode energy decreases monotonically with CPU frequency. The 
largest energy consumption for all strategies occurs statically at 1.4 GHz which coincidentally corresponds to 
the shortest overall execution time. 28.6% energy can be saved with performance impact of 4.2% at static 
800Mhz while 33.7% energy saving can be achieved with 9.9% performance impact at static 600MHz. Once 
again we observe that cpuspeed doesn’t provide significant energy conservation. With performance 
degradation of 3.9%, energy is conserved 12.4% under its control. For dynamic mode transitions as described, 
energy use increases at higher frequencies and decreases at lower frequencies. However, execution time 

                                                      
2 We are not certain why execution time is slightly less (1.2%) for the cpuspeed daemon. This is within our 

measurement tolerance, however we are currently searching for more substantial proof. In any case this only matters in 
comparison to the maximum speed (1.4 GHz) as the 1.2 GHz operating point (for example) is more efficient. 

    
Fig. 3. Energy consumption and execution time of FT class C on 8 processors. 
cpuspeed=automated DVS using cpuspeed daemon. Stat=fixed frequency for program 
duration. Dyn=vary from speed on x-axis down to min speed for function fft() only; speed 
on x-axis all other times. 
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increases as frequency decreases. Energy savings amount to 32.6% with 7.8% performance degradation for 
CPU frequency transitions from 1.4GHz down to 600MHz for function fft. The greatest energy saving (34.6%) 
occurs for CPU frequency transitions from 1.0GHz down to 600MHz with performance degradation of 8.71%. 
Compared to static mode, energy consumption under dynamic mode is smaller, while execution time is 
slightly longer under each operating point except for frequency 800MHz. This is due to energy and latency 
overhead caused by transitions between operating points. 

The best energy operating point is dynamic DVS at 1.0 GHz. The best performance operating point is static 
DVS at 1.4 GHz. The best HPC operating point is static DVS at 800 MHz which is 15.6% more efficient than 
the fastest operating point (static 1.4 GHz).  

 
Static vs. dynamic DVS for Transpose. Figure 4 presents comparisons of energy and execution time 

between static DVS, hand-tuned dynamic DVS and cpuspeed (for completeness) for a 12Kx12K parallel 
matrix transpose on 15 processors. The matrix is initially distributed on 5x3 processors and each processor is 
provided a submatrix of size 2400x4000. Submatrix at position (p,q) is (1) transposed locally, (2) sent to 
position (q,p), and (3) transmitted to the root processor for assembly. This code exemplifies traditional load 
imbalance common to scientific applications since processing node workloads may differ (e.g. node (0,0) can 
skip step 2). Hence, such inefficiencies should present opportunities for power savings. 

For static mode energy consumption decreases and execution time increases with CPU frequency. 
Specifically, energy consumption decreases 16.2% while execution time increases .78% at 800 MHz. At 600 
MHz, energy consumption decreases 19.7% while execution time increases 2.4%. cpuspeed provides 1.9% 
energy saving and 0.83% execution time decrease. For dynamic mode, we insert calls to our PowerPack 
libraries before (to lowest speed) and after (to original speed) step 2 and step 3. Energy consumption decreases 
slightly with CPU frequency, while execution time stays almost the same. Compared to static mode, the 
energy consumption is smaller, and execution time is greater for each operating point. 

The best energy operating point is static 600 MHz. The best performance operating point is using cpuspeed; 
however our previous comment about this anomalous behavior applies and we are investigating further. The 
best HPC operating point is static 800 MHz which is 11.5% more efficient than the fastest operating point 
(cpuspeed).  

 
Power-performance analysis. As mentioned, the observed variations in power-performance efficiency are 

determined by the characteristics of the application. In this section we attempt to identify system specific 
characteristics that explain some of the trends we observed in our application studies. We measure and analyze 
results for a series of microbenchmark codes (part of our PowerPack tool suite) to profile the memory, CPU, 
and network interface energy behavior at various static DVS operating points. 
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Fig. 4. Energy consumption and execution time of parallel matrix transpose on 15 
processors. cpuspeed=automated DVS using cpuspeed daemon. Stat=fixed frequency for 
program duration. Dyn=vary from the speed on x-axis down to min speed for function step 
2 and 3 only; speed on x-axis all other times. 
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Fig. 5 Normalized energy and delay of 
memory access.  

Memory-bound microbenchmark. Figure 5 presents the 
energy consumption and delay of memory access under different 
CPU frequency. The measured code reads and writes elements 
from a 32MB buffer with stride of 128Bytes, which assures each 
data reference is fetched from main memory. We use our 
crescendo graphs to present the results. At 1.4 GHz, the energy 
consumption is maximal, while execution time is minimal. The 
energy consumption decreases with operating frequency, and it 
drops to 59.3% at the lowest operating point 600MHz. However, 
execution time is only minimally affected by the decreases in 
CPU frequency; the worst performance at 600 MHz shows a 
decrease of only 5.4% in performance. The conclusion is 
memory-bound applications offer good opportunity for energy 
savings since memory stalls reduce CPU efficiency. This 
confirms the results of others[15]. 

Using our weighted power-performance efficiency metrics, we 
can further explain this phenomenon. The best energy operating 
point is 600 MHz which is 40.7% more efficient than the fastest 
operating point (1.4 GHz). The best performance operating point 
is 1.4 GHz. The best HPC operating point is also 600 MHz 
which is 25.3% more efficient than the fastest operating point. 
More pointedly, in our context this memory behavior explains 
the single node behavior of codes such as the swim benchmark. 
Parallel matrix transpose is memory bound during step 1 (for 
nodes performing the local transpose) and communication bound 
otherwise. Hence, memory characteristics probably affect the 
power-performance efficiency of parallel matrix transpose. 

CPU-bound microbenchmark. Figure 6 is energy consumption and delay under DVS for a CPU-intensive 
micro benchmark. This benchmark reads and writes elements in a buffer of size 256Kbytes with stride of 
128Bytes, where each calculation is a L2 cache access. Since L2 cache is on-die, we can consider it as CPU-
intensive. The energy consumption for CPU-intensive computation is different from memory access in that the 
CPU is always busy and involved in computation. 

As we expect, the results in Figure 6 are unfavorable to energy conservation. Delay increases with CPU 
frequency near linearly. At the lowest operating point, the performance loss can be 134%. On the other hand, 
energy consumption decreases first, and then goes up. Minimum energy consumption occurs at 800 MHz 
(10% decrease). Energy consumption then actually increases at 600 MHz. The dramatic decrease in 
performance by the slow down to 600 MHz compensates for the reduced power consumption. That is, while 
average power may decrease, the increase in execution time causes total energy as expressed in Equation (3) to 
increase. If we limit memory accesses to registers thereby eliminating the latency associated with L2 hits the 
results are even more striking. The lowest operating point consumes the most energy and takes the longest 
time of 245%. The computationally bound code mgrid exhibits behavior that reflects this data. However, none 
of the parallel benchmarks we studied exhibit such behavior.  
Communication-bound microbenchmark. Figure 7 shows the normalized energy and execution time for 
MPI primitives. Figure 7a is the round trip time for 256 Kbytes. Figure 7b is the round trip time for a 4 Kbyte 
message with stride of 64Btyes. The memory load latency for each node of our cluster is around 110ns. Simple 
communication primitives MPI_Send and MPI_Recv take dozens of microseconds, and collective 
communication takes several hundreds of microseconds for two nodes, both present more CPU slack time than 
memory access. 

 As we expect, the crescendos in Figure 7 are favorable to energy conservation for both communications as 
the energy consumption decreases with CPU frequency drastically while execution times increase slightly. For 
the 256K round trip, energy consumption at 600MHz decreases 30.1% and execution time increases 6%. For 

Fig. 6. Normalized energy and delay 
for L2 cache access under DVS.  
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4KB message with stride of 64Bytes, at 600 MHz the energy 
consumption decreases 36% and execution time increases 4%.  

Similar patterns were seen in the NAS code FT and the parallel 
matrix transpose. Since both codes are communication bound to 
some extent, it is likely this energy behavior explains a significant 
portion of the crescendo results for these full applications. 
However, the energy gains apparent in communication bound 
applications are related to the communication to computation ratio. 
As this ratio decreases, so should the impact of communication on 
the effectiveness of DVS strategies. 

5 Related work 
Low power and power-aware techniques attempt to conserve 

energy. The low power approach, which is effective in mobile and 
handheld systems, uses low power components to reduce power 
and performance. Recently, researchers used low power 
components to build computing clusters[5, 16, 17] . Green 
destiny[5], a 240-node Beowulf cluster, uses Transmeta Crusoe 
processor. Argus[16] and BlueGene/L[17] use IBM PowerPC 
embedded processors. However, in all these cases performance is 
limited.  

In contrast, the power-aware approach explores the tradeoff 
between power consumption and performance attempting to find a 
best fit. Power-aware components provide low power modes of 
operation. Such technologies have migrated to all the core 
components of high-performance systems including processor, 
disk, memory, network card[18-20]. 

Researchers have studied the effects of power-aware[15] technologies on general purpose processors to 
conserve energy while maintaining performance. Recent work[15]  uses compiler-directed dynamic voltage 
and frequency scheduling to identify, create and exploit slackness in various types of codes. 

Some work has also been accomplished in distributed systems[18, 21]. These studies focus on conserving 
energy in clusters of web servers. Energy is conserved by exploiting the characteristics of interactive 
workloads. Tasks are scheduled and migrated to optimally conserve energy in data centers.  

Our work uses power-aware DVS to exploit energy consumption without performance impact for non-
interactive distributed scientific computation on high-end computer systems. These other approaches either 
focus on either very different workloads or optimizing at the single task level. 

6 Conclusion 
In this paper we have described a framework for application-level power measurement and optimization of 

DVS-enabled clusters. We proposed a new metric (weighted ED2P) that considers the power and performance 
needs of the user. We also proposed a framework to directly measure, analyze, and compare several DVS 
strategies to conserve power while maintaining performance in scientific parallel applications. We applied our 
metric to identify best operating points for energy, performance, and HPC. 

Our results indicate that it is possible to conserve significant amounts of energy in parallel scientific 
applications while maintaining performance. We achieved total energy savings at times of 30% with minimal 
(<5%) impact on performance. However, we also showed that energy savings vary greatly with application, 
workload, system, and DVS strategy.  

Following analysis of CPU-, memory- and communication-bound microbenchmarks, we showed the 
parallel applications under study exhibiting significant slack times due to communication that can be exploited 
using DVS strategies. 

 
Fig.7a. Normalized energy and time 
for 256KB round trip.  
 

Fig.7b. Normalized energy and delay 
for 4KB message with stride of 64B  
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