
 

ARGUS: SUPERCOMPUTING IN 1/10 CUBIC METER 
 

Xizhou Feng, Rong Ge and Kirk W. Cameron 
Department of Computer Science and Engineering 

University of South Carolina, Columbia, SC 29208, USA 
{fengx, ge, kcameron}@cse.sc.edu 

 
ABSTRACT 

We propose ARGUS, a high density, low power 
supercomputer built from an IXIA network analyzer 
chassis and load modules. The prototype is a diskless 
MPP scalable to 128 processors in a single 9U chassis. 
The entire system has a footprint of 1/4 meter2 (2.5 ft2), a 
volume of 0.09 meter3 (3.3 ft3) and maximum power 
consumption of less than 2200 watts. We compare and 
contrast the characteristics of ARGUS against various 
machines including our 32-node Beowulf and LANL’s 
Green Destiny. Our results show that the computing 
density (GFLOP/ft3) of ARGUS is about 30 times higher 
than that of the Beowulf, about 3 times higher than that of 
Green Destiny while performance is comparable. 
 
KEY WORDS 

Super computing, high density computing, cluster 
system, performance evaluation, parallel and distributed 
system 
 
1.  Introduction 
 

Mainstream high performance computing systems 
often consist of clusters of symmetric multi-processors 
(SMP) communicating across fast interconnects. 
Computing resources may be special purpose (e.g. Earth 
Simulator) or general purpose (e.g. network of 
workstations). While these high-end systems often 
provide unmatched computing power, they are extremely 
expensive, requiring special cooling systems, enormous 
amounts of power and dedicated building space to ensure 
reliability. It is common for a supercomputing resource to 
encompass an entire building and consume tens of 
megawatts of power.  
 

In contrast low-power, high-throughput, high-
density systems are typically designed for a single task 
(e.g. image processing [1]). These machines offer 
exceptional speed (and often guaranteed performance) for 
certain applications. Design constraints include 
performance, power, and space making them expensive to 
develop and difficult to migrate to future generation 
systems. 
 

We propose an alternative approach augmenting a 
specialized system (i.e. an Ixia network analyzer) that is 
designed for a commodity marketplace under 
performance, power, and space constraints. Though the 

original Ixia machine is designed for a single task, we 
have created a configuration that provides general-
purpose high-end processing in a Linux environment. Our 
system provides computational power surpassing Green 
Destiny [2, 3, 4] (another low-power supercomputer) 
while decreasing volume by a factor of 3. 
 
2.  System Design 
 

Figure 1 provides a detailed diagram of the 
architecture of our prototype called ARGUS. This 
architecture consists of four sets of separate components: 
the IXIA chassis, the IXIA Load Modules, the multi port 
fast Ethernet switch and an NFS server.  

 

 
 

The chassis contains a power supply and distribution 
unit, cooling system, and runs windows system and 
proprietary software (IX server and IX router). Multiple 
(up to 16) Load Modules plug into the chassis and 
communicate with the chassis and each other via an 
IxBus. Each Load Module provides up to 8 RISC 
processors in a dense form factor and each processor has 
its own operating system, cache (L1 and L2), main 
memory and network interface. Additional FPGA 
elements on each Load Module aid real-time analysis of 
network traffic. Though the performance abilities of these 
FPGAs have merit, we omit them from consideration for 
two reasons: 1) reprogramming is  difficult and time 

P C M

P C M

P C M

P C M

F
P
G
A

P C M

P C M

P C M

P C M

F
P
G
A

IX
 S

er
ve

r
IX

 R
ou

te
r

Load Module #1

Load Module #N

IX
 B

us

IXIA Chassis

M
ul

tip
or

t s
w

itc
h N

FS
 S

er
ve

r
To

 E
xt

er
na

l N
et

w
or

k
Fig. 1.  ARGUS Hardware Architecture. Up to 16 Load Modules 
are supported in a single IXIA 1600T chassis. A single bus 
interconnects modules and the chassis PC while external disks and 
the cluster front-end are connected via an Ethernet switch. 
P=processor, C=Cache, M=Memory. 



 

consuming, and 2) it is likely FPGA elements will not 
appear in succeeding generation Load Modules to reduce 
unit cost. 
 

There is no disk on each Load Module. We allocate 
a small portion of memory at each port to store an 
embedded version of the Linux OS kernel and application 
downloaded from IX Server. An external Linux machine 
running NFS file server is used to provide external 
storage for each node. A possible improvement is to use 
networked memory as secondary storage but we did not 
attempt this in the initial prototype. Due to cost 
considerations, although the Load Modules support 1000 
Mbps Ethernet on copper, we used a readily available 
switch operating at 100 Mbps. 
 

The first version of the ARGUS prototype is 
implemented with one IXIA 1600T chassis and 4 
LM1000TXS4 Load Modules [5] configured as a 16-node 
distributed memory system, i.e., each port processor is 
considered an individual node. Another option is to 
configure each Load Module as an SMP node. The second 
option requires use of the IxBus between Load Modules. 
The IxBus bus (and the PowerPC 750 processor) does not 
maintain cache coherence and suffers from limited 
bandwidth. Thus, early on we eliminated this option from 
consideration since software-driven cache coherence will 
limit performance drastically. We opted to communicate 
data between all processors through the Ethernet 
connection. Hence one recommendation for future 
implementations is to significantly increase the 
performance and capabilities of the IxBus. This could 
result in a cluster of SMPs architecture allowing hybrid 
communications for improved performance. 
 

Each LM1000TXS4 Load Module provides four 
1392 MIPS PowerPC 750CXe RISC processors [6] with 
128M memory and four network ports with auto-
negotiating 10/100/1000 Mbps Copper Ethernet interface.  
The 1392 MIPS PowerPC 750CXe CPU employs 0.18 
micrometer CMOS copper technology, running at 600 
MHz with 6.0W typical power dissipation. This CPU has 
independent on-chip 32K bytes, eight-way set associative, 
physically addressed caches for instructions and data. The 
256KB L2 cache is implemented with on-chip, two-way 
set associative memories and synchronous SRAM for data 
storage. The external SRAM are accessed through a 
dedicated L2 cache port. The PowerPC 750CXe processor 
can complete two instructions per CPU cycle. It 
incorporates 6 execution units including one floating-
point unit, one branch processing unit, one system register 
unit, one load/store unit and two integer units. Therefore, 
the theoretical peak performance of the PowerPC 750CXe 
is 1200 MIPS for integer operations and 600 MFLOPS for 
floating-point operations.  

 
In ARGUS, message passing (e.g. MPI) is chosen as 

the model of parallel computation. We ported gcc3.2.2 
and glib for PowerPC 750 CXe to provide a useful 

development environment. MPICH 1.2.5 and a series of 
benchmarks have been built and installed on ARGUS. 
Following our augmentation, ARGUS resembles a 
standard Linux-based cluster running existing software 
packages and compiling new applications. 
 
3. Related Work 

According to design priorities, general-purpose 
supercomputers can be classified into four categories: 
• Performance: These are traditional high-

performance systems (e.g. ASCI Q) where 
performance (GFLOPS) is the absolute priority.  

• Cost: These are systems built to maximize the 
performance/cost ratio (GFLOPS/$) using 
commercial-off-the-shelf components (e.g. Beowulf). 

• Power: These systems are designed for reduced 
power (GFLOPS/Watt) to improve reliability (e.g. 
Green Destiny) using low-power components. 

• Density: These systems have specific space 
constraints requiring integration of components in a 
dense form factor (e.g. Green Destiny) for a high 
performance/volume ratio (GFLOPS/ft3).  

 
Though high performance systems are still a 

majority in the HPC community low cost, low power, low 
profile and high density systems are emerging. Blue 
Gene/L (IBM) [15] and Green Destiny (LANL) are two 
examples designed under cost, power and space 
constraints. 
 

ARGUS is most comparable to Green Destiny. 
Green Destiny prioritizes reliability (i.e. power 
consumption) though this results in a relatively small 
form factor. In contrast, the ARGUS design prioritizes 
space providing general-purpose functionality not typical 
in space-constrained systems. Both Green Destiny and 
ARGUS rely on system components targeted at 
commodity markets. 
 

Green destiny uses the Transmeta Crusoe TM5600 
CPU for low power and high density. Each blade of 
Green Destiny combines server hardware, such as CPU, 
memory, and the network controller into a single 
expansion card. ARGUS uses the PowerPC 750CXe 
embedded microprocessor which consumes less power 
but matches the sustained performance of the Transmeta 
Crusoe TM5600. ARGUS’ density comes at the expense 
of mechanical parts (namely local disk). For perspective, 
240 nodes in Green Destiny fill a single rack (about 25 
ft3); ARGUS can fit 128 nodes in 3.3 ft3. This diskless 
design makes ARGUS more dense and mobile yet less 
suitable for applications requiring significant storage. 
 
4.  Methodology 
 

As ARGUS and Green Destiny are similar, we use 
the total cost of ownership (TCO) metrics proposed by 
Feng et al [3] as the basis of evaluation. For 



 

completeness, we also evaluate our system using 
traditional performance metrics of benchmarks. 
 
4.1 Cost, Power, and Space Metrics 
 

OCACTCO +=     (1) 
AC HWC SWC= +     (2) 
OC SAC PCC SCC DTC= + + +   (3) 
 

TCO refers to all expenses related to acquisition, 
maintaining and operating the computing system within 
an organization. Equations (1-3) provide TCO 
components including acquisition cost (AC), operations 
cost (OC), hardware cost (HWC), software cost (SWC), 
system-administration cost (SAC), power-consumption 
cost (PCC), space-consumption cost (SCC) and downtime 
cost (DTC). The ratio of total cost of ownership (TCO) 
and the performance (GFLOPS or giga-floating-point-
operations per second) is designed to quantify the 
effective cost of distributed system reliability. 
 

Since both ARGUS and Green Destiny use low-
power processors, the performance to power ratio 
(GFLOPS/watt) can be used to quantify power efficiency. 
The rate of heat dissipation is proportional to power 
consumption and temperature difference between a 
system and its ambient environment. Therefore, lower 
power consumption means lower rate of heat dissipation, 
lower system working temperature and much higher 
system stability and reliability. 
 

As both ARGUS and Green Destiny provide small 
form factors relative to traditional high-end systems, the 
performance to space ratio (GFLOPS/ft2 for footprint and 
GFLOPS/ft3 for volume) can be used to quantify density. 
Feng et al propose footprint as the metric of computing 
density [3]. While ARGUS performs well in this regard 
for a very large system, we argue it is more precise to 
compare volume. We provide both measurements in our 
results. 
 
4.2 Performance Metrics 
 

We use an iterative benchmarking process to 
determine the system performance characteristics of the 
ARGUS prototype for general comparison to a 
performance/cost design (i.e. Beowulf) and to identify 
future design improvements. Benchmarking is performed 
at two levels: 
1) Micro-benchmarks: Using several micro 

benchmarks such as LMBENCH [7], MPPTEST [8], 
NSIEVE [9] and Livermore LOOPS [10], we provide 
detailed performance measurements of the core 
components of the prototype: CPU, memory 
subsystem and communication subsystem. 

2) Kernel application benchmarks: We use LINPACK 
[11] and the NAS Parallel Benchmarks [12] to 
quantify performance of key application kernels in 

high performance scientific computing. Performance 
bottlenecks in these applications may be explained by 
measurements at the micro-benchmark level. 

 
Since we do not have access to the Green Destiny 

system for direct benchmark comparisons, we use an on-
site 32-node Beowulf cluster called DANIEL. Each node 
on DANIEL is a 933MHZ Pentium III processor with 1 
Gigabyte memory running Red Hat Linux 8.0. The head 
node and all slave nodes are connected with two 100M 
Ethernet switches. We expect DANIEL to out-perform 
ARGUS generally, though our results normalized for 
clock rate (i.e. using machine clock cycles instead of 
seconds) show performance is comparable given 
DANIEL is designed for performance/cost and ARGUS 
for performance/space. We provide results in seconds and 
cycles though the Green Destiny literature uses cycle-to-
cycle comparisons only. 
 

For direct measurements, we use standard UNIX 
system calls and timers when applicable as well as 
hardware counters if available. Whenever possible, we 
use existing, widely-used tools (e.g. LMBENCH) to 
obtain measurements. All measurements are the average 
or minimum results over multiple runs at various times of 
day to avoid outliers due to local and machine-wide 
perturbations. 
 
5.  Results 
 
5.1 Cost, Power and Space Metrics 
 

Based on the aforementioned metrics we make 
direct comparisons between ARGUS, Green Destiny and 
DANIEL. The results are given in Table 1. Two ARGUS 
systems are considered: ARGUS64 and ARGUS128. 
ARGUS64 is the 64-node update of our current prototype 
with the same Load Module. ARGUS128 is the 128-node 
update with the more advanced IXIA Application Load 
Module (ALM) currently available. Space efficiency is 
calculated by mounting 4 chassis in a single 36U rack 
(excluding I/O node and Ethernet switches to be 
comparable to Green Destiny). The LINPACK 
performance of ARGUS64 is extrapolated from direct 
measurements on 16-nodes and the performance of 
ARGUS128 is predicted using techniques similar to Feng 
et al. as 2×1.3 times the performance of ARGUS64 (each 
ALM is equipped with 8 1856 MIPS PowerPC with 
512MB memory). 
 

All data on the 32-node Beowulf, DANIEL is 
obtained from direct measurements. There is no direct 
measurement of LINPACK performance for Green 
Destiny in the literature. We use its Tree Code 
performance as reported [4] and the estimated LINPACK 
performance by Feng [13] (denoted with parenthesis in 
Table 1) for comparison. 
  



 

Density.  The difference in system footprints comes with 
their physical configurations. The ARGUS128 is built 
with a single the IXIA 1600T chassis with 16 blades and 
each blade contains 8 CPUs. The chassis occupies 
44.5×39.9×52 cm3 (about 0.09 m3 or 3.3 ft3). Green 
Destiny consists of 10 chassis; each chassis contains 24 
blades; and each blade has only one CPU. DANIEL 
includes 32 rack-dense sever nodes and each node has 
only one CPU. Due to the large difference in system 
footprints and small difference in single processors 
performance, ARGUS achieves the highest computing 
density, 30 times higher than DANIEL, and 3 times 
higher than Green Destiny. 
 
Cost. We estimated the acquisition cost of ARGUS using 
prices published by IBM in June 2003. Each PowerPC 
750CXe costs less than $50. Considering memory and 
other components, each ALM Load Module will cost less 
than $1000. Including software and system design cost, 
each Load Module could sell $5000~$10000. Assuming 
the chassis costs another $10,000, the 128-node ARGUS 
may costs $90K~170K in acquisition cost (AC). 
Following the same method proposed by Feng et al., the 
operating cost (OC) of ARGUS is less than $10K. 
Therefore, we estimate the TCO of ARGUS128 is within 
the range of $100K~200K. The downtime cost of 
DANIEL is not included when computing its TCO since it 
is a research system and often purposely rebooted before 
and after experiments. The TCO of the 240-node Green 
Destiny is estimated based on the data of its 24-node 
system [2].  
 
Table 1: Performance Comparisons under cost, power and space 
efficiency metrics (For Green Destiny, the first value corresponds to its 
Tree Code performance; the second value in parenthesis is its estimated 
LINPACK performance. All other systems use LINPACK performance) 

Machine DANIEL Green 
Destiny 

ARGUS64 ARGUS128 

CPUs 32 240 64 128 
Performance 
(GFLOPS) 

17 39 
(101) 

13 34 

Area (ft2) 12 6 2.5 2.5 
TCO ( $K) ~100 ~350 100~150 100~200 
Volume(ft3) 50 30 3.3 3.3 
Power(kW) 2 5.2 1 2 
GFLOPS/proc 0.53 0.16 

(0.42) 
0.20 0.27 

GFLOPS 
Per Chassis 

0.53 3.9 13 34 

TCO 
Efficiency 
(GFLOPS/K$) 

0.17 0.11 
(0.29) 

0.08~0.13 0.17~0.34 

Computing 
Density 
(GFLOPS/ft3) 

0.34 1.3 
(3.3) 

3.9 10.3 

Space 
Efficiency 
(GFLOPS/ft2) 

1.4 6.5 
(16.8) 

20.8 54.4 

Power 
Efficiency 
(GFLOPS/ft3) 

8.5 7.5 
(19.4) 

13 17 

 
Though TCO is suggested as a better metrics than 
acquisition cost, the estimation of downtime cost (DTC) 

is subjective. Though, these three systems have similar 
TCO’s, Green Destiny and ARGUS have larger 
acquisition costs than DANIEL. System design cost is 
high in both cases since the design cost has not been 
amortized over the market size – which would effectively 
occur as production matures. 
 
Power.  All these systems have their own internal cooling 
systems that contribute a large percentage (about 30%) of 
the power consumption. The power efficiencies 
(including cooling costs) for all systems are comparable. 
Table 1 shows ARGUS128 is twice as efficient as 
DANIEL and about the same as Green Destiny. This 
observation is surprised us. We expected ARGUS to fair 
better against Green Destiny in power efficiency. 
However upon further investigation we suspect either 1) 
the ARGUS cooling system is less efficient (or works 
harder given the processor density) or 2) our use of peak 
power consumption on ARGUS compared to average 
consumption on Green Destiny is unfair or 3) the Green 
Destiny LINPACK estimates provided in the literature are 
overly optimistic. In any case, our results indicate power 
efficiency should be revisited in succeeding designs, 
though the results are respectable, particularly given the 
processor density.  
 
5.2 Performance Results 
 

Due to varying numbers of processors across 
systems, performance/chassis and performance/processor  
are used as the basis of performance comparison. A single 
RLX System 324 chassis with 24 blades from Green 
Destiny delivers 3.9 GFLOPS computing capability for 
Tree Code benchmark. While a single IXIA 1600T with 
16 Load Modules gives 34 GFLOPS for LINPACK 
benchmark. But when performance/processor is 
compared, DANIEL is the best and ARGUS performs 
worst. The reason is that ARGUS has poor performance 
on double MUL operation (as we seen in next section) 
which happens to the dominating operations in 
LINPACK. ARGUS will perform better with integer and 
single precision float operations dominated benchmark 
and applications. Green Destiny out performs ARGUS 
additionally since designers were able to optimize the 
floating point translation of the Transmeta processor 
which is not possible on the IBM Power PC architecture 
used in ARGUS. 
 
5.2.1 Microbenchmark Results 
 

Memory hierarchy performance (latency and 
bandwidth) is measured using the lat_mem_rd and 
bw_mem_xx tools in the LMBENCH suite. The results 
are summarized in Table 2. DANIEL uses its high-power, 
high-profile off-the-shelf Intel technology to outperform 
ARGUS at each level in the memory hierarchy in raw 
performance (time). Normalizing with respect to cycles 
however, shows how clock rate partially explains the 
disparity. The resulting "relative performance" between 



 

DANIEL and ARGUS is more promising. ARGUS 
performs 50% better than Daniel at L1 level, 6% better at 
main memory level, but much worse at L2 level. 
Increasing the clock rate of the PowerPC processor and 
the L2 implementation in ARGUS would improve raw 
performance considerably. 
 
Table 2: Memory Subsystem Performance 

Parameters ARGUS DANIEL 
CPU Clock Rate 600MHz 922MHz 
Clock Cycle Time 1.667ns 1.085ns 
L1 Data Cache Size 32KB 16KB 
L1 Data Cache Latency 3.37ns≈2 cycles 3.26ns≈3 cycles 
L2 Data Cache Size 256KB 256KB 
L2 Data Cache Latency 19.3ns≈12cycles 7.6ns ≈ 7 cycles 
Memory Size 128MB 1GB 
Memory Latency 220ns≈132 cycles 153ns≈141 cycles 
Memory Read Bandwidth 146~2340MB/s 514~3580MB/s 
Memory Write Bandwidth 98~2375MB/s 162~3366MB/s 

 
Table 3 shows the instruction throughput for 

ARGUS and DANIEL profiled with the LMBENCH 
suite. Throughput is computed using 

rateclock
cycles

mparallelisThroughput _⋅=   (4) 

"Parallelism" captures the pipelined functional unit 
capacity of the processor and reflects the achievable 
throughput of a given instruction type under ideal 
conditions. The resulting "throughput" will only be 
realized in a real code when a single type of instruction 
dominates the instruction stream executed by the 
processor and dependencies allow for near-optimal 
instruction-level parallelism. The results show that: 1) the 
integer performance of ARGUS typically outperforms its 
floating point performance; 2) While Intel architectures 
perform similar for float and double operations, this is not 
the case for the embedded PowerPC on ARGUS. Once 
"normalized" CPU performance is compared, ARGUS 
performs better than DANIEL for integer 
ADD/DIV/MOD, float ADD/MUL and double ADD 
instructions, but worse for integer MUL and double DIV 
instructions.  
 
Table 3: Profile of the Execution Unit with LMBENCH (Cycles: the 
execution time (CPU clock cycles) of an instruction type; P: parallelism; 
MIPS: throughput of an instruction type; I: Integer; F: Single precision 
floating point; D: Double precision floating point) 

ARGUS DANIEL  
Instruction Cycles P MIPS Cycles P MIPS 
I-BIT 1 1.5 900 1 1.93 1771 
I-ADD 1 2.0 1200 1 1.56 1393 
I-MUL 2 1.0 300 4 3.81 880 
I-DIV 20 1.0 30 39 1.08 36 
I-MOD 24 1.0 25 42 1.08 24 
F-ADD 3 3.0 600 3 2.50 764 
F-MUL 3 3.0 600 5 2.50 460 
F-DIV 18 1.0 33 23.6 1.08 42 
D-ADD 3 3.0 600 3 2.50 764 
D-MUL 4 2.0 300 5 2.50 460 
D-DIV 32 1.0 19 23.6 1.08 42 

 
The performance of message communication is 

critical to overall parallel system performance. We 
measured message communication latency and bandwidth 

with the MPPTEST tool available in the MPICH 
distribution. Result shows that ARGUS performance is 
slightly worse (yet comparable) to DANIEL in absolute 
value. The MPI point-to-point latency on ARGUS is 104 
microseconds (about 62,000 CPU cycles); on DANIEL it 
is 87 microseconds (about 80,000 CPU cycles). Both use 
10/100 Mbps Ethernet so this is somewhat unexpected. 
However, further analyses shows ARGUS has a larger 
overhead for message injection (as message size 
approaches typical packet size) than DANIEL – most 
likely due to the memory hierarchy disparity already 
mentioned. 

 
For further comparison, we measured the 

performance of two additional sequential benchmarks: 
NSIEVE and Livermore Loops. NSIEVE is a sieve of 
Eratosthenes program that varies array sizes to quantify 
the performance of integer operations. The NSIEVE 
benchmark results show that for small array sizes, 
ARGUS with high MIPS 980 beats DANIEL with high 
MIPS 945.  However, as array sizes increase, the relative 
performance of ARGUS decreases more than DANIEL. 
This again confirms the disparity between these machines 
in L2 cache performance. The performance results from 
Livermore loops are summarized in Table 4. Although 
DANIEL achieves 1.5~2 times higher MFLOPS than 
ARGUS for in most cases, ARGUS achieves the best, 
worst-case execution time for this benchmark. For 
“relative performance” on this benchmark, these two 
systems are very similar. 
  
Table 4: Livermore Loops Performance (REL. P.: Relative 
performance, obtained by divide the MFLOPS with CPU clock rate) 

 ARGUS DANIEL 

 MFLOPS REL. P. MFLOPS REL. P. 

Maximum Rate 731.5 1.22 1281.9 1.37 

Minimum Rate 46.2 0.08 20.0 0.02 

Standard Dev 133.8 0.22 208.5 0.22 
 
5.2.2 Parallel Performance 
 

The ARGUS prototype architecture can execute both 
commercial and scientific applications. In this paper, we 
focus on scientific applications and provide results for 
LINPACK [11] benchmark.  
 

LINPACK is arguably the most widely used 
benchmark for scientific applications and its 
measurements form the basis for the Top500 list [14] of 
most powerful computers in the world. HPL, a parallel 
version of the linear algebra subroutines in LINPACK 
that that solves a (random) dense linear system in double 
precision (64 bits) arithmetic on distributed-memory 
computers is used for measurements. HPL provides the 
ability to scale workloads for better performance by 
adjusting array sizes. To ensure good performance, we 
compiled and installed the BLAS libraries with the aid of 
ATLAS (Automatically Tuned Linear Algebra Software). 
Table 5 shows the LINPACK benchmark results on the 



 

16-node ARGUS prototype. The prototype achieves 3.4 
GFLOPS, about 210 MFLOPS each node or 70% peak 
throughput of “double MUL” operations.  
 
Table 5: LINPACK Benchmark Results on ARGUS 

NP Problem 
Size 

GFLOPS GFLOPS/proc Speedup 

1 3000 0.297 0.297 1.00 
2 3000 0.496 0.248 1.67 
4 5000 0.876 0.219 2.95 
8 8000 1.757 0.221 5.91 

16 12000 3.393 0.212 11.42 
 

To better identify the parallel performance trends, 
we also studied the scalability of ARGUS under the 
strong scaling rules (fixed problem size) using NAS 
parallel benchmark. The scaling curves show that 
ARGUS resembles most Ethernet-based Beowulf-cluster 
and its parallel scalability is mostly limited by its quality 
and interconnections.  
 
6.  Summary and Conclusions 
 

In our work, we implemented the ARGUS prototype 
as a new approach to cluster computing that uses the 
aggregate processing elements on network analysis Load 
Modules for parallel computing. Our work shows that this 
architecture has advantages such as high scalability, small 
footprint, reduced power, high availability, ultra-high 
density and limited mobility. 

 
ARGUS achieves much higher computing efficiency 

than another high density computer, Green Destiny but 
has similar power efficiency. The differences of ARGUS 
and Green Destiny lie in packing more processors on one 
blade and multiple nodes share one I/O module. 

 
The benchmarking measurements and comparisons 

with DANIEL indicate that the current ARGUS prototype 
has two major performance limitations due to the 
architectural characteristics of embedded PowerPC 
processor: L2 cache latency and hardware support for 
double precision.   

 
We intend to extend our system prototype for a more 

comprehensive exploration of the results herein taking 
advantage of advancements (e.g. newer cards, gigabyte 
Ethernet, etc.).  For example, the communication 
overhead on the processing node should and could be 
improved through hardware and software tuning for MPI. 
Also, results from a larger prototype with high-end 
interconnect would allow more comprehensive scalability 
analysis. 
 
Acknowledgements 
 

This work was supported in part by Ixia, the NSF 
CCF-#0347683 and DOE DE-FG02-04ER25608 
respectively. We would like to thank Eran Karoly, Dan 

Kegel, Jan Olderdissen, and Tom Miller of Ixia for all of 
their support in securing and understanding the hardware 
used in this project. We would also like to thank Duncan 
Buell for his help with the FPGA component to this work 
and access to Daniel. 
 
References: 
 
[1] R. A. Games, "Trends in HPC and HPEC 
Convergence," proceedings of 2002 Workshop on High 
Performance Embedded Computing, 2002. 
[2] W. Feng, M. Warren, and E. Weigle, "The Bladed 
Beowulf: A Cost-Effective Alternative to Traditional 
Beowulfs," proceedings of IEEE International 
Conference on Cluster Computing (CLUSTER'02), 
Chicago, Illinois, 2002. 
[3] W. Feng, M. Warren, and E. Weigle, "Honey, I 
Shrunk the Beowulf!," proceedings of 2002 International 
Conference on Parallel Processing (ICPP'02), 
Vancouver, B.C., Canada, 2002. 
[4] M. S. Warren, E. H. Weigle, and W.-C. Feng, "High-
Density Computing: A 240-Processor Beowulf in One 
Cubic Meter," proceedings of IEEE/ACM SC2002 
Conference, Baltimore, Maryland, 2002. 
[5] Ixia company, "IXIA Product Catalog", available at:  
http://www.ixiacom.com/library/catalog/ixia_catalog.pdf 
[6] IBM, "IBM PowerPC 750CX/750CXe RISC 
Microprocessor User's Manual," 2002. 
[7] L. McVoy and C. Staelin, "lmbench: Portable tools 
for performance analysis," proceedings of USENIX 1996 
Annual Technical Conference, San Diego, CA, 1996. 
[8] W. Gropp and E. Lusk, "Reproducible Measurements 
of MPI Performance," proceedings of PVM/MPI '99 
User's Group Meeting, 1999. 
[9] A. Aburt, "PDS: NSIEVE Version 1.2.", [online] 
http://www.netlib.org/performance/html/nsieve.intro.html 
[10] F. H. McMahon, "The Livermore Fortran Kernels: A 
computer Test of Numerical Performance Range," 
Performance Evaluation of Supercomputers, vol. 4, pp. 
143-186, 1988. 
[11] J. J. Dongarra, J. R. Bunch, C. B. Moller, and G. W. 
Stewart, LINPACK User's Guide. Philadelphia, PA: 
SIAM, 1979. 
[12] D. Bailey, T. Harris, W. Saphir, R. van der 
Wijngaart, A. Woo, and M. Yarrow, "The NAS Parallel 
Benchmarks 2.0," NASA Ames Research Center 
Technical Report #NAS-95-020 December 1995. 
[13] W. Feng, "Making a Case for Efficient 
Supercomputing," ACM Queue, 1(7), pp. 54-64, 2003. 
[14] U. Tennessee, U. Manheim, and NERSC, "Top 500 
Supercomputer list," in 18th International Supercomputer 
Conference, 2003. 
[15] N.R. Adiga, and et al, "An overview of the 
BlueGene/L Supercomputer," proceedings of IEEE/ACM 
SC2002 Conference, Baltimore, Maryland, 2002. 
 


