

An Approach to Translate XSLT into XQuery

Albin Laga, Praveen Madiraju and Darrel A. Mazzari

Department of Mathematics, Statistics, and Computer Science
Marquette University

P.O. Box 1881, Milwaukee, WI 53201

Contact Author: Praveen Madiraju

Email: praveen@mscs.mu.edu

Phone : 414-288-6340

1

mailto:praveen@mscs.mu.edu

ABSTRACT

XML (eXtensible Markup Language) transformations and queries are crucial operations for interpreting XML

databases. XSLT (eXtensible Stylesheet Language Transformations) is a prominent XML technology for these

operations, but XQuery (XML Query Language) can query a broad spectrum of XML information sources,

including both databases and documents. In this paper, we present our approach to translate XSLT to XQuery.

We illustrate our approach as a set of rules or templates which translates an XSLT document into XQuery. We

also discuss grouping operations for both XSLT and XQuery. Finally, we present the performance of XSLT

versus equivalently transformed XQuery documents for varying sizes of documents and for different rules.

Keywords

XSLT, XQuery, Xpath, XML Databases

1. INTRODUCTION

XML is becoming as a standard for the exchange of many data sources. The reason for the use of XML

databases for database integration is, principally, together with W3C recommended query languages, such as

XPath [3] and XQuery [4], and other techniques like XSLT [9] and SOAP (Simple Object Access Protocol), that

XML helps to overcome most technical heterogeneities of diverse databases. In addition, XML databases can be

transmitted and stored as text files with schema information transported using XML schemas or Document Type

Definition files, unlike relational databases, though there may be speed degradation with very large text based

databases. In order to extract information from XML databases, one solution would be to extend a knowledge

modeling tool by implementing a set of new classes or functions in a language such as Java, though this can be a

rather difficult and time consuming task. Another solution would be to use XSLT or XQuery for transforming

XML documents. An advantage of this approach is that, even though an XSLT is written independently of any

programming language, it can be executed by a program written in most modern programming languages [7].

XSLT and XQuery were developed in close collaboration, and therefore there is a high degree of functionality

similarity of the two languages. They share many common concepts, such as the underlying data model. They

2

both include the whole of XPath as a sublanguage, which supports a number of data types and a respectable

function library [5, 8].

The processing engine in XSLT automatically goes through the document tree and applies templates as it

encounters nodes. XQuery, on the other hand, requires the programmer to direct the process. XSLT, in one

sense, is like a Report Generator in which there exists an implicit processing cycle, and the programmer just sets

up the actions that are desired to occur when certain conditions are met. XSLT is loosely typed as it is flexible in

handling conversions between nodes, strings and numbers, for the most part, transparently. XQuery is a typed

language which uses the types defined by XML Schema, and will complain when datatypes don’t match with each

other. XQuery implements the FLWR (For, Let, Where, & Result) expression. XQuery creates a list of binding

tuples with the FOR clause which are taken from an ordered forest. Subsequent statements are executed once,

including any additional binding tuples producing a cross product of these bindings. The construction of optimal

bushy trees for computing the cross product of a set of relations is NP-hard. One of the problems the query

optimizer has to deal with is the ordering of joins.

XSLT generates a current node list, with its “for-each” instruction, which is taken from a node set (XPath) in

document order. In XQuery, like in a language such as “C”, the programmer is responsible for directing

algorithms. XSLT uses the syntax of true XML, while XQuery is only XML-like. A main difference between the

two languages at the syntactic level is the way modularity is handled. XSLT has an include/import mechanism

whose detailed semantics discourage independent compilation of modules. Imported modules do not even need to

be a valid standalone style sheets, e.g., they can contain references to global variables declared by their caller.

The XSLT approach, with its use of import precedence to select the templates, and functions that are invoked at

run-time, provides a mechanism for polymorphism (i.e., customization of styles heets) that is missing entirely

from XQuery [11]. By contrast, the import module feature in XQuery is designed to allow library modules to be

compiled independently and linked at run-time. In Figure 1, we present a functional comparison between XSLT

and XQuery. XSLT 2.0 [9] and XQuery 1.0 [4] target different user communities; the former is for transformation

of one XML document into another, while the later targets querying of XML documents.

3

XSLT XQuery

 Advantages Disadvantages Advantages Disadvantages

Processing
Auto engine
through
document tree

Limited control Programmer
Directed

More effort, more
possible errors

Data typing Loosely typed Parsing
difficulties

Typed, more
types possible

More effort, more
possible errors

Recursion
Inherently
recursive; less
code

Programmer
Intensive

Can be
incorporated Verbose code

Figure 1. A functional comparison of XSLT and XQuery

As it stands now, XQuery 1.0 recently became an official W3C recommendation and XSLT 2.0 is an official

recommendation of W3C. We need to be able to translate XSLT 2.0 (at least the ones which query) to XQueries.

Hence, we need a tool to translate XSLT to XQuery. Also, it is predicted that most of the database systems will

support XQuery, but may not implement XSLT. Furthermore, such a translation is needed for those XML

database developers, who may understand XQuery but not XSLT. In our previous work [10], we proposed

architecture and rules to translate an XSLT into XQuery. In this paper, we extend the work by formalizing the

approach with an algorithm, and carrying out performance evaluation of our system.

The rest of the paper is organized as follows: In Section 2, we present our system architecture. We illustrate our

approach for translating XSLT to XQuery with examples in Section 3. We then discuss grouping of data in both

XSLT and XQuery in detail in Section 4. In Section 5, we present, XSLT2XQ, an algorithm for translating XSLT

into XQuery using concepts discussed in previous sections. We also discuss our experiment results. Finally, in

Section 6 we describe related work and present our conclusions.

2. SYSTEM ARCHITECTURE

The system architecture is shown in Figure 2. The XSLT to XQuery Translator takes as input XSLT 2.0 [9] and

outputs an XQuery 1.0 [4]. As both XSLT 2.0 and XQuery 1.0 have XPath 2.0 as their subset, wherever

equivalent methods exist in both of them, the application will utilize XPath 2.0 for transformations directly from

XSLT 2.0 to XQuery 1.0. In the case where an equivalent method does not exist, functions that mimic the XSLT

4

2.0 methods will be generated for XQuery 1.0. The translator also uses the template rules as described in Section

3.1 to produce an XQuery document.

Figure 2. System architecture

 XPath 2.0 is an expression language that allows processing of values conforming to the data model defined in

the XQuery/XPath Data Model (XDM). The data model provides the XML documents in the form of a tree

representation, and also as atomic values such as integers, strings, booleans, and sequences that may contain both

references to nodes in an XML document or atomic values. The result of an XPath expression may be a selection

of nodes from the input documents, or an atomic value, or, more generally, any sequence allowed by the data

model.XPath navigates through the hierarchical structure of an XML document and hence the name [3].

3. OUR APPROACH

Throughout the paper, we illustrate our approach of translation using a sample XML document shown in

Figure 3.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Edited with XML Spy v4.2 -->
<catalog>
 <cd>
 <title>Empire Burlesque</title>
 <artist>Bob Dylan</artist>
 <country>USA</country>
 <company>Columbia</company>
 <price>10.90</price>
 <year>1985</year>
 </cd>
 <cd>
 <title>Hide your heart</title>

5

 <artist>Bonnie Tyler</artist>
 <country>UK</country>
 <company>CBS Records</company>
 <price>9.90</price>
 <year>1988</year>
 </cd>
</catalog>

Figure 3. A fragment of cdcatalog.xml; a full version of the document is available from [15]

XPath is a rich language with many built-in functions included in it. XSLT and XQuery are closely related

because the underlying path language for both XSLT and XQuery is XPath. Hence, the translation is much easier

as they share the same built-in functions [5].

3.1 Translation Rules

XSLT relies on a highly declarative template-based approach, which gives ability to easily extend existing

programs or merge programs together. On the other hand, XQuery is based on a purely functional approach,

which gives more direct control to the user. We will show the translations of each XSLT construct into equivalent

XQuery via the examples on the cdcatalog.xml (refer to Figure 3). We have tested for the correctness of all our

XSLTs and XQueries using Saxon 8.7 [8].

Rule 1: XQuery and XSLT support declaration of parameters and variables. They can be declared and invoked in

both languages. However, XQuery variables are more restricted because they have strict type.

XSLT XQuery
<xsl:param name="cd">Cd
collection</xsl:param>
<xsl:variable name="cds">

declare variable $c as xs:string := "Cd
My Cd collection

</xsl:variable>
collection";

Invoked by: calling a variable:
<xsl:value-of select="$cd"/>
<xsl:value-of select="$cds"/> Return <h2>{$c}</h2>

Rule 2: The XSLT function can be translated into a XQuery expression

(collection of data narrow the retrieved values to

XSLT XQuery

 <xsl:value-of> for $x in

… [1]). Since “for” clause returns a collection, we

the very first one by explicitly asking for the first value of that collection [1].

<xsl:value-of select alog/cd/title" /> ="cat for $x in …(collection of data[1])

6

Invoked by: usage:

<xsl:value-of select="catalog/cd/title" /> for $x in
doc("cdcatalog.xml")/catalog/cd[1]

Rule 3: The XSLT function <xsl:for-each> can be translated into XQuery expression for $x in… as

shown below:

XSLT XQuery
<xsl:for-each select e"> ="nod
<!—function Body -->
</xsl:for-each>

For $x in …(collection of data)

usage: usage:
<xsl:for-each select="catalog/cd">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of
select="artist"/></td>
 </tr>
</xsl:for-each>

for $x in
doc("cdcatalog.xml")/catalog/cd

Rule 4: Filtration is very straight forward in both languages and can be specified in the square brackets in an

XPath expression. Alternatively, in XQuery we can simply use a “where” clause.

XSLT XQuery
XPath/expression/ condition]/node [where
Or
where variable = “something”

XPath/expression/[where condition]/node

usage: usage:
<xsl:for-each
select="catalog/cd[artist=’Bonnie Tyler’]">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="artist"/></td>
 </tr>
</xsl:for-each>

for $x in
doc("cdcatalog.xml")/catalog/cd[artist=
”Bonnie Tyler”]

Rule 5: Sorting can be implemented in XSLT by the using the function <xsl:sort/> and this must be placed

as the very first one in the statement designated to retrieve a set of values. In XQuery we use “order by”

clause.

XSLT XQuery
<xsl:sort select="element"/> Order by variable/XPath/expression

usage: usage:

7

<xsl:sort select="artist"/> Order by $x/artist

Rule 6: The XSLT function <xsl:if> can be translated into XQuery by if () then <!—function

Body -->

XSLT XQuery

else() function while the else() statement must be included with empty parentheses.

<xsl:if test="conditional expression"> If(conditional expression) then
 <!—function Body -->
</xsl:if>

 <!—function Body -->
else()

Usage: usage:
<xsl:if test="price > 10">
 <tr>
 <td>
 <xsl

return if($x/price > 10) then
 <tr>
 <td>{data($x/title)}</td>:value-of select="title"/>

 </td>
 <td>
 <xsl:

<td>{data($x/artist)}</td>
 </tr>
 else()

value-of select="artist"/>
 </td>
 </tr>
</xsl:if>

Rule 7: The XSLT function <xsl:choose> can translated into XQuery by the following function if()

function B <!—function Body --

XSLT XQuery

then <!—function Body --> else() if() then <!—function Body --> else() <!—

function Body -->. We can have many <xsl:when> elements but only one <xsl:otherwise>

element in a <xsl:choose> function. Similary, in XQuery we can have many if() then <!—

ody --> elements but only one else() > element in a if()

then function.

<xsl:choose>
 <xsl:when test=" conditional expression
">
 <!—function Body -->
 </xsl:when>
 <xsl:when test=" condi

if($x/price > 10) then

tional expression
">
 <!—function Body -->
 </xsl:when>
 <xsl:otherwise>
 <!—function Body -->
 </xsl:otherwise>
</xsl:choose>

 <!—function Body -->
if ($x/price > 9) then
 <!—function Body -->
else()
 <!—function Body -->

8

Usage: usage:
<xsl:choose>
 <xsl:when test="price > 10">
 <td bgcolor="#ff00ff">
 <xsl:value-of select="artist"/>
 </td>
 </xsl:when>
 <xsl:when test="price > 9">
 <td bgcolor="#cccccc">
 <xsl:value-of select="artist"/></td>
 </xsl:when>
 <xsl:otherwise>
 <td><xsl:value-of select="artist"/></td>
 </xsl:otherwise>
</xsl:choose>

return if($x/price > 10) then
 <tr>
 <td>{data($x/title)}</td>
 <td
bgcolor="#ff00ff">{data($x/artist)}</td>
 </tr>
if ($x/price > 9) then
 <tr>
 <td>{data($x/title)}</td>
 <td
bgcolor="#cccccc">{data($x/artist)}</td>
 </tr>
else()

Rule 8: Templates in XSLT can be translated into user defined functions in XQuery. This topic is covered in

depth in [5].

XSLT XQuery
<xsl:template match="node">
<!—Template Body -->
</xsl:template>

declare function local:cd-info($cd as
element()?) as element()?
{ <!—Function Body --> }

Invoked by: calling a variable:
<xsl:apply-templates/>
<xsl:apply-templates select="XPath/to/node
"/>

local:cd-info($x)

Grouping of data can be achieved in both XSLT and XQuery. We illustrate these operations in the next section.

Thus the application presents a general method for translating the highly declarative rule-base approach of XSLT

into the purely functional XQuery approach, leading the way to closer integration between the two languages.

4. GROUPING IN XSLT and XQuery

Grouping of data is a sophisticated operation. Here, we show grouping in XSLT and then an equivalent way of

implementing it in XQuery

4.1 Grouping in XSLT 2.0

Here, we explain the process of grouping data from an XML document in detail using XSLT. There is a way to

implement grouping in XSLT 1.0, however, it is a roundabout way of implementation of grouping [13].

9

Fortunately, starting from version 2.0 of XSLT, grouping has been simplified by introducing xsl:for-each-

group element dedicated function for this purpose (refer to Figure 4).

<xsl:for-each-group
 select = "expression"
 group-by? = "expression"
 group-adjacent? = "expression"
 group-starting-with? = "pattern"
 group-ending-with? = "pattern"
 collation? = { uri }>
<!– Content: (xsl:sort*, sequence
constructor) -->
</xsl:for-each-group>

Figure 4: Syntax of <xsl:for-each-group> element

The xsl:for-each-group creates a list (sequence) of items to be grouped, called population. The criteria

for creating the population is provided by select attribute. Then, the list of distinct values of “Grouping keys” is

created, and the criteria for creation of this list are provided by two attributes: group-by and group-adjacent.

The assignment of population items to groups depends on the group-by, group-adjacent, group-starting-with, and

group-ending-with attributes based either on common value of a grouping key, or on a pattern.

The population can be grouped in four different ways depending on which of the four grouping attribute are

provided: group-by, group-adjacent, group-starting-with, or group-ending-with. Only one of those attributes can

be provided at a time, no more or less. In Figure 5, we show an example XSLT which selects artist and title

information grouping by each country.

The return value of xsl:for-each-group is a sequence of groups. This feature makes this function very efficient

since it returns a sequence of groups at one time. This is one of the main reasons why grouping in XSLT 2.0

works faster than grouping in XQuery 1.0 (see performance results in Section 5.1).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="catalog">
 <html>
 <body>
 <h2>My CD Collection</h2>

 <xsl:for-each-group select="cd" group-by="country">

 <xsl:value-of select="country"/>

 <xsl:for-each select="current-group()">
 <p>

10

 <xsl:apply-templates select="title"/>
 <xsl:apply-templates select="artist"/>
 </p>
 </xsl:for-each>
 <p>CD# = <xsl:value-of select="count(current-group()/title)"/>
 </p>
 </xsl:for-each-group>

 </body>
 </html>
 </xsl:template>
 <xsl:template match="cd">

 </xsl:template>
 <xsl:template match="title">
 Title:
 <xsl:value-of select="."/>

 </xsl:template>
 <xsl:template match="artist">
 Artist:
 <xsl:value-of select="."/>

 </xsl:template>
</xsl:stylesheet>

Figure 5: An example XSLT illustrating grouping operation

4.2 Grouping in XQuery 1.0

There is no dedicated function for grouping in XQuery 1.0. In order to group data in XQuery 1.0, we need to

follow these two steps:

1) Create the list of distinct values (grouping keys) by which we want to group our data, and save the result in a

sequence variable.

2) In the return statement, place the sequence variable from the earlier step and then, use the current value of this

variable as an argument for the where clause of the next loop statement. This statement returns the group element

that satisfies the condition of where clause.

If we want to use an aggregation function, XQuery has to construct the group again. The example in Figure 6 is an

equivalent transformed XQuery 1.0 document for the XSLT shown in Figure 5.

(: declare functions :)
declare function local:cd-info($cd as element()?) as element()?
{
 let $t := $cd/title
 let $a := $cd/artist
 return
 <p>Title:{data($t)}

11

 Artist:{data($a)}
 </p>
};
<html>
<body>
<h2>Cd Collection</h2>
{

for $c in distinct-values(doc("cdcatalog.xml")
/catalog/cd/country)
return
 <p>
 {$c}
 {
 for $x in doc("cdcatalog.xml")/catalog/cd
 where $x/country = $c
 return {local:cd-info($x)}
 }
 CD#= {count(doc("cdcatalog.xml")/catalog/cd
[country = $c])}
 <p/>
 </p>
}
</body>
</html>

Figure 6: An equivalent transformed XQuery for the XSLT in Figure 5

In Figure 6, the second loop of the return statement has to re evaluate as many times as the number of elements in

variable $c. Every time the return statement loops, it creates a new group, and this process increases the

execution time of XQuery and makes it less efficient than XSLT 2.0. We can say that XSLT 2.0 creates the

sequence of groups only once, while XQuery creates the group as many times as the return statement loops.

This is one of the main reasons why XQuery 1.0 is slower in comparison to XSLT 2.0.

5. ALGORITHM AND PERFORMANCE EVALUATION

Here, we give the algorithmic steps needed for translating an input XSLT document into an XQuery. The

algorithm is given below.

Algorithm XSLT2XQ

1: Input – An XSLT document DXSLT

2: Output – An XQuery document DXQuery

3: let DXQuery := null

4: for each template, TXSLT in DXSLT do

5: for each rule i in {1 … 8} and grouping rule do

12

6: if (TXSLT matches rule(i)) then

7: DXQuery = DXQuery + (apply-rule(i) to TXSLT)

Algorithm XSLT2XQ takes as input an XSLT document, DXSLT, and generates an equivalent XQuery document,

DXQuery. For each template, TXSLT in DXSLT, we check if it matches with one of the eight template rules discussed

in Section 3 or the grouping rule discussed in Section 4. If it matches, we apply the appropriate rule to the

template TXSLT, and this process repeats for all the templates in the input XSLT document. Consider, n as the total

number of templates in DXSLT. The first for loop in line 4 of the algorithm iterates over all the n number of

templates, and the second for loop in line 5 of the algorithm iterates over all the rules, which is a constant. Hence,

the overall time complexity is O(n). In most cases, n is not a huge number, hence the overall time complexity

can be considered as O(1).

5.1 Performance Evaluation

We conducted experiments on the execution times for an input XSLT 2.0 versus an equivalently transformed

XQuery 1.0. We run all experiments on the same 2.8 GHz Pentium 4 machine with 512 MB memory and one hard

disk with 7200 rpm running Windows XP. We perform experiments on the cdcatalog.xml [15] dataset discussed

before.

 We generate synthetic XML data set using the sun multi-schema XML generator, which is part of sun’s

XML validator [14]. We use this tool to generate varying file sizes based on the cdcatalog XML schema.

Interested readers can refer to the source code, data set and scripts for running the samples at [10]. We also note

that (i) we have not yet fully conducted performance evaluations against all the benchmark XSLT test cases, and

(ii) XQuery 1.0 candidate recommendation has been recently finalized by W3C, so better optimizations and new

functions could be introduced in the future.

13

Execution Time for File Size of 0.5 MB

0
200
400
600
800

1,000
1,200
1,400
1,600

Rule
1

Rule
2

Rule
3

Rule
4

Rule
5

Rule
6

Rule
7

Rule
8

Ti
m

e
in

 m
ill

i s
ec

on
ds

XSLT 2
(Saxon 8.7)

XSLT
1(Xalan 2.7)

Xquery 1.0
(Saxon 8.7)

Execution Time for File Size of 2.5 MB

0

500

1,000

1,500

2,000

2,500

3,000

Rule
1

Rule
2

Rule
3

Rule
4

Rule
5

Rule
6

Rule
7

Rule
8

Ti
m

e
in

 m
ill

i s
ec

on
ds

XSLT 2.0
(Saxon
8.7)

XSLT 1.0
(Xalan 2.7)

Xquery 1.0
(Saxon
8.7)

Figure 7 (a) and (b) : Execution time for file sizes 0.5MB and 2.5MB; note that XQuery 1.0 for Rule 8 in (a) is 380,000 milli sec, and

the same in (b) takes 3,900,000 milli sec (not shown in the figure)

Grouping

1

10

100

1,000

10,000

100,000

1,000,000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
File size in MB

Ti
m

e
in

 m
ill

is
ec

on
ds

(lo

g
sc

al
e)

Xquery - Saxon 8.7j XSLT 1 - Xalan 2.7.0

XSLT 2 - Saxon 8.7j

Figure 8: Execution time for grouping operation

14

Figure 9: Execution time for XSLT 2.0

Figure 10: Execution time for XQuery 1.0

15

We evaluate the performance of both XSLT and XQuery documents generated as a result of applying (i) rules

1,2,…8 discussed in Section 3.1, and (ii) grouping operation discussed in Section 4.0 using three different

softwares : Xalan 2.7 with XSLT 1.0, Saxon 6.5 with XSLT 1.0, Saxon 8.7 with XSLT 2.0, and Saxon 8.7 with

XQuery 1.0. We do these evaluations for different files sizes ranging from 0.5 MB to 5.0 MB. It should be noted

that performance of XSLT 1.0 with Saxon 6.5 and XSLT 2.0 with Saxon 8.7 were very identical. Hence, we skip

them in the charts shown above. We present the execution times for file sizes 0.5 MB and 2.5 MB in Figures 7(a)

and 7(b). As the file size increases, we note that XQuery execution time gets better. The only exception is the

abnormal behavior of XQuery 1.0 for Rule 8. Saxon executes XQuery user defined functions very slowly;

however, other XQuery interpreters show better performance. But, for a fair comparison, between XQuery and

XSLT, we only show saxon’s behavior, as the other software packages only supported either XQuery or XSLT

with the exception of some commercial software packages. Also, as noted in Figure 8, XQuery performs poorly

for grouping operation as the size of the file increases. This behavior is due to the reasons explained in Section 4.2

and additionally because of the bindings of the tuples generated from the FOR clause. In Figure 9, we show

execution time of XSLT 2.0 using Saxon 8.7j for all the rules under varying loads of file sizes. Similarly, in

Figure 10, we present execution time of XQuery 1.0 using Saxon 8.7j for all the rules under varying loads of file

sizes.

6. RELATED WORK AND CONCLUSIONS

Related Work: There are many software packages available in the market such as [8, 16], which support both

XSLT and XQuery executions. None of the commercial software packages support automatic translations. Fokoue

et al. [5] present a detailed overview of compiling an XSLT 2.0 document into XQuery 1.0 document. The

theoretical treatment especially is clear. However, the authors do not address grouping and sorting of XSLT’s into

XQueries.

Bezivin et al. [2] describe an approach to transform XSLT into XQuery using Atlas Transformation Language

(ATL) within the Model Driven Architecture (MDA). They present more emphasis on the language details and do

not go into details about the transformation approach with examples such as grouping and others. However, we

16

present our approach in a simple form with clear examples all throughout the paper. The authors in [11] present

translation from XSLT to SQL queries. Moerkotte (2002) [12] describes an implementation to transform XSLT to

database algebra.

Conclusions: We have presented a general framework and an approach to translate XSLT 2.0 to XQuery 1.0. We

have illustrated our approach with many examples. As XQuery becomes more popular and attracts querying for

XML documents, our tool will help XML database developers translate current XSLT documents to XQuery. We

have also presented performance analysis of the different sets of XSLT documents versus XQuery documents on

various software packages. The experiments show in some cases especially for implementing grouping

operations, XQuery performs poorly, and should be taken into account.

 This study gives some open problems such as XQuery optimizations, and improving grouping functions in

XQuery. Efficient indexing, compression and storage techniques will also improve performance of XQuery.

7. REFERENCES

[1] Apache Xalan. http://xml.apache.org/xalan-j/, last accessed on March 28, 2006

[2] Bézivin, J., Dupé, G., Jouault, F., Pitette, G. and Rougui, J.E. “First experiments with the ATL model transformation

language: Transforming XSLT into XQuery”, OOPSLA 2003 Workshop, Anaheim, California.

[3] Berglund A., Boag S, Chamberlin D, Fern´andez M. F., Kay M, Robie J, and Sim´eon J. (2004). “ XML path language

(XPath) 2.0”. W3c working draft, World Wide Web Consortium, July 2004.

[4] Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., and Simeon, J. “XQuery 1.0: An XML query

language “. W3c working draft, World Wide Web Consortium, July 2004. http://www.w3.org/TR/2004/WD-xquery-

20040723

[5] Fokoue, A., Rose, K., Siméon, J., and Villard, L. “Compiling XSLT 2.0 into XQuery 1.0 “. In Proceedings of the

Fourteenth International World Wide Web Conference, ACM Press, Chiba, Japan, May 2005, pp. 682-691.

[6] Jain, S., Mahajan, R., and Suciu, D. 2002. “Translating XSLT programs to Efficient SQL queries”. In Proceedings of the

11th international Conference on World Wide Web (Honolulu, Hawaii, USA, May 07 - 11, 2002). WWW '02. ACM

Press, New York, NY, 616-626.

17

http://www.w3.org/TR/2004/WD-xquery-20040723
http://www.w3.org/TR/2004/WD-xquery-20040723

[7] Jovanovic, J., and Gasevic, D. “Achieving knowledge interoperability: An XML/XSLT approach”. Expert Systems with

Applications, Volume 29, Issue 3, October 2005, Pages 535-553.

[8] Kay, M. (2005). “Comparing XSLT and XQuery”. Proceedings of the XTech 2005 Conference on XML, the Web and

beyond ; software available from : http://saxon.sourceforge.net/, last accessed on March 29, 2006

[9] Kay, M. XSL transformations (XSLT) version 2.0. W3c working draft, World Wide Web Consortium, November 2003.

http://www.w3.org/TR/2003/WD-xslt20-20031112.

[10] Laga, A., Madiraju, P., Mazzari, D.A.,and Dara, G. “Translating XSLT into XQuery”. Proceedings of 15th International

Conference on Software Engineering and Data Engineering (SEDE-2006), Los Angeles, California, July 6-8, 2006.

Scripts and code downloads available from : http://www.mscs.mu.edu/~praveen/Research/XSLT2XQ/

[11] Liu, J., and Vincent, M. “Query Translation from XSLT to SQL”. Seventh International Database Engineering and

Applications Symposium (IDEAS),2003.

[12] Moerkotte, G. “Incorporating XSL processing into database engines”. In VLDB , September, 2002, Hong Kong, China,

pp. 107–118.

[13] Tennison, J. “Grouping Using the Muenchian Method”. http://www.jenitennison.com/xslt/grouping/muenchian.xml, last

accessed December 12, 2005

[14] The Sun Multi-Schema XML Validator(MSV). https://msv.dev.java.net/, last accessed on March 28, 2006

[15] W3 School, XML Application. http://www.w3schools.com/xml/cd_catalog.xml, last accessed on December 12, 2005.

[16] XML Spy. XML Spy 2005. http://www.altova.com/products_ide.html, last accessed on March 28, 2006

18

http://saxon.sourceforge.net/
http://www.w3.org/TR/2003/WD-xslt20-20031112
http://www.mscs.mu.edu/%7Epraveen/Research/XSLT2XQ/
http://www.altova.com/products_ide.html

	1. INTRODUCTION
	2. SYSTEM ARCHITECTURE
	3. OUR APPROACH
	3.1 Translation Rules

	4. GROUPING IN XSLT and XQuery
	4.1 Grouping in XSLT 2.0
	4.2 Grouping in XQuery 1.0

	5. ALGORITHM AND PERFORMANCE EVALUATION
	5.1 Performance Evaluation

	6. RELATED WORK AND CONCLUSIONS
	7. REFERENCES

