
A Framework for Constraint Checking Involving Aggregates for Multiple XML
Databases using Schematron

Albin Laga and Praveen Madiraju

Department of Mathematics, Statistics, and Computer Science

Marquette University
P.O. Box 1881, Milwaukee, WI 53201

{alaga, praveen}@mscs.mu.edu

ABSTRACT

 Many internet and enterprise applications now not
only use XML (eXtensible Markup Language) as a
medium for communication but also for storing their data
either temporarily for an application or permanently as a
means to represent their data. Most of these applications
need to follow a set of rules, which are called as integrity
constraints in the context of databases. We assume a
setting in which data is distributed across multiple sites.
In this paper, we introduce a notation for representing
constraints affecting multiple XML databases, Global
XConstraints. A single update on one site can cause these
global XConstraints to be violated. Hence, we propose a
framework for checking these constraint violations using
Schematron. As a proof of concept, we present a
prototype of our system implementation. Most of the
processing in our approach happens in compile time;
hence we save time during run time.

Keywords
XML Constraints, Global XML Constraint Checking,
Schematron, XSLT, XML Databases

1. INTRODUCTION

When building or modifying any existing database,
we need to follow certain rules describing its syntactic
and semantic rules. We call these as constraints in the
context of databases. In relational databases, these are
implemented using primary keys, foreign keys, check
constraints, assertions, triggers, and global constraints
(for distributed databases). These are all part of relational
schema. XML DTD [2], XML Schema [6], and RELAX
NG [3] are three most commonly used schema languages
for XML databases. It is now well understood that DTDs
are not as expressive as XML schema but are very useful
for associating some sort of structure to a very loosely
structured XML document. XML Schema is verbose and
can only implement constraints such as domain

constraints, primary keys (using <xs:key>), and foreign
keys (using <xs:keyref>). It fails to implement
semantic integrity constraints. RELAX NG is becoming
more popular because it is a much simpler way of
expressing constraints. However, it suffers from the same
drawbacks as XML Schema.

There are different constraint languages introduced,
which are discussed in detail in Section 5. However, most
of these languages are verbose and not user-friendly.
Additionally, as discussed earlier, many of these
languages do not support semantic integrity constraints
including aggregates (sum, max, min, avg, and count).
We have earlier introduced a notation for representing
constraints for XML databases, called XConstraints [17],
[18]. Global XConstraints are XML constraints affecting
multiple XML databases. In this paper we extend our
XConstraint notation to include aggregates. These
XConstraints are based on datalog style notation. The
logic based language provides a basic foundation for
concise representation of constraints.

In this paper, we consider the setting in which we
have multiple XML databases. When XML data at one
site is changed, it can potentially violate global
XConstraints. Hence, we propose a framework to check
for these constraint violations using a Schematron [7]
based approach. The schematron processor internally uses
a XSLT [16] processor making it easier to implement and
portable as even recent versions of browsers can act as
XSLT processors. We also demonstrate the system
implementation. The whole application is developed
using Java JDK 1.5, and hence is platform independent.
Checking for these integrity constraints is significant in
the context of semantic query optimization, data cleaning,
data integration systems [13].

The rest of the paper is organized as follows: In
Section 2, we present a sample XML database which will
be used throughout the paper and introduce XConstraint
representation. We discuss our general framework for
checking constraints in Section 3. We then present the
system implementation in Section 4. In Section 5 we

describe related work and finally present our conclusions
in Section 6.

2. PRELIMINARIES

Here we give an example healthcare XML
database and introduce our notation for defining
XConstraints.

2.1 Example Database

Consider a sample healthdb.xml shown in Figure 1.
Figure 1 gives the logical representation of the
HEALTHDB XML databases from different sites.
Physically, information is distributed across multiple
sites:

Site S1: PATIENT information such as SSN (primary
key), PName and HealthPlan is stored. CASE information
with CaseId (primary key – like a sequence number),
SSN, and InjuryDate is also stored.

Site S2: patient’s CLAIM information such as CaseId
(primary key), ClaimDate, Amount and Type is recorded.

Site S3: TREATMENT information such as CaseId
(primary key), DName (doctor name), TDate (Treatment
Date), and Disease is stored.

 Note that a patient can suffer multiple injuries
uniquely identified by their CaseId at Site S1, and can
also make multiple claims identified by their CaseId at
site S2.
1: <?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

2: <HEALTHDB>

3: <!-- S1 indicates site S1 -->

4: <S1_PATIENTS>

5: <PATIENT>

6: <SSN>123</SSN>

7: <PName>John</PName>

8:
 <HealthPlan>B</HealthPlan>

9: </PATIENT>

10: <PATIENT>

11: <SSN>234</SSN>

12: <PName>Clark</PName>

13:
 <HealthPlan>C</HealthPlan>

14: </PATIENT>

15: </S1_PATIENTS>

16: <S1_CASES>

17: <CASE>

18: <CaseId>1</CaseId>

19: <SSN>123</SSN>

20:
 <InjuryDate>10/14/2003</InjuryDate>

21: </CASE>

22: <CASE>

23: <CaseId>2</CaseId>

24: <SSN>234</SSN>

25:
 <InjuryDate>06/24/2004</InjuryDate>

26: </CASE>

27: <CASE>

28: <CaseId>3</CaseId>

29: <SSN>123</SSN>

30:
 <InjuryDate>10/12/2004</InjuryDate>

31: </CASE>

32: </S1_CASES>

33: <!-- S2 indicates site S2 -->

34: <S2_CLAIMS>

35: <CLAIM>

36: <CaseId>3</CaseId>

37:
 <ClaimDate>11/14/2004</ClaimDate>

38: <Amount>25000</Amount>

39: <Type>Inpatient</Type>

40: </CLAIM>

41: </S2_CLAIMS>

42: <!-- S3 indicates site S3 -->

43: <S3_TREATMENTS>

44: <TREATMENT>

45: <CaseId>1</CaseId>

46: <DName>Mike</DName>

47:
 <TDate>10/15/2003</TDate>

48:
 <Disease>SmallPox</Disease>

49: </TREATMENT>

50: <TREATMENT>

51: <CaseId>3</CaseId>

52: <DName>Blake</DName>

53:
 <TDate>10/14/2004</TDate>

54:
 <Disease>LegInjury</Disease>

55: </TREATMENT>

56: </S3_TREATMENTS>

57: </HEALTHDB>

Figure 1. healthdb.xml document indented with line
numbers [17]

2.2 XML Constraint Representation

Semantic integrity constraints can be considered
as a general form of assertions. They specify a general
condition in the database which needs to be true always.
Constraints of this type deal with information in a single
state of the world. Throughout the paper, we denote
semantic integrity constraints for XML database as
XConstraints. Global XConstraints are the constraints
spanning multiple XML databases. Here we give the
constraint representation for global XConstraints.

A datalog rule (expressed as Head Body)
without a Head clause is referred to as a denial. It is
customary to represent integrity constraints in the logic
databases as range restricted (safe or allowed) denials.
Definition 2.1: In order to represent global XConstraint
in the context of XML database as query evaluation, we
consider global XConstraint in the form of range
restricted denials (datalog style notation) given below:

C X1 ^ X2 ^,…, Xn , where C is the name of the
global XConstraint and each Xi is either an XML literal or
Arithmetic literal or Aggregate literal. ▄

We define XML literal, arithmetic literal and
aggregate literal below. The definition of XML literal is
chiefly inspired by Buneman et al. (2001) [10] and Chen
et al. (2002a) [11]. Semantics for representing key
constraints for a single XML database are given in [10]
and [11]. We extend their semantics by introducing user
defined variables, term paths and XML literals for
representing global XConstraints for multiple XML
databases.
Definition 2.2: An XML literal is defined as follows:
Xi : (Qi , (Qi' , [Vi1 = ti1 , Vi2 = ti2 ,…, Viki = tiki]))

Using the syntax from [10], [11], Qi , Qi' and ti1, ti2 ,…, tiki

are path expressions corresponding to Xi . Vi1, Vi2 ,…,
Viki are user defined variables corresponding to ti1, ti2 ,…,
tiki . Qi is called the context path, Qi' the target path and ti1,
ti2 ,…, tiki are the term paths. Context path Qi identifies the
set of context nodes, с and for each с, Vi1, Vi2 ,…, Viki are
the set of user defined variables corresponding to the term
paths, ti1, ti2 ,…, tiki reachable from с via Qi'. ▄

Definition 2.3: Arithmetic literal is defined as:
expression θ expression, where expression – is a linear
expression made of variables occurring in XML literals,
integer constants, and the four arithmetic operator +, -, *,
/; θ – is a comparison operator (=, <, >, <=, >=, <>). Joins
between nodes are expressed either as an equality (=)
between two variables in an arithmetic literal or by
having the same variable name appear in different XML
literals within the same global XConstraint. Note that
variables with the same name cannot appear in the
same XML literal. We also assume date arithmetic and

string arithmetic. ▄
Definition 2.4 : An Aggregate literal is expressed as
Ai(ŝ, α(y):v):- B
Where (i) B is a conjunction of XML literals, (ii) ŝ is the
grouping list of variables that must appear some where in
the body of the rule - B, (iii) α is aggregate function such
as avg, count, max, and min, (iv) y is the aggregate
variable, and (v) v is the result of applying the aggregate
function. We assume that the aggregate literals are not
recursive. ▄
Now, we are ready to define the satisfiability of a global
semantic integrity constraint (global XConstraint), C.

Definition 2.5: An XML tree T is said to satisfy a global
integrity constraint (global XConstraint), C, if and only if
the conjunction of X1, X2 ,…, Xn evaluates to false ▄

The motivations behind using our constraint
representation and negative semantics for checking the
satisfiability of a global semantic integrity constraint are:
1) constraint representation using our approach resembles
query evaluation for heterogeneous databases (logic,
relational, XML) and hence is very generic due to the
inherent logic based approach used in representing the
XConstraints. 2) Global XConstraints generated using
this approach are easier to translate into Schematron
schema document as explained in “Schematron
Generator” in Section 3. Note that each Qi ,Qi', user
defined variables and the term paths corresponding to
each XML literal - Xi has the site information referred to
as Sj and can only refer to a single site. However, a global
XConstraint has one or more XML literals and hence can
refer to multiple XML databases. In case of Arithmetic
literal or Aggregate literals, the variables in the
expression could belong to different sites. If two variables
are not the leaf nodes, the equality join among the two
variables is similar to the node equality considered in
[10].

Example 2.1: Consider a global XConstraint C1 defined on
healthdb.xml. Constraint C1 states that a patient with HealthPlan
‘B’ may not claim more than 40000 dollars on a case diagnosed
with ‘SmallPox’.

C1:-
 (//S1:PATIENTS,
 (./PATIENT,[ssn=./SSN,healthplan=./HealthPlan])),
(//S1:CASES,(./CASE,[caseid=./CaseId,ssn=./SSN])),
(//S2:CLAIMS,(./CLAIM,[caseid=./CaseId,amount=
./Amount])),
(//S3:TREATMENTS,(./TREATMENT,[caseid=
./CaseId,disease=./Disease])),
 healthplan = 'B',disease = 'SmallPox',
 amount > 40000.

For the example contained in Figure 1, C1 is satisfied.
C1 is satisfied for the healthdb.xml as one of the arithmetic

literals amount (line 38, value = 25000) > 40000 returns false and

 hence the whole conjunction for C1 evaluates to false.

3. SYSTEM ARCHITECTURE

 Here, we present a schematron based constraint
checker for multiple XML databases in Figure 2.
Schematron Generator
 The schematron generator shown in Figure 2
takes as input an XConstraint and generates a
schematron document.

As new XConstraints are introduced to the system, we add it to the
base schematron document. Here, we illustrate the generation of
schematron from an XConstraint using the following steps.

Consider the following XConstraint, C3 which
states that “the sum of claim amounts for each patient
with healthplan 'B' may not be more than 100000”. This
can be represented using our notation from Section 2 as
follows:

C3:- A(SUM(amount):v), v > 100000
A(SUM(amount):v):- (//S1:PATIENTS,
(./PATIENT,[ssn=./SSN,healthplan=./HealthPl
an])),
(//S1:CASES,(./CASE,[caseid=./CaseId,ssn=./
SSN])),
(//S2:CLAIMS,(./CLAIM,[caseid=./CaseId,
amount=./Amount])), healthplan = 'B'.

Figure 2. System Architecture

Constraint C3 will be translated using the Schematron
Generator into a Schematron document using the
following steps:

Step 1: Add the header
Each constraint is coded inside a

<sch:pattern> tag. Any of the nodes can be
considered for the context attribute of <sch: rule>
element, including the root of the document.
<?xml version="1.0" encoding="UTF-8"?>

<sch:schema
xmlns:sch="http://www.ascc.net/xml/schematr
on">

 <sch:pattern name="C3">

 <sch:rule context="S2/S2_CLAIMS">

Step 2: XConstraint variables to <let> clause

XConstraint variables are mapped to <let>
clause variables, and any subsequent occurrence of the
same XConstraint variable is referred as $variable in the
schematron document.
 <!-- Assign values to the variables,
collect data from different sites -->

 <sch:let name="caseId"
value="./CLAIM/CaseId"/>

 <sch:let name="amount" value=" sum(
./CLAIM[CaseId = $caseId]/Amount)"/>

 <sch:let name="ssn" value="
//S1_PATIENTS/PATIENT[CaseId =
$caseId]/SSN"/>

 <sch:let name="healthplan" value="
//S1_PATIENTS/PATIENT [SSN =
$ssn]/HealthPlan"/>

Step 3: Test variables for null or constant
Here, we are testing if any of the variables are

null. If any variable is null, the “assert” test element will
evaluate to false and as a result a fail message is
displayed. We also check for simple conditions for
variables such as for healthplan.
 <!-- Test whether variables are not null
-->

 <sch:assert test="$caseId">Value of
"$caseId" has not been applied</sch:assert>

 <sch:assert test="$amount">Value of
"$amount" has not been applied</sch:assert>

 <sch:assert test="$ssn">Value of "$ssn"
has not been applied</sch:assert>

 <sch:assert test="$healthplan =
‘B’">Value of "$healthplan" has not been
applied</sch:assert>

Step 4: The Main Test Condition
Here, we are performing the comparison of the

sum of claim amounts and the maximum possible value
for the health plan of each person. A fail message is
displayed if any variable was null or the test expression of
an “assert” element evaluates to false.

 <sch:assert test="100000 >= $amount"
>The amount claimed is too
high!</sch:assert>
</sch:rule>
</sch:pattern>

For each new constraint, we repeat steps 2-4, by adding
new <sch:pattern> elements. At the end of all
constraints, we close the schematron document using
</sch:schema>
Schematron Processor

From users point of view, the schematron
processor (see Figure 2) takes as input (i) schematron
document generated from schematron generator, (ii) an
updated document XML document , say D’ and produces
as output a decision to commit or rollback. If none of the
constraints are violated, the updates are committed;
otherwise the updates are rolled back.
 As shown in Figure 2, the schematron processing
occurs in two phases. In phase 1, the XSLT processor
takes as input the schematron document generated from
schematron generator and a schematron-basic.xsl
(available from [7]) and generates a validating XSLT
document. This phase can be done in compile time. In the
second phase, the XSLT processor takes as input the
validating XSLT document generated from phase 1, the
updated XML document and generates as output if the
constraints are violated. This phase occurs at run time. If
none of the constraints are violated an action to commit to
changes into the database is initiated. Otherwise, the
changes are rolled back.
 The advantages of schematron based approach
are that it uses XSLT processor internally. Hence, for
smaller sized documents, even recent versions of
browsers can act as XSLT processors making it easier to
check for constraint violations of XML documents on the
fly without installing any special software. Also note that
most of the processing is done in compile time. The
schematron generation and Phase 1 of schematron
processing happens in compile time. Hence, we save time
during run time as only the Phase 2 of schematron
processing happens at rum tine. However, in the current
approach the entire XML document is checked for each
update operation, and so performance is expected to
suffer.

4. IMPLEMENTATION

The system architecture given in Section 3 has been
implemented using JDK version 1.5. A prototype of the
system implementation is given in Figure 3. Our
implementation gives three options:

- com.icl.saxon.StyleSheet [4]

- net.sf.saxon.Transform [5]

- org.apache.xalan.xslt.Process [1]

The schematron panel (top panel) by default
loads the basic schematron-xml1-6.xsl (available from
[7]) and uses Saxon XSLT 1.0 [4] processor. The user can
change these, if needed. The middle panel works as an
editor for XML document or schematron schema given as
tabbed windows in the panel. The bottom panel of the
figure has two buttons, “Hide Details”, and “Validate”.
When the user clicks “Validate”, before the XML
document is saved, it is checked for well-formed ness.
Any violation of this prevents the application from saving
the changes or proceeding further.

Figure 3. Constraint Checker Implementation

The XML document is then checked for any constraint
violations against the schematron document using the
steps illustrated in Section 3. If any of the constraints are
violated, the changes to the XML document are rolled
back. The “Hide Details” button gives the user options to
control the verbose output from the system.
 A sample screen shot of the application is shown
for a constraint violation in Figure 4. The GUI has many
user friendly features. Prior to validation, if any
parameters are in red, it indicates a problem with that
particular parameter. After validation a green status
message is displayed if the validation was successful,
otherwise a red status message is displayed.

Figure 4. Main Window after Unsuccessful Validation

5. RELATED WORK

Constraint languages are complementary to
XML DTD [2], W3C XML Schema [6] and RELAX NG
[RELAX] schema languages. The major constraint
languages used nowadays are:

Schematron [7] is a rule-based language with
four level hierarchies (phases, patterns, rules, assertions).
It is an assertion language based on presence or absence
of names and values of elements and the attributes along
the path. It is declarative and uses XML notation. It
allows us to directly express rules without creating a
whole grammatical infrastructure [20] because it offers
extraordinary power in conjunction with other schema
languages [22]. We have used the ideas discussed in [22],
where we integrate our constraint representation to be
able to use Schematron for constraint checking. Many
advanced features like abstract pattern makes it even
more expressible and flexible. CXiL [19], Constraint
Language in XML is an assertion language based on first
order logic and XPath. Similar to Schematron, CXiL is
also an assertion language and both are path based. CXiL
is based on first order logic while Schematron is based on
Boolean logic and where Schematron requires scripting,
CXiL can handle it natively. XCML [15], an eXtensible
Constraint Markup Language adopts Unified Modeling
Language (UML) and Object Constraint Language (OCL)
to support visual specification and automation generation
of SCML instances and XML schemas. It supports
assertion-based constraints, simple rules-based
constraints, composite rule-based constraints and it
supports parameters for expressing dynamic constraints.
XCSL [21], XML Constraint Specification Language is a
domain specific language. It is implemented on XSLT
platform language similar to Schematron; however they
differ in some fundamental concepts. Each XCSL
specification is defined as an XML instance and it is

composed of one or more tuples. Each tuple has three
parts: (i) Context Selector: Selects the context where we
want to enforce constraint, (ii) Context Condition: The
condition we want to enforce, and (iii) Action: The action
we want to trigger when the condition does not hold. This
is similar to the concept of using active database
technology for enforcing constraints.
 The idea of keys and foreign keys for XML was
introduced in [10], [11]. The basic approach is to express
constraints using path expressions. We have also studied
the constraint representation in distributed databases. We
have extended the approach of [10], [11] with datalog
style notations and also used the concepts from [14] in
representing XConstraints. A survey of recent languages
for constraint specification is given in [13]. Research on
validating keys for XML can be found in [8], [9], and
[12]. However, we deal with constraint checking for
semantic integrity constraints.

6. CONCLUSIONS

 Semantic integrity constraints are rules that
affect the consistency of XML documents. There are
different constraint checking mechanisms introduced so
far. A schematron based constraint checking is easy to
implement, as it is based on XSLT approach. In this paper
we have introduced aggregate constraint representation
for XConstraints. We have proposed architecture for
constraint checking involving aggregates for multiple
XML databases using schematron. Our architecture is
efficient as most of the steps happen in compile time;
hence, we save during run time. We have also
implemented a prototype for the system architecture.
 We will extend this work by performing
experimental evaluation of our system by comparing it
against other approaches to constraint checking. The
parameters we will consider are total time taken for
different constraints, constraint validation time under
varying loads of updates, and constraint checking time for
different file sizes of documents. We also intend to
develop a system for optimizing the constraint checking
process for multiple XML databases.

7. REFERENCES

[1] Xalan Java Version 2.7.0 Available from:

http://xml.apache.org/xalan-j/
[2] Extensible Markup Language (XML) 1.0 (Fourth Edition),

W3C Recommendation 16 August 2006. Available at:
http://www.w3.org/TR/REC-xml/

[3] RELAX NG home page. Available at:
http://www.relaxng.org/

[4] About Saxon at:
http://saxon.sourceforge.net/saxon6.5.5/

http://xml.apache.org/xalan-j/
http://www.w3.org/TR/REC-xml/
http://www.relaxng.org/
http://saxon.sourceforge.net/saxon6.5.5/

[5] Saxon XSLT 2.0 Processor. Available from :
http://www.saxonica.com/documentation/index/intro.
html

[6] XML Schema Part 0: Primer Second Edition, W3C
Recommendation 28 October 2004. Available at:
http://www.w3.org/TR/xmlschema-0/

[7] The Schematron 1.5 Specification. Available from:
http://www.schematron.com/spec.html

[8] Benedikt, M., Chan, C.Y., Fan, W., Freire, J. & Rastogi, R.
(2003). Capturing both Types and Constraints in Data
Integration. Proceedings of the ACM SIGMOD Conference
on Management Of Data

[9] Bouchou, B., Halfeld-Ferrari-Alves, M. & Musicante, M.
(2003). Tree Automata to Verify XML Key Constraints.
International Workshop on the Web and Databases.

[10] Buneman, P., Davidson, S., Fan, W., Hara, C., & Tan, W.
(2001). Keys for XML. World Wide Web, pp. 201-210.

[11] Chen, Y., Davidson, S.B., & Zheng, Y. (2002a). Constraint
Preserving XML Storage in Relations. International
Workshop on the Web and Databases.

[12] Chen, Y., Davidson, S.B., & Zheng, Y. (2002b).
XKvalidator: A Constraint Validator for XML.
Proceedings of ACM Conference on Information and
Knowledge Management.

[13] Fan, W. (2005). XML Constraints: Specification, Analysis,
and Applications. First International Workshop on Logical
Aspects and Applications of Integrity Constraints
(LAAIC).

[14] Gupta, A., & Widom, J. (1993). Local Verification of
Global Integrity Constraints in Distributed Databases.
Proceedings of the ACM SIGMOD Conference on
Management of Data.

[15] Hu, J., Tao, L. (2004). An Extensible Constraint Markup
Language: Specification, Modeling, and Processing.
Available at:
http://www.idealliance.org/proceedings/xml04/paper
s/81/xml-2004-hu.html

[16] Kay, M (2003). XSL transformations (XSLT) version 2.0.
W3c working draft, World Wide Web Consortium,.
http://www.w3.org/TR/2003/WD-xslt20-20031112

[17] Madiraju, P., Sunderraman, R., Navathe, S.B., & Wang, H.
(2006). Semantic Integrity Constraint Checking for
Multiple XML Databases. Journal of Database
Management, Vol. 17, No. 4, pp. 1-19.

[18] Madiraju, P., Sunderraman, R. & Navathe, S.B. (2004).
Semantic Integrity Constraint Checking for Multiple XML
Databases. Proceedings of 14th Workshop on Information
Technology and Systems (WITS 2004), Washington D.C.,
December, 2004

[19] Marconi, M., Nentwich, C. (2004). CLiX Language
Specification Version 1.0. Avilabe at:
http://www.clixml.org/clix/1.0/clix.xml

[20] Ogbuji, U (2004). A hands-on introduction to Schematron.
Available from: http://www-
128.ibm.com/developerworks/edu/x-dw-xschematron-
i.html

[21] Ramalho, J. (2001). XML Constraint Specification
Language. XML Europe Conference. Avilable from:
http://www.di.uminho.pt/~jcr/PROJS/xcsl-www/

[22] Robertson, E. (2002). Combining Schematron with other
XML Schema languages. Available from:
http://www.topologi.com/public/Schtrn_XSD/Paper.
html

http://www.saxonica.com/documentation/index/intro.html
http://www.saxonica.com/documentation/index/intro.html
http://www.w3.org/TR/xmlschema-0/
http://www.schematron.com/spec.html
http://www.idealliance.org/proceedings/xml04/papers/81/xml-2004-hu.html
http://www.idealliance.org/proceedings/xml04/papers/81/xml-2004-hu.html
http://www.w3.org/TR/2003/WD-xslt20-20031112
http://www.clixml.org/clix/1.0/clix.xml
http://www.di.uminho.pt/%7Ejcr/PROJS/xcsl-www/
http://www.topologi.com/public/Schtrn_XSD/Paper.html
http://www.topologi.com/public/Schtrn_XSD/Paper.html

	1. INTRODUCTION
	2. PRELIMINARIES
	2.2 XML Constraint Representation

	3. SYSTEM ARCHITECTURE
	4. IMPLEMENTATION
	5. RELATED WORK
	6. CONCLUSIONS
	7. REFERENCES

