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ABSTRACT
Recommender systems have become popular in both commercial
and academic settings. The main purpose of recommender systems
is to suggest to users useful and interesting items or content (data)
from a considerably large set of items. Traditional recommender
systems do not take into account system issues (i.e., scalability and
query efficiency). In an age of staggering web use growth and ever-
popular social media applications (e.g., Facebook, Google Reader),
users are expressing their opinions over a diverse set of data (e.g.,
news stories, Facebook posts, retail purchases) faster than ever. In
this paper, we propose RecDB; a fully fledged database system that
provides online recommendation to users. We implement RecDB
using existing open source database system Apache Derby, and
we use showcase the effectiveness of RecDB by adopting inside
Sindbad; a Location-Based Social Networking system developed
at University of Minnesota.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS; Data
mining; Statistical databases

General Terms
Design, Experimentation, Human Factors, Performance

Keywords
Social Networking, Recommender Systems, Query Processing,
Model Maintenance, Filtered Recommendation

1. INTRODUCTION
Recommender systems have become popular in both commer-

cial [6, 20] and academic settings [1, 5, 21]. The main purpose
of recommender systems is to suggest to users useful and interest-
ing items or content (data) from a considerably large set of items.
For instance, recommender systems have successfully been lever-
aged to help users find interesting books and media from a mas-
sive inventory base (Amazon [20]), news items from the Inter-
net (Google News [6]), and movies from a large catalog (Netflix,

Movielens [21]). The technique used by many of these systems is
collaborative filtering (CF) [24], which analyzes past community
opinions to find correlations of similar users and items to suggest k
personalized items (e.g., movies) to a querying user u. Community
opinions are expressed through explicit ratings represented by the
triple (user, rating, item) that represents a user providing a numeric
rating for an item.

Traditional recommender systems do not take into account sys-
tem issues (i.e., scalability and query efficiency) for two main rea-
sons: (1) Due to the nature of the recommended items (e.g., books,
movies, cloths), traditional systems were built with the implicit as-
sumption that the recommendation model changes slowly, which
tolerates using an offline process that builds a fresh model daily or
weekly in order to adapt to changes in the underlying content [14,
22, 26]. (2) The recommender system community put more focus
on recommendation result quality in order to increase user satisfac-
tion.

Such traditional practices are no longer valid in an increasingly
dynamic online world. In an age of staggering web use growth and
ever-popular social media applications (e.g., Facebook [9], Google
Reader [13]), users are expressing their opinions over a diverse set
of data (e.g., news stories, Facebook posts, retail purchases) faster
than ever. In such an environment, the system must adapt quickly
to its diverse and ever-changing content. Recommender systems
cannot wait weeks, days, or even hours to rebuild their models [6].
The rate that new items or users enter the system (e.g., Facebook
updates, news posts), and the rate at which users express opinions
over items (e.g., Diggs [7], Facebook “likes" [10]), requires recom-
mender models to change in minutes or seconds, implying models
be updated online (i.e., in real time).

In this paper, we propose RecDB; an efficient and scalable sys-
tem that provides online recommendation to users. Unlike existing
implementation approaches, RecDB pushes the recommender sys-
tem functionality inside the database engine in order to provide on-
line recommendations for users. In the rest of the paper, we show
the different components of RecDB and how it modifies different
layers in the database stack.

2. RECOMMENDER SYSTEMS
The basic functionality of a Recommender System is to take a set

of ratings (i.e., triplet user, item, rating) as input, build a recom-
mendation model, and then use the generated model to retrieve a
set of recommended items for each user [15, 25]. Nowadays, the
high rate that new items or users enter the system, and the high
rate that users express opinions over items requires the set of rec-
ommended items for each user to change in minutes or even sec-
onds. The process consists of two phases (Figure 1): (1) Model
Building Phase: in which the recommendation model is generated
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Figure 1: Item-based CF model generation and item/item sim-
ilarity calculation.

using the user/item ratings data, and (2) Recommendation Genera-
tion Phase: in which the recommendation model is used to create
a set of recommended items for each user. Conceptually, ratings
are represented as a matrix with users and items as dimensions, as
depicted in Figure 1. Given a querying user u, CF produces a set of
k recommended items Ir ⊂ I that u is predicted to like the most.
Phase I: Model Building. This phase computes a similarity score
sim(ip,iq) for each pair of objects ip and iq that have at least one
common rating by the same user (i.e., co-rated dimensions). Sim-
ilarity computation is covered below. Using these scores, a model
is built that stores for each item i ∈ I, a list L of similar items
ordered by a similarity score sim(ip,iq), as depicted in Figure 1).
Building this model is an O(R

2

U
) process, where R and U are the

number of ratings and users, respectively. It is common to truncate
the model by storing, for each list L, only the n most similar items
with the highest similarity scores [26]. The value of n is referred
to as the model size and is usually much less than |I|.
Phase II: Recommendation Generation. Given a querying user
u, recommendations are produced by computing u’s predicted rat-
ing P(u,i) for each item i not rated by u [26]:

P(u,i) =

∑
l∈L sim(i, l) ∗ ru,l
∑

l∈L |sim(i, l)| (1)

Before this computation, we reduce each similarity list L to con-
tain only items rated by user u. The prediction is the sum of ru,l,
the user’s rating for a related item l ∈ L weighted by sim(i,l), the
similarity of l to candidate item i, then normalized by the sum of
similarity scores between i and l. The user receives as recommen-
dations the top-k items ranked by P(u,i).
Computing Similarity. To compute sim(ip, iq), we represent each
item as a vector in the user-rating space of the rating matrix. For
instance, Figure 1 depicts vectors for items ip and iq from the ma-
trix in Figure 1. Many similarity functions have been proposed
(e.g., Pearson Correlation, Cosine); we use the Cosine similarity in
LARS due to its popularity:

sim(ip, iq) =
�ip · �iq

‖�ip‖‖�iq‖
(2)

This score is calculated using the vectors’ co-rated dimensions,
e.g., the Cosine similarity between ip and iq in Figure 1 is .7 cal-
culated using the circled co-rated dimensions. Cosine distance is
useful for numeric ratings (e.g., on a scale [1,5]). For unary rat-
ings, other similarity functions are used (e.g., absolute sum [4]).

3. RECOMMENDER SYSTEM IMPLE-
MENTATION APPROACHES

Recommender system functionality has been always taken care
of in the application layer as depicted in Figure 2. In other words,
the application developer implements all the logic behind the rec-
ommendation functionality, and uses the DBMS only for storage;
we call that the traditional approach. The good news about the
traditional approach is that it gives high freedom to the application
developer to write its own recommendation techniques that fits the
end-user of the application Nonetheless, the traditional approach
suffers from the following drawbacks: (1) Implementation Com-
plexity: As the application developer is responsible for the whole
recommender system logic, the application development process
might end up being tedious. (2) Lack of System Expertise: All the
application developer cares about is the application functionality,
hence s/he might not be able to handle the system performance and
scalability issues.

On the other hand, the Built-in approach pushes both steps (i.e.,
model building and recommendation generation) of the recom-
mender system inside the DBMS. Hence, the application developer
just focuses on the application logic and relies on the DBMS to
take care of the system performance and scalability issues. How-
ever, the Built-in approach is sort of rigid as it mandates the us-
age of specific recommendation techniques that are implemented
a-priori inside the DBMS. In case the application developer wants
to employ a different recommendation technique, s/he might either
implement the new recommendation technique inside the DBMS
or alternatively use the traditional approach.

The Extensible approach is similar to the Built-in approach, with
the exception that the DBMS is extensible to new recommendation
techniques, which could be declared by the application developer.
The Extensible approach combines the advantages of both the tra-
ditional approach and the Built-in approach in such a way that it
isolates the application developer from the system issues and at
the same time allow her/him to define new recommendation tech-
niques. For the aforementioned reasons, we set the Extensible ap-
proach as our system design goal when building RecDB.

4. RECDB OVERVIEW
We propose RecDB; a system that implements the recommender

system functionality inside the DBMS engine. RecDB is built on
three main system design pillars:

• Low Latency: That is necessary in order to feed recommen-
dations to users in an online/real time manner.

• High Extensibility: That means that the system is extensible
to as many recommendation techniques as possible.

• High Flexibility: That means the system provides flexible
recommendation based-upon application requirements.

To this end, RecDB adopts an extensible approach (see Figure 4),
as described in section 3. RecDB pushes both recommender system
phases inside the core engine of an DBMS To achieve that, RecDB
needs to modify almost all layers of the database stack; ranging
from the query parser to the storage engine. In the rest of the paper,
we will highlight the three main RecDB components, namely: (1)
RecStore: It is a module built inside the database storage engine
that incrementally maintains the recommendation model aiming at
increasing the system efficiency. (2) Rec-tree: it is an efficient tree
structure that provides flexible recommendation based upon the in-
dexed users/items attributes. (3) RecQuery: It is a module built
inside the database query processor, whose role is to minimize the
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Figure 2: Traditional Approach Figure 3: Built-In Approach Figure 4: Extensible Approach

recommendation query latency, in order to recommend a high num-
ber of items to a huge number of system users in an online manner.
In the rest of this section, we will give a little bit of details of the
aforementioned modules.

4.1 RecStore: Incremental Model Mainte-
nance

To be effective, recommender systems must evolve with their
content. For example, new users enter the system changing the col-
lective opinions of items, the system adds new items widening the
recommendation pool, or user tastes change. These actions affect
the recommender model, that in turn affect the system’s recom-
mendation quality. Traditionally, most systems have been able to
tolerate using an offline process that builds a fresh model daily or
weekly in order to adapt to changes in the underlying content [14,
22, 26]. However, the rate that new items or users enter the system
in nowadays application (e.g., Facebook updates, news posts), and
the rate which users express opinions over items (e.g., Diggs [7],
Facebook “likes" [10]), requires recommender models to change in
minutes or seconds, implying models be updated online.

Recent work from the data management community has shown
that many popular recommendation methods (including collabo-
rative filtering) can be expressed with conventional SQL, effec-
tively pushing the core logic of recommender systems within the
DBMS [16]. However, the approach does nothing to address the
pressing problem of online model maintenance, as collaborative
filtering still requires a computationally intense offline model gen-
eration phase when implemented with a DBMS.

RecStore [19] is a module built to complement the storage engine
of an DBMS, which enhances the recommendation model genera-
tion step by proposing a method that incrementally maintains the
recommendation model when new user/item ratings enter the sys-
tem. The basic idea behind RecStore is to separate the logical and
internal representations of the recommender model. RecStore re-
ceives updates to the user/item ratings data (i.e., the base data for a
collaborative filtering models) and maintains its internal represen-
tation based on these updates. As RecStore is built into the DBMS
storage engine, it outputs tuples to the query processor through ac-
cess methods that transform data from the internal representation

CREATE REC-TREE INDEX
ON users_Table (UserAge, UserCity)
USERS FROM users_Table KEY userID -- (userID, name, . . . )
ITEMS FROM items_Table KEY itemID -- (itemID, itemDetails)
RATINGS FROM ratings_Table KEY (userID,itemID) --(userID,itemID,rating) 

Figure 5: SQL Example 1 to Create Rec-tree Index

CREATE REC-TREE INDEX
ON items_Table (ItemType)
USERS FROM users_Table KEY userID -- (userID, name, . . . )
ITEMS FROM items_Table KEY itemID -- (itemID, itemDetails)
RATINGS FROM ratings_Table KEY (userID,itemID) --(userID,itemID,rating)

Figure 6: SQL Example 2 to Create Rec-tree Index

into the logical representation expected by the query processor.
RecStore is designed with extensibility in mind. RecStore’s archi-
tecture is generic, and thus the logic for a number of different rec-
ommendation methods can easily be “plugged into" the RecStore
framework, making it a one-stop solution to support a number of
popular recommender models within the DBMS. RecStore is also
adaptive to system workloads, tunable to realize a trade-off that
makes query processing more efficient at the cost of update over-
head, and vice versa.

4.2 Rec-tree: An Efficient Index Structure for
Processing Online Recommender Queries

Recommender systems need to provide flexible recommendation
to the end-user. For instance, Amazon.com has a huge number
of users, items (i.e., products), and user/item ratings. Among all
Amazon.com items, a user might be interested to get recommended
"Books" only. Also, a user might want to get recommended items
that are bought only by users living in Minnesota. Moreover, a user
might need to get recommended only "Books" that were bought
by users who lives in Minnesota and their age is between 21 and
35. The main challenge is that we need to maintain a recommen-
dation model for all attributes ranges defining the index structure.
Notice that existing database index structures (e.g., B+-tree and
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Figure 7: Scalability of LARS

R-tree) can be naively employed to solve the problem. However,
that approach suffers from scalability issues as it needs to maintain
a recommendation model for all values indexed by the tree. More-
over, as we maintain a recommendation model for all values in each
level of the tree, the query and update (e.g., insertion and deletion)
performance becomes a severe system bottleneck.

To solve the problem, we propose Rec-tree, a multi-dimensional
tree index structure that is built specifically to index recommenda-
tion models and provides flexible and online recommendation to
users. As in traditional database index structures, the user can de-
fine which users/items attributes (i.e., dimensions) needed to be in-
dexed by Rec-tree (see Examples in Figures 5 and 6 ). Rec-tree par-
titions the user/items ratings space based upon the index attribute
and maintain a recommendation model for each partition. Rec-tree
is an adaptive structure that decides whether to merge or split a tree
node by employing a tradeoff between recommendation quality and
system scalability.

As a proof of concept, we implemented LARS [18]; a Location-
Aware Recommender System that provides recommendation for
users base on their locations as well as the items locations. LARS
employs a partial pyramid structure [3] (equivalent to a partial
quad-tree [11]). In each pyramid cell, we store an item-based col-
laborative filtering model built using only the spatial ratings with
user locations contained in the cell’s spatial region. rating may
contribute to up to at most a single cell at each pyramid level: start-
ing from the lowest maintained grid cell containing the embedded
user location up to the root level. Levels in the pyramid can be in-
complete, as LARS will periodically merge or split cells based on
trade-offs of locality and scalability. When deciding to merge, we
define a system parameter M, a real number in the range [0,1] that
defines a tradeoff between scalability gain and locality loss. LARS
merges (i.e., discards quadrant q) if:

(1−M) ∗ scalability_gain > M∗ locality_loss (3)

Initial Experiments. Figure 7 depicts the storage and aggre-
gate maintenance overhead required for an increasing number of
ratings. We again LARS-M=0 and LARS-M=1 to indicate the ex-
treme cases for LARS. Figure 7(a) depicts the impact of increas-
ing the number of ratings from 10K to 500K on storage overhead.
LARS-M=0 requires the lowest amount of storage since it only
maintains a single collaborative filtering model. LARS-M=1 re-
quires the highest amount of storage since it requires storage of a
collaborative filtering model for all cells (in all levels) of a com-
plete pyramid. The storage requirement of LARS is in between the
two extremes since it merges cells to save storage.

4.3 RecQuery: Low-Latency Recommenda-
tion Generation

In traditional recommender systems, when a user logs in, a com-
plex SQL query is issued at the application layer, while the user
only cares about the set of recommended items. To remedy this sit-

CREATE RECOMMENDATION VIEW
Rec_View KEY (userID,itemID) -- (userID,itemID)
USERS FROM users_Table KEY userID -- (userID, name, . . . )
ITEMS FROM items_Table KEY itemID -- (itemID, itemDetails)
RATINGS FROM ratings_Table KEY (userID,itemID)  -- (userID,itemID,rating)
USING ItemBasedModel

Figure 8: RECOMMENDATION VIEW

uation, RecDB pushes the second step (i.e., Recommendation Gen-
eration) inside the DBMS, by creating a RECOMMENDATION
VIEW as in Figure 8. In Figure 8, the application developer de-
clares a view called Rec_View which has two fields userID and
itemID (representing the recommended items for each user). All
users are defined in users_Table that has userID as a primary key.
All items are stored in items_Table that has itemID as a primary
key. The ratings are represented by ratings_Table which is defined
by the triplet (userID,itemID,rating). The USING keyword deter-
mines the recommendation model (e.g., Item-Based Collaborative
filtering) used to generate recommendation for users. Once having
the recommendation view, the application developer can issue reg-
ular SQL queries on that view to select appropriate recommended
items for end-users. RecQuery modifies the query processor by
making use of the recommendation view; mentioned before. Re-
call that the main goal is to provide recommendations for users
in real time and online manner while the recommendation model
is updated frequently. To this end, RecQuery has to answer two
main research questions: (1) What to materialize ? – What items
(of which users) should be stored in the recommendation view and
which not, and (2) How to materialize ? – For materialized items
(users), how to incrementally maintain the view.

5. DATA SETS
In order to evaluate RecDB system quality and performance, we

make use three main data sets as follows:

• MovieLens data: The MovieLens data used in is a real movie
rating data taken from the popular MovieLens recommenda-
tion system at the University of Minnesota [23]. This data
consists of 10 million ratings for 10,000 movies from 72,000
users. Users’ ratings to items takes values between zero and
five.

• Foursquare data: Foursquare [12] is a mobile location-based
social network application. Users are associated with a home
city, and alert friends when visiting a venue (e.g., restaurant)
by “checking-in" on their mobile phones. During a “check-
in", users can also leave “tips", which are free text notes
describing what that they liked about the venue. Any other
user can add the “tip" to her “to-do list" if interested in vis-
iting the venue. Once a user visits a venue in the “to-do list"
, she marks it as “done". Also, users who check into a venue
the most are considered the “mayor" of that venue. We
crawled Foursquare and collected data for 1,010,192 users
and 642,990 venues across the United States. Foursquare
does not publish each “check-in" for a user, however, we
were able to collect the following pieces of data: (1) user tips
for a venue, (2) the venues for which the user is the mayor,
and (3) the completed to-do list items for a user. In addition,
we extracted each user’s friend list. To extract user/items
ratings from foursquare data, we use a numeric rating value
range of [1, 3], translated as follows: (a) 3 represents the user
is the “mayor” of the venue, (b) 2 represents that the user left
a “tip” at the venue, and (c) 1 represents the user visited the
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Figure 9: Sindbad Recommendation Service

venue as a completed “to-do” list item. Using this scheme,
a user may have multiple ratings for a venue, in this case we
use the highest rating value.

• Synthetic data: The synthetic data set is generated using a
synthetic data generator that takes the number of users, num-
ber of items, and number of ratings as input and randomly
generates a set of user/item ratings. Users’ ratings to items
are assigned random values between zero and five. Notice
that the synthetic data is only used to test the system perfor-
mance and is never user to test the recommendation quality.

6. SYSTEM PROTOTYPE
To implement the recommendation functionality RecDB em-

ploys the Lenskit recommender framework built at the University
of Minnesota. LensKit [8, 17] is an open source toolkit for build-
ing, researching, and studying recommender systems. To support
RecDB system functionalities, we modify the different layers of
Apache Derby [2], an open source relational database system built
in Java and available under Apache License.

We plan to build a RecDB prototype inside Sindbad [18, 27];
a location-based social networking system built at the University
of Minnesota. Sindbad users can request recommendations of ei-
ther spatial items (e.g., restaurants, stores) or non-spatial items
(e.g., movies) by explicitly issuing a location-aware recommen-
dation query. The location-aware recommender module (LARS)
suggests a set of items based on: (a) the user location (if available),
(b) the item location (if available), and (c) ratings previously posted
by either the user or the user’s friends. Figure 9 depicts an Android
Phone Application that is built on top of Sindbad. As shown in
the figure, End-users may ask Sindbad for recommendations (e.g.,
Restaurants) by clicking on the recommendation link on the left-
hand side of the web interface or by clicking on the location-aware
recommendation button in the mobile app. The user then enters the
type of object he is interested in (e.g., restaurant, theaters, stores). a
spatial range in miles, and also the number of recommended items
to be returned to him and then presses the Recommend button. The
recommended items are then shown on the map. Sindbad is used
to demonstrate the effectiveness of RecDB in a real application set-
ting; which gives high credibility to the system.

7. CONCLUSION
In this paper, we propose RecDB; a fully fledged database system

that provides recommendation functionality in an efficient and scal-
able way. To this end, RecDB uses an extensible approach which

pushes the recommender systems phases inside the database en-
gine. RecDB has three main component: (1) RecStore that effi-
ciently maintains the recommendation model in order to serve on-
line recommendations for end-users, (2) Rec-tree is an index struc-
ture that provides flexible recommendation functionality filtered by
user/item attributes, and (3) RecQuery that efficiently maintains a
recommendation view in order to serve low-latency recommenda-
tion to end-users. RecDB is implemented as part of existing DBMS
(i.e., Apache Derby) and is demonstrated by Sindbad; a Location-
based Social Networking system.
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