
Recommending User Generated Item Lists

Yidan Liu
Dept. of Computer Science,

Univ. of British Columbia
yidanliu@cs.ubc.ca

Min Xie
Dept. of Computer Science,

Univ. of British Columbia
minxie@cs.ubc.ca

Laks V.S. Lakshmanan
Dept. of Computer Science,

Univ. of British Columbia
laks@cs.ubc.ca

ABSTRACT
Existing recommender systems mostly focus on recommend-
ing individual items which users may be interested in. User-
generated item lists on the other hand have become a popu-
lar feature in many applications. E.g., Goodreads provides
users with an interface for creating and sharing interesting
book lists. These user-generated item lists complement the
main functionality of the corresponding application, and in-
tuitively become an alternative way for users to browse and
discover interesting items to be consumed. Unfortunately,
existing recommender systems are not designed for recom-
mending user-generated item lists. In this work, we study
properties of these user-generated item lists and propose
a Bayesian ranking model, called Lire for recommending
them. The proposed model takes into consideration users’
previous interactions with both item lists and with individ-
ual items. Furthermore, we propose in Lire a novel way
of weighting items within item lists based on both posi-
tion of items, and personalized list consumption pattern.
Through extensive experiments on a real item list dataset
from Goodreads, we demonstrate the effectiveness of our
proposed Lire model.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Filtering

Keywords
List Recommendation; Collaborative Filtering

1. INTRODUCTION
Recommender systems have become extremely popular

because of their wide application and success in domains
such as E-commerce (Amazon), Music (iTunes), Movies (Net-
flix), and Apps (Apple App Store). E.g., back in 2006, Ama-
zon already had 35% of purchases originating from recom-
mended items [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RecSys’14, October 6–10, 2014, Foster City, Silicon Valley, CA, USA.
Copyright 2014 ACM 978-1-4503-2668-1/14/10 ...$15.00.
http://dx.doi.org/10.1145/2645710.2645750.

Figure 1: User-generated book lists on GoodReads.

Existing recommender systems usually help users find po-
tentially interesting items by means of collaborative filtering.
Initial works on collaborative filtering mainly focused on
neighborhood-based methods [29, 22], which essentially lever-
age similarity between items or between users as measured
by heuristic functions such as cosine or Pearson correlation.
These similarities are calculated based on the ratings pro-
vided by (received by) users (resp., items) in the past. More
recent works on collaborative filtering mostly focus on latent
factor models, which have become widely known from their
success at the Netflix Competition [12, 17, 19, 20].

Although existing collaborative filtering works are effec-
tive at recommending individual items to users, the pro-
posed solutions usually lack flexibility in supporting more
complex recommendation scenarios [4]. For example, exist-
ing recommendation algorithms are not optimized for rec-
ommending user-generated item lists, which are very popu-
lar among various applications such as lists of books created
by readers on GoodReads [2], lists of twitter users created
by users on Twitter [1], and lists of products created by
shoppers on Amazon [3].

User-generated item lists are usually deployed as a way
to help users organize and share items consumed in the cor-
responding application. These user-generated item lists are
usually made public by default, so in addition to the main
functionality provided by the service (e.g., recommending as
well as shopping or consuming items), these lists serve as an
alternative way to engage users of the service. For users, ex-
ploring user-generated item lists is often a very effective way
for browsing and identifying interesting items, as each list
contains only a small subset of all items, and items in each
list are usually manually organized by other users around
a specific theme. E.g., users can find from a book list on
French Literature interesting and rare books on this topic,
which may not be recognized by the item recommendation
engine or through keyword search interface as these books

185

may not explicitly contain the keywords“French Literature”.
An example of user-generated book lists on GoodReads is
shown in Figure 1.

However, because of the sheer volume of user-generated
item lists, and the complexity of each list (which typically
contains tens or even hundreds of items), it is extremely
challenging for a standard item presentation interface to
help users discover lists which he/she might find interest-
ing. Thus users usually have to resort to keyword search to
find interesting lists, which again is extremely challenging
because of the large number of items within each list, and
also the huge number of lists which might match the query.

In this work, motivated by recent study on automatic rec-
ommendation of items based on user’s previous interaction
with the underlying system, we study the problem of how
to generalize item recommendation to incorporate lists, and
propose algorithms which can automatically find relevant
item lists for each user based on her/his previous interac-
tions with both lists and items in the corresponding service.
Intuitively, these recommended item lists complements ex-
isting item recommender system and serve as a way for users
to explore items around a small set of themes which might
match users’ interest.

We note that in the domain of music, playlists have a
similar structure as the user-generated item lists studied in
this work, and several existing works have been devoted to
developing recommendation algorithms for playlists [7, 9,
8]. However, a huge difference between playlists and the
item lists studied in this work is that there usually exists a
strong correlation between neighboring songs in a playlist:
in most cases songs in a playlist have to be consumed se-
quentially. This property has been explored extensively by
existing works such as [9], [7]. However, it is clear that for
the item lists under our consideration, such as book lists,
twitter user lists, and shopping lists, items do not necessar-
ily have to be consumed sequentially. In fact, a user might
well be interested in only one or a few items in a list and
may consume them in no particular order.

To address the limitations of previous approaches in mod-
eling users’ item list preference, we propose a new List Rec-
ommendation Model called Lire in this work. In Lire , we
take a user’s item preference into consideration when mod-
eling the user’s item list preference, where item preferences
can be learned from user’s previous interaction with individ-
ual items. We note that a simple way of aggregating item
preferences into list preferences may not work very well. In-
deed, one challenge in modeling a user’s interest in user-
generated item lists is that on websites such as Goodreads,
because of the way user interface is presented and the huge
number items contained in each list, users usually see just
the top items in a list first, and they may often stop browsing
an item list when enough items have been explored or con-
sumed. To take these facts into consideration, we consider
in our model, ingredients which can be leveraged to weight
items which are ranked at different positions, and we also
learn users’ browsing patterns by fitting a parameter that in-
dicates roughly how many items need to be consumed before
a user stops browsing an item list.

We make the following contributions: First, we propose a
Bayesian-based ranking model Lire for recommending user-
generated item lists, which, unlike playlists, need not be
consumed sequentially; Second, in the Lire model, we con-
sider the problem of how preferences over individual items

can be properly aggregated to model user’s interest in an
item list; Third, through extensive experiments on a real
item list dataset obtained from Goodreads, we show that
our Lire model significantly outperforms various previously
proposed recommendation algorithms on the task of recom-
mending user-generated item lists.

In the rest of this paper, we first define the item list rec-
ommendation problem in Section 2.1. Then in Section 2.2,
we present some intuitive baseline algorithms which can be
applied to the item list dataset to generate list recommen-
dations. In Section 3, we introduce our proposed list recom-
mendation model. Experimental results comparing different
algorithms on Goodreads dataset are presented in Section 4.
Related work is discussed in Section 5. Finally, we conclude
the paper and present possible future directions in Section 6.

2. PROBLEM STUDIED AND BASELINE AL-
GORITHMS

2.1 Item List Recommendation
To formulate the item list recommendation problem, con-

sider a set of users U = {u1, . . . , um}, a set of items T =
{t1, . . . , tn}, and a set of item lists L = {l1, . . . , lq}, where
each list li ∈ L is composed of a subset of items from T .

Let the set of item lists which user u has shown interest in
be denoted as Lu, Lu ⊆ L, where a list l ∈ Lu can be a list
which u has liked, voted, or commented on. Similar to many
other recommendation problems such as those discussed in
[12] and [27], typically user feedback on item lists is implicit
as compared to explicit ratings which can be found on movie
recommendation websites [20].

On most websites such as Goodreads which provide the
functionality for creating and sharing item lists, each user u
is also associated with a set of items Tu, namely the items
which u has previously consumed/rated.

Problem 1. Item List Recommendation: Given T ,
U , L, for each user u ∈ U , based on u’s previously consumed
items Tu, and u’s previously consumed item lists Lu, recom-
mend to u the top-N item lists from L\Lu which u will be
most interested in.

2.2 Baseline Algorithms

2.2.1 Popularity-based Approach
For many a recommendation application be it item rec-

ommendations or item list recommendations, there is typi-
cally a long tail distribution w.r.t. the number of user rat-
ings/interactions of each item. E.g., most of the items can
observe only a few ratings, whereas only a few enjoy much
attention from users. Thus this popularity bias becomes
an important factor for explaining and understanding the
underlying data, as was also observed in the Netflix compe-
tition [18].

One simple item list recommendation algorithm thus is to
directly leverage the popularity bias and recommend item
lists based on the popularity of each list. That is, we sort
item lists w.r.t. the number of votes received, and recom-
mend to every user the same set of top item lists which have
received the highest number of votes. We note that this
is very similar to how Goodreads website recommends item
lists on every book detail page, i.e., every popular book is

186

likely included in many book lists, and according to our ob-
servation, only two of the hottest book lists are shown on
the detail page of every book.

We call above algorithm GLB (GLoBal), as the recom-
mendation generated using the above approach is based on
global statistics and is not personalized. We also consider
the following two different personalized variants, among the
baselines; these methods are in part motivated by the heuris-
tic popularity-based approaches for generating playlists which
have been demonstrated to have good performance [8].

The first alternative PPOP (Personalized POPularity) is
based on the intuition that a user u may only be interested
in item lists which contain items that u is familiar with.
Thus instead of recommending the most popular item lists
across all users, we recommend the most popular item lists
which contain at least one item the user has interacted with
before.

The second alternative PIF (Personalized Item Frequency)
is based on the same intuition as PPOP that a user u is only
interested in item lists which contain items that u is familiar
with. But instead of ranking these candidate item lists by
popularity, we rank these candidate item lists by how many
items the list contains that the user has interacted before.
The rationale for this heuristic is that the more books a list
contains that the user is familiar with, the more interesting
that list to the user. Ties in PIF are broken using popularity
of the corresponding item list.

2.2.2 Collaborative Filtering for Implicit Data
Consider a matrix ML of users’ interest in each list, where

each entry yul is 1 if u has voted list l before, and 0 otherwise.
We could simply apply previously proposed collaborative fil-
tering algorithms to this matrix ML.

Typical collaborative filtering algorithms are based on la-
tent factor models, which were made popular because of
their success in the Netflix competition [20]. The nature of
the datasets we consider is that user feedback is implicit,
i.e., it tends to be in the form of votes. Thus, we adapt
the recently proposed BPR method [27], demonstrated to
be very effective on implicit feedback data, to item list rec-
ommendation.

In BPR [27], each user u is associated with a latent factor
wu, each item ti is associated with a latent factor hi, then
similarly to other latent factor models, the rating x̂ui of
user u on item ti can be predicted based on the dot product
wu · hi.

Because of the nature of the implicit dataset, similar to
[27], we assume that items which have been voted by a user
are preferred over other items. Thus, we let ti �u tj denote
that user u prefers item ti to item tj . Following the nota-
tion introduced in [27], let DS denote set of triples (u, ti, tj)
such that ti �u tj holds. Then BPR formalizes a learning
problem by maximizing the following log-posterior.

lnP (Θ | DS) ∝ lnP (DS | Θ)P (Θ)

= ln
∏

(u,ti,tj)∈DS

σ(x̂ui − x̂uj)p(Θ)

=
∑

(u,ti,tj)∈DS

lnσ(x̂ui − x̂uj) + ln p(Θ)

=
∑

(u,ti,tj)∈DS

lnσ(x̂ui − x̂uj)− λΘ‖Θ‖2 (1)

where σ = 1
1+e−x is the logistic sigmoid function, Θ denotes

all the parameters (latent factors of users and items), and
each latent factor is assumed to be following a zero mean
Gaussian prior. Finally, λΘ is a model specific regularization
parameter.

As discussed in [27], the optimization criteria of BPR is
closely related to Area Under the ROC Curve (AUC) [11].
And above posterior in Equation 1 can be optimized through
Stochastic Gradient Descent (SGD) which has been demon-
strated to be useful for learning various latent factor-based
models [17].

2.2.3 Markov-based Recommendation
As we will discuss in Section 5, the item list recommenda-

tion problem resembles the playlist recommendation prob-
lem studied before [8, 9]. One important difference is that
with playlists, there is an inherent assumption that items
in the list are meant to be consumed sequentially, which
may not be relevant for user-generated item lists such as
book lists or product lists. We adapt algorithms proposed
for playlist recommendation for the sake of comparison with
the algorithms we develop.

In the literature, one very recent and representative model-
based approach for playlist recommendation is LME or La-
tent Markov Embedding [9, 10]. In LME, similar to other
latent factor models, each item ti is associated with a latent
vector hi. Given a playlist l, let each item in l at posi-
tion a be denoted as l[a]. In order to model the sequential
property a playlist l, we consider the probability of each list
being “generated” as a series of Markov transitions between
consecutive songs.

P (l) =

|l|∏
a=1

P (l[a] | l[a− 1]) (2)

where the transition probability P (l[a] | l[a−1]) can be mod-
eled as a function of the Euclidean distance ∆(hl[a], hl[a−1])
between the two songs under consideration. Let A denote
the set of all songs which can following one specific song
l[a − 1], we denote by Z(l[a − 1]) =

∑
t∈A e

−∆(ht,hl[a−1])

the summation over transition probabilities w.r.t. all possi-
ble next song given l[a− 1]. We can then use the following
logistic model to estimate P (l[a] | l[a− 1]).

P (l[a] | l[a− 1]) =
e−∆(hl[a],hl[a−1])

Z(l[a− 1])
(3)

Similar to BPR, an SGD-like algorithm can be leveraged
to learn the latent factor model in LME by maximizing the
likelihood of generating the training playlists. We note that
the original model in [9, 10] is not personalized.

3. LIST RECOMMENDATION MODEL
In this section, we propose a List Recommendation Model

called Lire for the item list recommendation problem. Sim-
ilar to previous latent factor-based models, we map users,
items, and lists into a joint latent factor space of dimension-
ality k. Accordingly, each user u is associated with a vector
wu ∈ Rk, each item ti with a vector hi ∈ Rk, and each list
lj with a vector gj ∈ Rk.

3.1 User Preference over Individual Item List
Intuitively, given a user u and an item list lj , u’s inter-

est in lj can be captured using two major factors: (i) the

187

overall intrinsic quality of the list l itself, and (ii) the user’s
aggregate interest in the items in lj . The first factor can
be modeled simply as an inner product between wu and gj ,
while the second factor involves aggregating user’s prefer-
ences over multiple items within lj .

A simple idea to model the relationship between u and
items in lj is to assume that each item in lj has an equal
influence on user u. Thus we could model the preference of
u on lj using the following equation.

x̂Luj = wugj +
1

|lj |
∑
ti∈lj

(wuhi) (4)

where |l| denotes the length of list l. In Equation (4), the
first component wugj models user’s intrinsic interest in the
list as a whole, and the second component models the re-
lationship between u and items in lj . We call above model
UNIFORM. Note that omitting the second component in
Equation (4) amounts to directly factorizing the user list in-
teraction matrix ML into user latent vectors and item list
latent vectors and using that solely as the model for recom-
mendation.

As discussed in Section 4.1, usually different items in the
list have different influence on a user. E.g., items which
are shown at the top of a list, or items which are shown on
the first page of the list if pagings are enabled, obviously
have more significant influence on the user. This effect is
usually due to the way different items of a ranking list are
shown on the user interface, and how users consume items
in a list. Similar effect can also be observed in information
retrieval [13]. To capture this property, we adopt a function
inspired by DCG (Discounted Cumulative Gain) [15], in or-
der to weight down items which are ranked low in a displayed
item list or are shown in later pages in case of a paging en-
abled interface. Without any ambiguity, let ti = lj [i] denote
the ith item in list lj , 1 ≤ i ≤ |lj |, and let hi be the corre-
sponding latent factor associated with ti.

x̂Luj = wugj + C(wuh1 +

|lj |∑
i=2

wuhi
log2 i

) (5)

where C = 1/(1 +
∑|lj |
i=2

1
log2 i

) serves as a normalization

constant. We call above model DCG.
Although DCG is able to weight down items with lower

position in the displayed list, given the huge number of items
which may exist in an item list, items which are ranked low
down in a list usually will not be examined by the user. E.g.,
one list named “Best Book Cover Art” has 4,775 books and
it’s unlikely a user will dig deep down such lists. Thus, in-
corporating these lower ranked items in predicting a user’s
preference over an item list may introduce lots of noise. In
this work, to address this issue, we make the reasonable as-
sumption that users browse an item list top down, and stop
browsing when enough items have been seen. Note that this
threshold number of items which indicates the number of
items users consume before stopping, may vary among dif-
ferent users, thus needs to be personalized. Even for a spe-
cific user, this number may change from list to list, which
may motivate us to associate one random variable per user
and per list. However, given the sparsity of the dataset,
such fine granularity threshold modeling might easily lead
to overfitting. Thus we consider in this work a trade-off ap-

proach by introducing a personalized granularity controlling
browsing threshold τu.

We set τu = β × ηu. Here, ηu ∈ Z+ is a personalized
discrete random variable with a positive integer as its value,
β is a constant which is used to capture a coarse list brows-
ing granularity. E.g., β can either be the number of items
contained in a single page on the website, or can just be a
constant such as 10 items, which captures a finer granular-
ity. The value of β can be tuned according to the underlying
data. In this work, using our Goodreads dataset, we set β
to be 5 which leads to the best performance on our dataset.

Let I(i ≤ τu) be an indicator function which equals 1 if
i ≤ τu is true, and 0 otherwise. We could adapt DCG to the
following model DCG-T.

x̂Luj = wugj + C(wuh1 +

|lj |∑
i=2

I(i ≤ τu)
wuhi
log2 i

) (6)

where C = 1/(1 +
∑|lj |
i=2 I(i ≤ τu) 1

log2 i
) serves as a normal-

ization constant. This model captures the idea that user u
stops browsing beyond depth τu.

3.2 Modeling Observed Data
In general users’ feedback data on item lists tends to be

even more sparse than the feedback on items. This makes
learning users’ preference over item lists more challenging.
Fortunately, for most applications in which users can create
and share item lists, users also can and tend to interact
with individual items. E.g., on Goodreads, users can vote
for book lists which are generated by other users, and can
also add books to their shelves, meaning they either have
already read the books, or are interested in reading those
books in the future. Thus in addition to the matrix ML

which captures interactions between users and lists, we also
have the matrix MT which captures interactions between
users and items.

Motivated by recent effort on Collective Matrix Factoriza-
tion [31], we consider that users share their preferences over
items and lists. Thus we could potentially leverage informa-
tion learnt from users’ item preferences to help mitigate the
sparsity issue when modeling users’ list preferences. Con-
sidering the fact that the interactions between users and
items or between users and item lists are often implicit,
e.g., vote on Goodreads and subscription on Twitter, we
adapt the framework of BPR [27] for deriving the optimiza-
tion criteria for our item list recommendation problem. Let
Θ = {W,G,H, τ} be the set of parameters associated with
the Lire model. We assume Θ is associated with a zero-
mean Gaussian prior. By assuming �Lu and �Tu are condi-
tional independent given Θ, the log of the posterior of Θ
given the observed user/item interactions and user/item list
interactions can be calculated as follows.

P(Θ) = ln p(Θ |�Lu ,�Tu) = ln p(�Lu ,�Tu | Θ)p(Θ)

= ln p(�Lu | Θ)p(�Tu | Θ)p(Θ)

= ln p(�Lu | Θ) + ln p(�Tu | Θ)− λΘ‖Θ‖2

=
∑

(u,li,lj)∈DL
s

lnσ(x̂Luij(Θ)) +
∑

(u,ti,tj)∈DT
S

lnσ(x̂Tuij(Θ))

− λΘ‖Θ‖2 (7)

where DL
S denotes the set of triples (u, li, lj) for which

li �u lj holds, DT
S denotes the set of triples (u, ti, tj) for

188

which ti �u tj holds, And λΘ are the model specific regular-
ization parameters. The relationship between user u, list li,
and list lj is captured by x̂Luij(Θ), which can be estimated as

x̂Lui−x̂Luj . Similarly, the relationship between user u, item ti,

and item tj is captured by x̂Tuij(Θ), which can be modeled

as x̂Tui − x̂Tuj .

3.3 Model Learning
Given P(Θ), we use Maximum-a-Posteriori (MAP) to per-

form a point estimation of the parameters of the Lire model.
Considering the fact that P(Θ) is differentiable w.r.t. most
parameters, one popular way to optimize P(Θ) is through
gradient-based algorithms. A naive approach to doing so
would be to directly sample quadruples (li, lj , ti, tj), where
li, lj are positive and negative item list instances for a user
u, and ti, tj are positive and negative item instances. More
precisely, user u prefers li to lj and similarly ti to tj . How-
ever, this introduces a huge sampling space. Hence, we
propose an alternating learning framework, where we first
sample (u, ti, tj) from DT

S , until convergence of P(Θ)T =
ln p(Θ |�Tu); then we sample (u, li, lj) from DL

S , until con-
vergence of P(Θ)L = ln p(Θ |�Lu). We iterate above process
until the overall posterior converges. We note that the gra-
dient of P(Θ)T w.r.t. Θ can be derived in a similar way as in
[27], thus in the following, we focus on how a gradient-based
algorithm can be applied to P(Θ)L.

Recall from Section 3.1 that during the learning process
to maximize P(Θ)L, the threshold parameter τu for every
user takes on positive integers as values, thus P(Θ)L is non-
continous w.r.t. Θ. To solve this issue, we further decompose
the maximization of P(Θ)L into the following two steps:
first, fix τu then optimize the remaining model parameters;
then fix the remaining model parameters and optimize τu.

Given a fixed τu, the following is the gradient of P(Θ)L

w.r.t. the model parameter Θ for DCG-T. Similar gradients
can be derived for UNIFORM and DCG and we suppress
the details. To simplify the notation, we omit mentioning Θ
for x̂Tuij(Θ) and x̂Luij(Θ) if there is no ambiguity.

∂P(Θ)L

∂Θ
=

∑
(u,li,lj)∈DL

s

∂ lnσ(x̂Luij)

∂Θ
− λΘ

∂‖Θ‖2

∂Θ

=
∑

(u,li,lj)∈DL
s

e−x̂
L
uij

1 + e−x̂
L
uij

∂x̂Luij
∂Θ

− λΘΘ (8)

Since ∂x̂Luij/∂Θ = ∂x̂Lui/∂Θ− ∂x̂Luj/∂Θ, we list in the fol-

lowing equations how ∂x̂Luj/∂Θ can be derived for w, and g
in DCG-T, where f indicates an index into the correspond-
ing latent factor.

∂x̂Luj
∂Θ

=

{
gjf + C(h1f +

∑|lj |
i=2 I(i ≤ τu)

hif

log2 i
) Θ = wuf

wuf Θ = gjf

Given τu = β×ηu, ηu may have a small domain given the
size |lj | of a list lj . E.g., on Goodreads, when β is set to the
number of items on a single web page, most lists have size
less than 40 web pages. A simple idea thus is to enumerate
all possible ηu and then find the optimal η∗u which maximizes
P(Θ)L.

η∗u = arg max
1≤ηu≤d|lj |/βe

P(Θ)L (9)

However, when β is tuned to be at a finer granularity, the
cost of above exhaustive search becomes prohibitive. Given
the fact that P(Θ)L may not be monotone w.r.t. τu based
on different possible values of the latent factors, we consider
a local search algorithm LocalOpt (Algorithm 1) which finds
a local maximum of τu.

Algorithm 1: LocalOpt(β,Θ,|l|)
1 η∗ ← A random integer between 1 and d|l|/βe;
2 Q ← An empty candidate queue;
3 Q.add((max(ηu − 1, 1), left));
4 Q.add((min(ηu + 1, d|l|/βe), right));
5 while Q is not empty do
6 (η, direction) ← Q.pop();

7 if Pη∗ (Θ)L < Pη(Θ)L then
8 η∗ ← η;
9 if direction = left and η > 1 then

10 Q.add((η − 1, left));

11 if direction = right and η < d|l|/βe) then
12 Q.add((η + 1, right));

13 return η∗

The overall algorithm for learning Lire is listed in Algo-
rithm 2. In each iteration of the main loop, we first sam-
ple (u, ti, tj) from DT

S and update model parameters W , H
through Stochastic Gradient Ascent until convergence. Then
we sample (u, li, lj) from DL

S , and update model parameters
W , G through Stochastic Gradient Ascent until convergence.
Finally, we find the optimal τ through Algorithm LocalOpt
for every user. We repeat above three steps until the overall
model has converged or the maximum number of iterations
has been reached.

Algorithm 2: Lire -Learn(Θ, DL
S , DT

S , β)

1 Random initialize Θ;
2 repeat
3 repeat
4 Draw (u, ti, tj) from DTS ;

5 Update W , H w.r.t. P(Θ)T ;
6 until convergence;
7 repeat
8 Draw (u, li, lj) from DLS ;

9 Update W . G w.r.t. P(Θ)L;
10 until covergence;
11 foreach User u do
12 |l| ← Longest list size considered by u;
13 τu ← β× LocalOpt(β,Θ, |l|);
14 until convergence or max-iter has been reached ;

4. EXPERIMENT RESULTS

4.1 Goodreads Data Setup
To evaluate our proposed model Lire and compare it with

existing models for item and playlist recommendation, we
obtained during one month a 10% sample of all user-generated
book lists on Goodreads. As can be found from the Goodreads
website, there exist in total around 34,750 user-generated
book lists, and our obtained sample includes 3,000 randomly
selected book lists from the entire collection.

We filter book lists which have fewer than 5 voters, and
the resulting dataset contains 1,998 book lists. For the set of
voters obtained from these 1,998 book lists, we again filter

189

 1

 10

 100

 1 10 100 1000 10000

N
u

m
b

e
r

o
f

lis
ts

Number of contained books

(a) Number of contained books/frequency

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

N
u

m
b

e
r

o
f

b
o

o
k
s

Number of containing lists

(b) Number of containing lists/frequency

Figure 3: Statistics of Goodreads data w.r.t. lists
and books

out those who have voted less than 5 times within the 1,998
book lists. The total number of unique users left at the
end of this process is 3,425. To fit users’ preference over
individual items, we also obtained the set of books which
have been added to these 3,425 users’ book shelves. The
total number of unique books is 105,030.

In Figure 3 (a), we group lists into different buckets based
on how many books they contain, and plot the number of
lists which belong to each bucket. It can be seen that the ma-
jority of the obtained book lists contain only a small number
of books, but there does exist book list which contains 4,775
books. The average number of books per list is 109. Simi-
larly, in Figure 3 (b), we group books into different buckets
based on how many book lists they belong to, and plot the
number of books belong to each bucket. Again, there is an
obvious power law distribution between the number of lists
a book belongs to and the number of books that belong to
the same number of books.

Similar statistics of the Goodreads dataset can be ob-
served between users and lists, and also between users and
books, as shown in Figure 2. In a nutshell, the majority
of users interact only with a few lists or books, while a few
power users interact with a large number of lists or books.

From the obtained Goodreads dataset, we randomly sam-
ple 10% user/list interaction data as the test set, and the
remaining data is treated as training set. To simplify the
training process, we assume each parameter of the model is
associated with the same regularization parameter λ. Learn-
ing rate γ in the Stochastic gradient descent step, and regu-
larization parameter λ are selected based on grid search. In
our experiments, we found that usually setting γ = 0.1 and
λ = 0.01 leads to the best performance.

4.1.1 Algorithms Compared
We compare our proposed Lire with the following 5 base-

line algorithms as discussed in Section 2.2: 1. GLB; 2. PPOP;
3. PIF; 4. BPR; 5. LME. For BPR and LME, we also used
grid search to find the best learning parameter settings. Fi-
nally, we consider two variations of Lire – Lire -UNIFORM
with uniform item weighting, and Lire -DCG-T with item
position-based weighting and personalized browsing thresh-
old.

4.1.2 Performance Measure
AUC is a commonly used metric for testing the quality

of rank orderings. Following [27], we use the AUC metric
described below to compare the proposed Lire model with
the baseline algorithms as it has been demonstrated to be a
good metric for evaluating Top-N recommendation tasks [6].
Suppose the set of users, positive book list instance (book
lists voted by the user in the test dataset), negative book
list instance (book lists which have not been voted either in

the training set or testing dataset) in the test dataset are
denoted as Dtest

S . Then, the formula to compute AUC is
given by:

1

|Dtest
S |

∑
(u,li,lj)∈Dtest

S

I(x̂ui > x̂uj)

where I(x̂ui > x̂uj) is an indicator function which returns 1
if x̂ui > x̂uj is true, and 0 otherwise.

4.2 Granularity of Browsing
We first test how the granularity parameter β of the brows-

ing threshold τ can affect the performance of the Lire model.
As discussed in Section 3, on one hand, when setting β to
a small value, the predicted browsing threshold may lack
flexibility in predicting user’s browsing pattern across dif-
ferent lists. Whereas on the other hand, setting β to be a
large value, we may incorporate unnecessary items into the
prediction of user’s interest in a specific list.

The above trade-off is confirmed by our results on Goodreads
dataset as shown in Table 1. By fixing the dimensionality of
D to be 10, the overall AUC on the test set increases when
β is varied from 1 to 5, and AUC decreases when we fur-
ther increase the value of β. We observed similar results for
other D settings and suppress them for lack of space. This
result indicates that β in practice can be tuned based on the
actual dataset.

β value
1 3 5 7 9

AUC 0.9778 0.9787 0.9830 0.9819 0.9800

Table 1: How β value affect the AUC.

4.3 Convergence of Lire

In Figure 4, we demonstrate the convergence behavior of
the Lire model. As can be found in this figure, our model
converges fairly quickly (around 5 iterations). We note that
this convergence result also holds for other dimensionality
setting of the latent factors.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1 2 3 4 5 6 7 8 9 10

A
U

C

Number of iteration

D = 10
D = 20
D = 30

Figure 4: Convergence of Lire when varying dimen-
sionality of the latent factors.

4.4 Quality Comparison
Finally, we compare the performance of Lire with other

algorithms as presented in Section 2.2. From Figure 5,
we can readily observe that the three baseline algorithms
GLB, PPOP, PIF do not perform nearly as well as BPR
and Lire . We note that this is in contrast with the result
on playlist dataset, where popularity-based methods, and
especially personalized popularity-based methods excel [8].
Also the Markov-based approach LME does not perform as

190

 1

 10

 100

 1000

 1 10 100 1000

N
u
m

b
e
r

o
f
lis

ts

Number of voted users

(a) List’s voted users/frequency

 1

 10

 100

 1000

 1 10 100 1000

N
u
m

b
e
r

o
f
u
s
e
rs

Number of voted lists

(b) User’s voted list/frequency

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
u
m

b
e
r

o
f
b
o
o
k
s

Number of readers

(c) Book’s reader/frequency

 1

 10

 100

 1 10 100 1000 10000

N
u
m

b
e
r

o
f
u
s
e
rs

Number of read books

(d) User’s book/frequency

Figure 2: Statistics of Goodreads data w.r.t. lists and users, users and books

well as BPR and Lire . We claim that the reason for this
is that user-generated lists such as book lists on Goodreads
do not have the sequential consumption property normally
assumed by playlist modeling works.

For the two variations of Lire , we can see from Figure 5,
both of them perform better than the other algorithms.
However, Lire -DCG-T is better than Lire -UNIFORM, for
two reasons: (i) Lire -UNIFORM may aggregate more than
the necessary number of items’ preference when modeling a
user’s interest in an item list, and (ii) it ignores the fact that
preference over items positioned higher up in the list may
have a larger impact on the user’s preference for the list. In
addition, because Lire -UNIFORM needs to visit all items
in an item list during training, training of Lire -UNIFORM
is much slower compared with Lire -DCG-T.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

10 20 30 40 50 60 70 80 90 100

A
U

C

Dimensionality of the latent factor

LIRE-DCG-T
LIRE-UNIFORM

BPR
GLB
LME

PPOP
PIF

Figure 5: Quality comparison for various algorithms.

5. RELATED WORK
Latent factor models for recommendation have generated

significant amount of attention due to their famous success
at the Netflix competition [20]. In latent factor models, each
observed rating in a recommender system can be explained
as a dot product between two learned latent factors corre-
sponding to the underlying user and item. Recently, latent
factor models have been extended extensively to incorpo-
rate additional features such as time [19], context [16], and
content features of items [5].

Many existing works on recommender system focus on ex-
plicit rating datasets in which ratings can take values from
a small domain such as 1 to 5. However, for many recom-
mendation scenarios, feedbacks from users take an implicit
form, such as whether a user purchased a product, liked a
feed, clicked on an item, etc. These implicit data settings
create a huge challenging for existing latent factor models,
and researchers have recently proposed various models for
modeling implicit datasets. One notable work in this direc-
tion is BPR [27], in which the authors proposed to solve

the implicit data problem through a general Bayesian rank-
ing model, which can learn users’ preferences over items by
sampling positive and negative/missing entries from the user
rating matrix. Another work which proposes to model im-
plicit dataset through ranking is CLiMF [30], which instead
of optimizing AUC as in BPR, considers Mean Reciprocal
Rank as the optimization criterion. In [24], the authors
argue that reasoning about preferences between individual
items might be too fine a granularity, and propose to lift
item preferences to preferences over sets of items. The fo-
cus of this work is still on item recommendation, and when
aggregating item preferences, the proposed model does not
consider the position of an item, and the defined item sets
are hidden from users thus there is no need to model how
users might view items within a set. Other works on im-
plicit datasets include [12], in which the authors propose a
different way of modeling implicit datasets by weighting the
importance of each observed rating through heuristic func-
tions. In [25], the authors propose a more complex model
which models the relationship between the original implicit
dataset (which can be considered as a bipartite graph be-
tween users and items) and random bipartite graphs which
captures potential items which users have considered before
actually consuming items in the original dataset.

User-generated item lists are similar to playlists as ex-
plored in previous works such as [9] and [7]. An important
observation made by these works is that neighboring items
in a playlist are usually correlated with each other and items
in a playlist usually have to be consumed sequentially. E.g.,
in LME [9], the proposed model assumes that transitions
between neighboring items in a playlist satisfy the Marko-
vian property, i.e., next song in a playlist depend only on
the current song which is playing. Similarly, in [7], the au-
thors consider that each song in a playlist is closely related
to other songs which are played within the same short time
window. An interesting survey of algorithms for modeling
playlists is presented in [8].

The proposed item list recommendation problem is also
related to recent effort on package recommendation [26, 28,
32]. However, most of these works focus on handling hard
constraints specified by users as opposed to learning user’s
preferences over item lists from previous feedback. In [23],
the authors propose a Probability Matrix Factorization-based
approach to model user’s preferences over travel packages,
where each package is composed of a set of places of interest.
The focus of this work is on modeling the cost of a package,
whereas in our work we focus on how item preferences can
be aggregated to model user’s preferences over item lists.

Finally, the way we model interactions between users and
item lists, and also interactions between users and individual
items is closely related to recent efforts on collective matrix

191

factorization [31, 14], which has become a popular way of
modeling scenarios with heterogeneous types of interactions
through sharing latent factors.

6. CONCLUSION
In this paper, we motivated the problem of recommend-

ing user-generated item lists and proposed a novel model
called Lire for this purpose. Existing works in recommender
system usually focus on item recommendation, thus do not
consider how user’s preference over item lists can be decom-
posed into preferences over individual items within the list.
Though playlist recommendation considers item lists in a
specific setting, the proposed model cannot be applied to
other item list settings as studied in this work, due to the
fact that items in these lists do not need to be consumed se-
quentially. In this work, we identify that there exist multiple
challenges on how presentation of an item list in an applica-
tion such as Goodreads might impact a user’s preference over
item lists. And based on our observations from Goodreads
book list dataset, we propose to model users’ preferences
over item lists by aggregating users’ preferences over individ-
ual items of a list, we capture how users perceive an item list
by weighting items within a list based on position, and we
also consider how many items a user might consume before
deciding whether to like this list or not. Through extensive
experiments we demonstrate that our proposed model has
a better performance compared with many existing recom-
mendation algorithms.

There exist multiple directions for future work: first, we
can study how temporal information from the dataset can be
leveraged to help better model a user’s preference over item
lists. E.g., we could check whether liking a list will result
in a subsequent consumption of an item within the same
list. Second, many applications which have user-generated
item lists involve social network. This raises the question
how social influence can be modeled in Lire . Finally, it’s
interesting to ask how contents of lists and items can be
incorporated into Lire through methods such as [5].

7. ACKNOWLEDGEMENT
This work was supported in part by the Institute for Com-

puting, Information and Cognitive Systems (ICICS) at UBC.

8. REFERENCES
[1] https://support.twitter.com/articles/

76460-using-twitter-lists.

[2] https://www.goodreads.com/list.
[3] http://www.amazon.ca/gp/help/customer/display.html?

nodeId=1197914.
[4] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[5] D. Agarwal and B.-C. Chen. Regression-based latent factor
models. In KDD, pages 19–28, 2009.

[6] A. Ahmed, B. Kanagal, S. Pandey, V. Josifovski, L. G.
Pueyo, and J. Yuan. Latent factor models with additive
and hierarchically-smoothed user preferences. In WSDM,
pages 385–394, 2013.

[7] N. Aizenberg, Y. Koren, and O. Somekh. Build your own
music recommender by modeling internet radio streams. In
WWW, pages 1–10, 2012.

[8] G. Bonnin and D. Jannach. Evaluating the quality of
generated playlists based on hand-crafted samples. In
ISMIR, pages 263–268, 2013.

[9] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims.
Playlist prediction via metric embedding. In KDD, pages
714–722, 2012.

[10] S. Chen, J. Xu, and T. Joachims. Multi-space probabilistic
sequence modeling. In KDD, pages 865–873, 2013.

[11] A. Herschtal and B. Raskutti. Optimising area under the
roc curve using gradient descent. In ICML, 2004.

[12] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering
for implicit feedback datasets. In ICDM, pages 263–272,
2008.

[13] S. B. Huffman and M. Hochster. How well does result
relevance predict session satisfaction? In SIGIR, pages
567–574, 2007.

[14] M. Jamali and L. Lakshmanan. Heteromf: recommendation
in heterogeneous information networks using context
dependent factor models. In WWW, pages 643–654, 2013.

[15] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[16] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: N-dimensional tensor
factorization for context-aware collaborative filtering. In
RecSys, pages 79–86, 2010.

[17] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In KDD, pages
426–434, 2008.

[18] Y. Koren. The bellkor solution to the netflix grand prize,
2009.

[19] Y. Koren. Collaborative filtering with temporal dynamics.
In KDD, pages 447–456, 2009.

[20] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer,
42(8):30–37, 2009.

[21] P. Lamere and S. Green. Project aura: recommendation for
the rest of us. In Sun JavaOne Conference, 2008.

[22] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[23] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong. Personalized
travel package recommendation. In ICDM, 2011.

[24] W. Pan and L. Chen. Cofiset: Collaborative filtering via
learning pairwise preferences over item-sets. In SDM, pages
180–188, 2013.

[25] U. Paquet and N. Koenigstein. One-class collaborative
filtering with random graphs. In WWW, pages 999–1008,
2013.

[26] A. G. Parameswaran and H. Garcia-Molina.
Recommendations with prerequisites. In RecSys, pages
353–356, 2009.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized ranking
from implicit feedback. In UAI, pages 452–461, 2009.

[28] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu.
Constructing and exploring composite items. In SIGMOD,
pages 843–854, 2010.

[29] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW, pages 285–295, 2001.

[30] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver,
and A. Hanjalic. Climf: learning to maximize reciprocal
rank with collaborative less-is-more filtering. In RecSys,
pages 139–146, 2012.

[31] A. P. Singh and G. J. Gordon. Relational learning via
collective matrix factorization. In KDD, pages 650–658,
2008.

[32] M. Xie, L. V. Lakshmanan, and P. T. Wood. Breaking out
of the box of recommendations: From items to packages. In
RecSys, pages 151–158. ACM, 2010.

192

