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ABSTRACT
Social media provides valuable resources to analyze user behaviors
and capture user preferences. This paper focuses on analyzing us-
er behaviors in social media systems and designing a latent class
statistical mixture model, named temporal context-aware mixture
model (TCAM), to account for the intentions and preferences be-
hind user behaviors. Based on the observation that the behaviors of
a user in social media systems are generally influenced by intrinsic
interest as well as the temporal context (e.g., the public’s attention
at that time), TCAM simultaneously models the topics related to
users’ intrinsic interests and the topics related to temporal context
and then combines the influences from the two factors to model us-
er behaviors in a unified way. To further improve the performance
of TCAM, an item-weighting scheme is proposed to enable TCAM
to favor items that better represent topics related to user interests
and topics related to temporal context, respectively. Based on T-
CAM, we design an efficient query processing technique to support
fast online recommendation for large social media data. Extensive
experiments have been conducted to evaluate the performance of T-
CAM on four real-world datasets crawled from different social me-
dia sites. The experimental results demonstrate the superiority of
the TCAM models, compared with the state-of-the-art competitor
methods, by modeling user behaviors more precisely and making
more effective and efficient recommendations.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering;
H.2.8 [Database Applications]: Data mining

Keywords
User Behavior Modeling; Temporal Recommender system; Proba-
bilistic generative model; Social Media Mining

1. INTRODUCTION
With the rising popularity of social media, a better understand-

ing of users’ rating behaviors1 is of great importance for the design

1We use the term “rating behavior” to denote general user actions
on items in social media systems, such as rating and viewing.
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of many applications, such as personalized recommendation, infor-
mation filtering, behavioral targeting and computational advertis-
ing. Research efforts [21, 24] have been undertaken to model user-
s’ interests to help them find interesting items by analyzing their
historical behaviors. However, existing work [21, 24, 27] simply
assumes that users prefer items based on their intrinsic interests,
which may not be accurate in many social application scenarios.
For example, when choosing a book to read or a movie to watch,
the users are likely to prefer books/movies that interest them. In
contrast, when selecting news to read or users to follow in a social
network (e.g., Twitter), it is most likely that users will be attracted
respectively by breaking news or famous users who are followed by
the general public [30, 18, 5]. Therefore, users’ rating behaviors on
items may not necessarily indicate users’ intrinsic interests. New
models are desired to better account for user behaviors in social
medias to learn user preferences more precisely.

After investigating multiple social media systems, we observe
that user rating behaviors are generally influenced by two factors:
the intrinsic interest of the user and the attention of the general
public. While the user’s intrinsic interest is relatively stable, the
attention of the general public changes from time to time; for ex-
ample, the hot topics on a microblogging site evolve over time.
Hence, in our work, we refer to the attention of the public during a
particular time period as temporal context.

The two factors have different degrees of influence on user rating
behaviors for different types of social media platforms as a result
of the different characteristics (e.g., life cycles and updating rates)
of various types of social media items. For instance, news is a
type of time-sensitive item with a short life cycle − few people
want to read outdated news; while the life cycle of movies is rela-
tively longer, with many classic old movies being highly ranked in
the popularity list. For time-sensitive social media items, users are
more easily influenced by the temporal context, whereas they tend
to make decisions based on their intrinsic interests when choosing
less time-sensitive items such as books and movies.

To model user rating behaviors in social media systems, there-
fore, it is critical to identify users’ intrinsic interests as well as the
temporal context (i.e., the attention of the general public during a
particular time period). Moreover, it is essential to model the influ-
ence degrees of the two factors in different social media systems.

To this end, we propose a temporal context-aware mixture mod-
el (TCAM) to mimic user rating behaviors in a process of decision
making. As shown in Figure 1, TCAM is a latent class statistical
mixture model that simultaneously models the topics [13, 3] related
to users’ intrinsic interests and the topics related to temporal con-
text, and then combines the influences from the user interest and
the temporal context to model user behaviors in a unified manner.
Specifically, the model discovers (1) users’ personal interest distri-
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Figure 1: An Example of TCAM Model

bution over a set of latent topics; (2) the temporal context distribu-
tion over a set of latent topics; (3) an item generative distribution
for each latent topic; and (4) the mixing weights that represent the
influence probabilities of users’ personal interest and the temporal
context. It is worth mentioning that the set of latent topics used to
model user interest is different from the topics used to model the
temporal context. The former are called user-oriented topics and
the latter are referred to as time-oriented topics.

The generative process of user rating behaviors in TCAM is
briefly illustrated as follows. Suppose a user u selects an item v
in a time interval t. TCAM first tosses a coin, based on the influ-
ence probabilities of the two factors, to decide whether this behav-
ior results from the influence of the user’s personal interest or the
influence of the temporal context. If it results from the influence of
the user’s personal interest, TCAM chooses a user-oriented topic
for u based on the user’s intrinsic interest (with a certain proba-
bility). The selected topic in turn generates an item v following
on from the topic’s item generative distribution. Otherwise, if the
influence from the temporal context is sampled, TCAM chooses a
time-oriented topic according to the general public’s interest during
t, which in turn generates an item v.

Similar to traditional topic models where popular words in a doc-
ument corpus are usually ranked high in each topic [5, 4], popular
social media items tend to be estimated as having high generation
probability by TCAM, which impairs the quality of the discovered
user-oriented topics and time-oriented topics. User-oriented topics
are supposed to capture user intrinsic interests, but a popular item
favored by many users conveys less information about a user’s in-
trinsic interest than an item favored by few users (i.e., a salient
item) [32]. Similarly, a popular item constantly favored by users
cannot well represent a time-oriented topic because the public’s at-
tentions change over time. Hence, to improve the performance of
TCAM, we devise an item-weighting scheme to promote the impor-
tance of salient items and bursty items, which enhances the quality
of the underlying topics detected by TCAM.

To demonstrate the applicability of our proposed TCAM model,
we investigate how TCAM can be deployed to facilitate temporal
recommendation in social media systems, i.e., making recommen-
dations based on not only user interests but also temporal context.
To speed up the process of online recommendation for large so-
cial media data, we design an efficient query-processing technique
by extending the Threshold Algorithm (TA) [10]. Briefly, we pre-
compute K sorted lists of items according to the K latent topics
learned by TCAM. In each list, items are sorted based on their gen-
erative probabilities with respect to the corresponding topic. At
query time, we access items from the K sorted lists and compute
top-k items by extending the TA algorithm. The algorithm has

the nice property of terminating early without scanning all items.
Specifically, it terminates when the ranking score of the k-th item
in the result list is higher than the threshold score. This TA-based
scheme allows us to efficiently return the top-k recommendations
by examining the minimum number of items.

The main contributions of our work are summarized as follows.

• We design a novel temporal context-aware mixture model (T-
CAM) to model user rating behaviors in social media sys-
tems which considers the influences of both user interest and
temporal context in item selection process.

• We distinguish between user-oriented topics and time-oriented
topics, which enables the precise identification of user per-
sonal interest and the temporal context.

• We propose an item-weighting scheme to enhance the per-
formance of TCAM by exploiting the frequency distribution
and temporal distribution of social items.

• To enhance the performance of TCAM in temporal recom-
mendation for large social media data, we design an efficient
query-processing technique.

• We conduct extensive experiments to evaluate the perfor-
mance of the proposed models based on four sets of real-life
data from different social media systems. The experimental
results demonstrate the superiority of TCAM over existing
approaches.

The remainder of the paper is organized as follows. Section 2
reviews the existing work related to our research. Section 3 detail-
s the temporal context-aware mixture model (TCAM). We deploy
TCAM model to facilitate temporal recommendation in Section 4.
We carry out extensive experiments and report the experimental re-
sults in Section 5 and conclude the paper in Section 6.

2. RELATED WORK
In this section, we review related research from the following t-

wo areas: topic modeling and temporal recommendation techniques.
Topic Model. Topic models provide a useful means to discover

topic structures from large document collections. While traditional
topic models, such as LDA [3] and PLSA [13], do not address the
temporal information in a document corpus, a number of temporal
topic models have been proposed to consider topic evolution over
time. Mei and Zhai [20, 26] studied mining evolutionary topics
from texts by comparing topics modeled in consecutive time inter-
vals. Wang and McCallum [25] designed the TOT model that treats
time stamps of documents as an observed continuous variable gen-
erated by topics. This model is designed to capture temporal fea-
tures with beta distribution, confining each topic into a narrow time
distribution. Some other models, such as Dynamic Topic Model
(DTM) [2], MAP-PLSA [12] and Online LDA [1], are also pro-
posed to study topic changes over time.

The TimeUserLDA model proposed by Diao et al. [9] is de-
signed for finding bursty topics from microblogs. Although this
model assumes that user posting behaviors are influenced by both
user interest and global topic trends, there is only one shared set
of underlying topics in TimeUserLDA, i.e., there is no distinction
between underlying user-oriented topics and time-oriented topics.
Thus, the topics detected by their models look confusing and noisy
since they conflate both user interest and temporal context. To im-
prove the topic discovery process, Yin et al. [33] recently proposed
a unified model to detect both stable and temporal topics simulta-
neously from social media data.

Recently, topic models have been applied to collaborative fil-
tering. X. Jin et al. [14] proposed an approach based on LDA to
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discover the hidden semantic relationships among items for recom-
mendation. In [6], a hard-constraint-based LDA method was used
to deal with user-community data, in which each user is viewed as
a document and the communities that this user joins are viewed as
words in the document. In contrast, Y. Kang et al. [15] proposed
a soft-constraint-based LDA method for community recommenda-
tions. We refer to these topic model-based CF methods as “tra-
ditional” recommendation techniques which simply assume that
items rated by users represent their intrinsic interests and ignore the
influence from other factors. Recently, Yin et al. [34] proposed a
location-content-aware topic model to produce location-based rec-
ommendation. Xu et al. [30] and Mao et al. [31] assumed that user
behaviors are influenced by both user interests and the behaviors
of their social friends, and proposed mixture latent topic models to
capture these factors. Again, these models make use of one set of
shared topics to model two factors. The estimated topics are con-
fusing and difficult to interpret, which causes the recommendation
results to degenerate. Moreover, these models do not exploit the
temporal information.

Temporal Recommendation. Many successful temporal col-
laborative filtering methods are based on latent factor models. For
example, the Netflix award winning algorithm timeSVD++ [16] as-
sumes that the latent features consist of components that evolve
over time and a dedicated bias for each user at each specific time
point. This model can effectively capture local changes to user
preferences which the authors claim to be vital for improving per-
formance. Xiong et al. proposed a Bayesian probabilistic tensor
factorization model (BPTF) in [29]. BPTF represents users, items
and time in a shared low-dimensional space, and predicts the rat-
ing score that a user u will assign to item v at time t using the
inner product of their latent representations. Demonstrated by the
experimental results on Netflix data, both BPTF and timeSVD++
perform well on the rating prediction task because they incorpo-
rate time effects into models. One main disadvantage with these
models is that the learnt latent low-dimensional space is difficult
to interpret. Recently, Liu et al. [19] addressed a new problem -
online evolutionary collaborative filtering, which tracks user inter-
ests over time for the purpose of making timely recommendations.
They extended the widely used neighborhood based algorithms by
incorporating temporal information and developed an incremental
algorithm for updating neighborhood similarities with new data.
However, most of the existing temporal recommendation model-
s [16, 29, 19] are designed for the task of rating prediction rather
than top-k recommendation.

3. USER RATING BEHAVIOR MODELING
In this section, we first introduce relevant definitions and nota-

tions used throughout this paper. We then present the novel tempo-
ral context-aware mixture model for modeling user rating behaviors
in social media systems.

3.1 Notations and Definitions
The notations used in this paper are summarized in Table 1.

Definition 1. (User Rating) A user rating is a triple (u, t, v)
that denotes a rating behavior (e.g., purchasing, clicking and tag-
ging) made by user u on item v during time interval t.

Definition 2. (User Document) Given a user u, the user docu-
ment, Du, is a set of pairs {(v, t)} representing the rating behav-
iors on items during different time intervals made by u.

Definition 3. (Rating Cuboid) A rating cuboid C is an N×T×
V cuboid, where N is the number of users, T is the number of time
intervals and V is the number of items. A cell indexed by (u, t, v)

stores the rating score that user u assigned to item v during time
interval t.

User actions on items, such as tagging, downloading, purchasing
and clicking, can be represented as a user rating. Either explicit
feedback or implicit feedback can be used to compute the value of
rating score. For example, given a user u who frequently uses a
tag v during time interval t, the usage frequency can be used as the
rating score to reflect the user’s preference on the tag during that
time period.

Definition 4. (Topic) Given a collection of items I = {vi}Vi=1,
a topic z is represented by a topic model φz , which is a multinomial
distribution over items φz = {P (vi|φz) or φzvi}Vi=1.

To illustrate the semantic meaning of a topic, we choose top-k
items that have the highest probability under the topic, as shown
in Figure 2. In our work, we distinguish between user-oriented
topics φz and time-oriented topics φ′

x although both of them are
represented by a multinomial distribution over items. User-oriented
topics are used to model user interest, which is assumed to be gen-
erally stable over time. In contrast, time-oriented topics are used
to model the temporal context (i.e., the public’s attention during a
particular time), which has a clear temporal feature. For example,
the popularity of the topics may increase or decrease over time and
reach a peak during a certain period of time, as shown in Figure 2.

Definition 5. (User Interest) Given a user u, her/his intrinsic
interest, denoted as θu, is a multinomial distribution over user-
oriented topics.

Definition 6. (Temporal Context) Given a time interval t, the
temporal context during t, denoted as θ′

t, is a multinomial distribu-
tion over time-oriented topics or items.

SYMBOL DESCRIPTION

u, t, v user u, time interval t, item v
N, T, V number of users, time intervals, and items

Mu number of items rated by user u
λu the mixing weight specific to user u
K1 number of user-oriented topics

θuz
probability that user-oriented topic z

is chosen by user u

θu
intrinsic interest of user u

denoted by θu = {θuz}K1
z=1

φz
item proportions of user-oriented topic z,

denoted by φz = {φzv}Vv=1

φzv
probability that item v is

generated by user-oriented topic z
K2 number of time-oriented topics

θ′
t

the temporal context during time interval t

denoted by θ′
t = {θ′tx}K2

x=1

θ′tx
probability that time-oriented topic x

is generated by time interval t

φ′
x

item proportions of time-oriented topic x,

denoted by φ′
x = {φ′

xv}Vv=1

φ′
xv

probability that item v is
generated by time-oriented topic x

Table 1: Notations used in this model

3.2 Temporal Context-Aware Mixture Model
Given a rating cuboid C which stores users’ rating histories, we

aim to model user rating behaviors by exploiting the information
captured in C. Before presenting the devised model, we first de-
scribe an example to illustrate the motivation of our design.

As mentioned before, users’ rating behaviors in social media
systems are influenced by not only intrinsic interest but also the
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Figure 2: An Example of Two Types of Topics in Delicious

temporal context. It is crucial to distinguish between user-oriented
topics and time-oriented topics, because the two have very differ-
ent characteristics. For example, Figure 2 shows an example of a
user-oriented topic and a time-oriented topic detected by TCAM
model from Delicious. For demonstration, we present only the top
eight tags that have the highest probability under each topic. We
can easily tell the difference between the two topics from both their
temporal distributions and the content descriptions. For the time-
oriented topic, the items (i.e., tags) are related to a certain event
(e.g.,“Boston Marathon bombings”). The popularity of the topic
experiences a sharp increase during a particular time interval (e.g.,
in April 2013). For the user-oriented topic, the items are about the
user’s regular interest (e.g., “Pet Adoption”). The temporal distri-
bution of the topic does not show any spike-like fluctuation. Hence,
our TCAM models the user-oriented topics and the time-oriented
topics simultaneously.

To consider the influence of the user intrinsic interest and the
temporal context in a unified manner, TCAM computes the likeli-
hood that a user u will rate an item v during a time interval t as
follows.

P (v|u, t,Ψ) = λuP (v|θu) + (1− λu)P (v|θ′
t) (1)

where Ψ denotes the model parameter set, P (v|θu) is the proba-
bility that item v is generated from u’s intrinsic interest, denoted
as θu, and P (v|θ′

t) denotes the probability that item v is generat-
ed from the temporal context during time interval t, i.e., θ′

t. The
parameter λu is the mixing weight which represents the influence
probability of the user interest. That is, user u is influenced by
personal interest θu with probability λu, and is influenced by the
temporal context θ′

t with probability 1 − λu, for decision mak-
ing. It is worth mentioning that TCAM holds personalized mixing
weights for individual users, considering the differences between
users in personalities (e.g., openness and agreeableness).

The user interest component θu is modeled by a multinomial dis-
tribution over user-oriented topics, and each item is generated from
a user-oriented topic z. Thus, P (v|θu) is computed as follows.

P (v|θu) =
K1∑
z=1

P (v|φz)P (z|θu) (2)

As for the temporal context component θ′
t, we design two alter-

native methods to model it, which leads to two variations of TCAM:
Item-based TCAM (ITCAM) and Topic-based TCAM (TTCAM).
For the former, we model each temporal context θ′

t as a time-
oriented topic which is a multinomial distribution over all item-
s during time interval t. For the latter, we model each temporal

�

�

� �

����
����

Figure 3: The Graphical Representation of ITCAM

context θ′
t as a multinomial distribution over latent time-oriented

topics. As a running example in Figure 1, the user is influenced
by personal interest and the temporal context with probabilities
0.64 and 0.36, respectively. Four user-oriented topics and three
time-oriented topics are also shown respectively, where the weight-
s representing the user’s interest distribution over the user-oriented
topics as well as the temporal context distribution over the time-
oriented topics are labeled in the corresponding edges. We can see
that user-oriented topic U1 dominates the user’s interest, and time-
oriented topic T1 attracts most attentions from the general public
at time t. The probabilities of topic generating items are also la-
beled in the corresponding edges. For example, the weight b on the
edge linking topic U1 and item v2 represents the probability of U1
generating item v2.

Below, we will describe the details of the two variations of T-
CAM model and compare their performance in Section 5.

3.2.1 Item-based TCAM
Figure 3 illustrates the generative process of ITCAM with a graph

model. The structure of ITCAM is similar to the PLSA model, but
ITCAM has additional machinery to handle the mixing weight λu.
In particular, a latent random variable s, associated with each item,
is adopted as a switch to determine whether the item is generat-
ed according to the temporal context θ′

t or the user’s interest θu.
s is sampled from a user-specific Bernoulli distribution with the
mean λu. N indicates the number of users; K1 is the number of
user-oriented topics; T is the number of time intervals and Mu is
the number of items rated by u. Figure 3 shows that each temporal
context θ′

t is modeled as a multinomial distribution over items. The
generative process of ITCAM is summarized as follows.

For each item v rated by u during time interval t:

1. Sample s from Bernoulli(λu)

2. If s = 1

(a) Sample topic z from Multinomial(θu)

(b) Sample item v from Multinomial(φz)

3. Else

(a) Sample item v from Multinomial(θ′
t)

Model Inference. Given a rating cuboid C, the learning proce-
dure of our model is to estimate the unknown model parameter set
Ψ = {θ, φ, θ′, λ}. The log likelihood is derived as follows:

L(Ψ|C) =
N∑

u=1

T∑
t=1

V∑
v=1

C[u, t, v] logP (v|u, t,Ψ) (3)

where P (v|u, t,Ψ) is defined in Equation (1).

1546



The goal of parameter estimation is to maximize the log likeli-
hood in Equation (3). As this equation cannot be solved directly
by applying Maximum Likelihood Estimation (MLE), we apply an
EM approach instead. In an expectation (E) step of the EM ap-

proach, we introduce P (s|u, t, v; Ψ̂) which is the posterior proba-
bility of choosing personal interest θu (i.e., s = 1) or temporal con-
text θ′

t (i.e., s = 0) respectively given user rating behavior (u, t, v)

and the current estimations of the parameters Ψ̂. In a maximiza-
tion (M) step, parameters are updated by maximizing the expected

complete data log-likelihood Q(Ψ|Ψ̂) based on the posterior prob-
ability computed in the E-step.

In the E-step, P (s|u, t, v; Ψ̂) is updated according to Bayes for-
mulas as follows,

P (s|u, t, v; Ψ̂) =
sλuP (v|θu) + (1− s)(1− λu)P (v|θ′

t)

λuP (v|θu) + (1− λu)P (v|θt′)
(4)

where P (v|θu) is defined as in Equation (2). To obtain the updat-
ed parameters P (z|θu) and P (v|φz), another posterior probability

P (z|s = 1, u, t, v; Ψ̂) is computed as follows:

P (z|s = 1, u, t, v; Ψ̂) =
P (v|φz)P (z|θu)∑K1

z′=1
P (v|φz′ )P (z′|θu)

(5)

Based on P (z|s = 1, u, t, v; Ψ̂) and P (s = 1|u, t, v; Ψ̂), we

introduce the notation P (z|u, t, v; Ψ̂) as follows,

P (z|u, t, v; Ψ̂) = P (z|s = 1, u, t, v; Ψ̂)P (s = 1|u, t, v; Ψ̂) (6)

With simple derivations [13], we can obtain the expectation of
complete data log-likelihood for ITCAM:

Q(Ψ|Ψ̂) =
N∑

u=1

V∑
v=1

T∑
t=1

C[u, t, v]{P (s = 1|u, t, v; Ψ̂)

K1∑
z=1

P (z|s = 1, u, t, v; Ψ̂) log[λuP (v|φz)P (z|θu)]

+ P (s = 0|u, t, v; Ψ̂) log [(1− λu)P (v|θ′
t)]}

(7)

In the M-step, we find the estimation Ψ that maximizes the ex-

pectation of the complete data log-likelihood Q(Ψ|Ψ̂) with the

constraints
∑V

v=1 P (v|φz) = 1,
∑V

v=1 P (v|θ′
t) = 1 and

∑K1
z=1

P (z|θu) = 1 using the following updating formulas.

P (z|θu) =
∑V

v=1

∑T
t=1 C[u, t, v]P (z|u, t, v; Ψ̂)∑K1

z′=1

∑V
v=1

∑T
t=1 C[u, t, v]P (z′|u, t, v; Ψ̂)

(8)

P (v|φz) =

∑T
t=1

∑N
u=1 C[u, t, v]P (z|u, t, v; Ψ̂)∑V

v′=1

∑T
t=1

∑N
u=1 C[u, t, v′]P (z|u, t, v′; Ψ̂)

(9)

P (v|θ′
t) =

∑N
u=1 C[u, t, v]P (s = 0|u, t, v; Ψ̂)∑V

v′=1

∑N
u=1 C[u, t, v′]P (s = 0|u, t, v′; Ψ̂)

(10)

With an initial random guess of Ψ , we alternately apply the E-
step and M-step until a termination condition is met. To adapt to
different users, we estimate the parameter λu in M-step, instead of
picking a fixed λ value for all users. This personalized treatment
can automatically adapt the model parameter estimation to various
users. Specifically, λu is estimated as follows.

λu =

∑T
t=1

∑V
v=1 C[u, t, v]P (s = 1|u, t, v; Ψ̂)∑T

t=1

∑V
v=1

∑1
s=0 C[u, t, v]P (s|u, t, v; Ψ̂)

(11)

� �
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Figure 4: The Graphical Representation of TTCAM

3.2.2 Topic-based TCAM
Figure 4 illustrates the generative process of TTCAM with a

graph model. In particular, the temporal context θ′
t is modeled as a

multinomial distribution over a set of time-oriented topics instead
of a set of items. Thus, the computation of P (v|θ′

t) is reformulated
as in Equation (12).

P (v|θ′
t) =

K2∑
x=1

P (v|φ′
x)P (x|θ′

t) (12)

The generative process is summarized as follows. For each item
v rated by u during time interval t:

1. Sample s from Bernoulli(λu)

2. If s = 1

(a) Sample topic z from Multinomial(θu)

(b) Sample item v from Multinomial(φz)

3. Else

(a) Sample topic x from Multinomial(θ′
t)

(b) Sample item v from Multinomial(φ′
x)

Model Inference. To estimate model parameters in TTCAM, we
apply an EM approach similarly.

In the E-step, similar to the parameter estimation in ITCAM,

P (s|u, t, v; Ψ̂) and P (z|s = 1, u, t, v; Ψ̂) are updated according
to Equations (4, 5) where P (v|θ′

t) is defined as in Equation (12)
and P (v|θu) is defined as in Equation (2). To obtain the updat-
ed parameters P (x|θ′

t) and P (v|φ′
x), we introduce the posterior

probability P (x|s = 0, u, t, v; Ψ̂), defined as follows:

P (x|s = 0, u, t, v; Ψ̂) =
P (v|φ′

x)P (x|θ′
t)∑K2

x′=1
P (v|φ′

x′ )P (x′|θ′
t)

(13)

Based on P (x|s = 0, u, t, v; Ψ̂) and P (s = 0|u, t, v; Ψ̂), we in-

troduce the notation P (x|u, t, v; Ψ̂) as follows.

P (x|u, t, v; Ψ̂) = P (x|s = 0, u, t, v; Ψ̂)P (s = 0|u, t, v; Ψ̂) (14)

In the M-step, the model parameters P (z|θu), P (v|φz), and
λu are estimated according to Equations (8, 9, 11). P (x|θ′

t) and
P (v|φ′

x) are inferred using the following formulas.

P (x|θ′
t) =

∑V
v=1

∑N
u=1 C[u, t, v]P (x|u, t, v; Ψ̂)∑K2

x′=1

∑V
v=1

∑N
u=1 C[u, t, v]P (x′|u, t, v; Ψ̂)

(15)

P (v|φ′
x) =

∑T
t=1

∑N
u=1 C[u, t, v]P (x|u, t, v; Ψ̂)∑V

v′=1

∑T
t=1

∑N
u=1 C[u, t, v′]P (x|u, t, v′; Ψ̂)

(16)
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3.2.3 Discussion about Parameter setting
In our model, we still have four hyper-parameters to tune manu-

ally, including the number of user-oriented topics K1, the number
of time-oriented topics K2, the number of time intervals T and the
number of EM iterations. K1 and K2 are the desired numbers of
user-oriented topics and time-oriented topics respectively, which
need to be tuned empirically. T is the number of time intervals
used in our model for generating time-oriented topics, which pro-
vides users with the flexibility to adjust the granularity/length of
time interval. The larger T is, the more fine-grained time inter-
vals are. Regarding the number of EM iterations, we observe that
convergence can be achieved in a few iterations (e.g., 50) because
the model inference procedure using the EM approach is fast. It
is worth mentioning that EM algorithms can be easily expressed in
MapReduce [8, 28], so the inference procedure of TCAM can be
naturally decomposed for parallel processing, which is scalable to
large-scale datasets.

3.3 Enhancement of TCAM
In this section, we first introduce the challenge, arising from

popular items, encountered by TCAM, and then propose an item
weighting scheme to improve our proposed models.

Similar to traditional topic models, both ITCAM and TTCAM
assume that all items are equally important in computing generation
probabilities. As a result, popular items with more ratings tend to
be estimated with high generation probability and ranked in top
positions in each topic, which impairs the quality of both the user-
oriented topics and the time-oriented topics.

For user-oriented topics, popular items are not good indicators
of user intrinsic interests. A popular item rated by many users con-
veys less information about a user’s interest than an item rated by
few users. For time-oriented topics, it is expected that items repre-
senting the public’s attention at a given time should be ranked high,
such as items with bursty temporal distributions, since bursts of
items are generally triggered by breaking news or events that attract
the public’s attention. Unfortunately, bursty items are most likely
to be overwhelmed by long-standing popular items. Figure 5 shows
the temporal frequency of the top six tags of a sample time-oriented
topic discovered from Delicious. It can be observed that the topic
concerns swine flu. The temporal distributions of three bursty tags,
“flu”, “mexico” and “swineflu”, experience sharp spikes. Although
the trends of the three tags do not always synchronize, they each go
through a drastic increase and reach a peak in July 2009. The bursts
in these curves are triggered by a real-world event, i.e., the swine
flu outbreak in Mexico. The other three tags, “news”, “health” and
“death”, maintain high frequency throughout the year. However,
they convey little information about the event. Although they are
relevant to the event, they are related to many other topics as well.
Hence, it is desirable to rank bursty items higher than popular item
when representing time-oriented topics.

To address the challenge posed by the popular items, we pro-
pose an item-weighting scheme to reduce the importance of popu-
lar items while promoting weights for salient (i.e., infrequent) and
bursty items in computing generation probability. From the view-
point of information theory [7], the entropy of an item v is defined
as follows:

E(v) = −
∑
u

P (u|v) logP (u|v)

Suppose that the item v is preferred by users with equal probability
P (u|v) = 1

N(v)
, the maximum entropy is,

E(v) = logN(v)
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Figure 5: An Example of Bursty Tags and Popular Tags.

Generally, the entropy of an item tends to be proportional to its
frequency/popularity N(v). Hence, in the following analysis, we
use the maximum entropy to approximate the exact entropy to sim-
plify the calculation.

To allow salient items to be ranked higher in user-oriented topics,
the weights of items should be inversely proportional to the entropy,
as discussed above. Hence, we propose a concept called inverse
user frequency to measure the ability of items to represent salient
information. Let N be the total number of users in the entire data
set; the inverse user frequency for the item v is defined as follows:

iuf(v) = logN − logN(v) = log
N

N(v)
(17)

which is similar to the inverse document frequency for a term in
text mining.

To take into account the bursty information of items, we pro-
pose to compute the bursty degree of an item v using the following
equation:

B(v, t) =
Nt(v)

Nt

N

N(v)
(18)

where Nt(v) represents the popularity of item v during time inter-
val t, i.e., the number of users who rate item v during time interval
t, Nt is the number of active users during time interval t, N(v) is
the overall popularity of v across all time intervals, and N is the
total number of users in the data set.

Combining the inverse user frequency and the bursty degree of
items, we assign weight to the item v as follows.

w(v, t) = iuf(v)×B(v, t) (19)

Integrating the weights of items defined in Equation (19), we ob-
tain the weighted user-time-item cuboid C̄ from the original C as
follows:

C̄[u, t, v] = C[u, t, v]w(v, t) (20)

which can be used in both variations of the TCAM model.

4. TEMPORAL RECOMMENDATION
The conventional top-k recommendation task can be stated as

follows: given a user, the recommender system should recommend
a small number, say k, of items from all the available items. Note
that the conventional top-k recommendation task does not consider
the temporal information. However, in reality, user rating behav-
iors, influenced by both user interests and the temporal context,
are dynamic. For example, user u rating item v in time interval
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t does not mean that u still favors v in time interval t + 1. Be-
sides, each item has its own lifespan, especially for time-sensitive
items such as news. It is undesirable to recommend outdated news.
Hence, an ideal recommender system is expected to have the ability
to recommend the right item v to user u in the right time interval
t, rather than in other time intervals. In this paper, we propose the
task of temporal top-k recommendation as follows: given a query
q = (u, t), i.e., a querying user u with a time interval t, the recom-
mender model recommends k items which match u’s interests and
the temporal context at t.

Below, we will present how to deploy TCAM to facilitate tem-
poral recommendations.

4.1 Computation of Ranking Score
Once we have inferred model parameters of TCAM, such as us-

er interest θ, temporal context θ′, user-oriented topics φ, time-
oriented topics φ′ and mixing weights λ, given a query q = (u, t),
a ranking score S(u, t, v) for each item v can be computed accord-
ing to Equation (22), and then the top-k items with highest rank-
ing score will be returned. Specifically, when receiving a query
q = (u, t), a new multinomial distribution for the query, ϑq , is
first constructed by combining θu and θ′

t. More specifically, we
expand the user interest and temporal context spaces to be of the
same dimension. For example, if there are K1 user-oriented topics
and K2 time-oriented topics, the expanded topic space will have
K = K1 + K2 topics. The expanded user interest distribution

is defined as θ̃u =< θu, 0, · · · , 0 >, where we set 0 on the time-
oriented topics. Similarly, we define the expanded temporal context

distribution to be θ̃′
t =< 0, · · · , 0,θ′

t >. The new distribution is

defined as ϑq = λuθ̃u +(1−λu)θ̃
′
t. Correspondingly, we renum-

ber the time-oriented topic x and change its range from [1, · · · ,K2]
to [K1+1, · · · ,K]. Then, we use ϕz̃v to denote the weight of item
v on dimension z̃ that corresponds to user-oriented topic z or time-
oriented topic x, which depends on the value of z̃, as shown in
Equation (21).

ϕz̃v =

⎧⎨
⎩

φzv z̃ ≤ K1

φ′
xv z̃ > K1

(21)

S(u, t, v) =
K∑

z̃=1

ϑqz̃ϕz̃v (22)

4.2 Fast Top-k Recommendation
The straightforward method of generating the top-k items need-

s to compute the ranking scores for all items according to Equa-
tion (22), which is computationally inefficient, especially when the
number of items becomes large. To speed up the online process of
producing recommendations, we extend the Threshold-based Al-
gorithm (TA) [10], which is capable of finding the top-k results by
examining the minimum number of items.

We first pre-compute ordered lists of items, where each list corre-
sponds to a latent topic learned by TCAM model. For example, giv-
en K topics (K1 user-oriented topics plus K2 time-oriented topic-
s), we will compute K lists of sorted items, Lz̃ , z̃ ∈ {1, 2, ...,K},
where items in each list Lz̃ are sorted according to ϕz̃v as defined
in Equation (21). Given a query q = (u, t), we run Algorithm 1
to compute the top-k items from the K sorted lists and return them
in the priority list L. As shown in Algorithm 1, we first maintain
a priority list PL for the K lists where the priority of a list Lz̃ is
the ranking score (i.e., S(u, t, v)) of the first item v in Lz̃ (Lines
2-6). In each iteration, we select the most promising item (i.e., the
first item) from the list that has the highest priority in PL and add
it to the result list L (Lines 9-16). When the size of L is no less

Algorithm 1: Threshold-based algorithm

Input: A query q = (u, t); inferred model parameters θu, θ′

t
and

λu; ranked lists (L1, ..., LK);
Output: List L with all the k highest ranked items;

1 Initialize priority lists PQ, L and the threshold score STa;
2 for z̃ = 1 to K do
3 v = Lz̃ .getfirst();
4 Compute S(u, t, v) according to Equation (23);
5 PQ.insert(z̃, S(u, t, v));
6 end
7 Compute STa according to Equation (24);
8 while true do
9 nextListToCheck = PQ.getfirst();

10 PQ.removefirst();
11 v = LnextListToCheck.getfirst();
12 LnextListToCheck.removefirst();
13 if v /∈ L then
14 if L.size() < k then
15 L.insert(v, S(u, t, v));
16 end
17 else
18 v′ = L.get(k);
19 if S(u, t, v′) > STa then
20 break;
21 end
22 if S(u, t, v′) < S(u, t, v) then
23 L.remove(k);
24 L.insert(v, S(u, t, v));
25 end
26 end
27 end
28 if LnextListToCheck.hasMore() then
29 v = LnextListToCheck.getfirst();
30 Compute S(u, t, v) according to Equation (23);
31 PQ.insert(nextListToCheck, S(u, t, v));
32 Compute STa according to Equation (24);

33 end
34 else
35 break;
36 end
37 end

than k, we will examine the k-th item in the result list L. If the
ranking score of the k-th item is higher than the threshold score
(i.e., STa), the algorithm terminates early without checking any
subsequent items (Lines 18-21). Otherwise, the k-th item v′ in L
is replaced by the current item v if v’s ranking score is higher than
that of v′ (Lines 22-25). In the end of each iteration, we update the
priority of current list as well as the threshold score (lines 28-33).

Equation (23) illustrates the computation of the threshold score,
which is obtained by aggregating the maximum ϕz̃v represented by
the first item in each list Lz̃ (i.e., maxv∈Lz̃

ϕz̃v). Consequently, it
is the maximum possible ranking score that can be achieved by
remaining unexamined items. Hence, if the ranking score of the
k-th item in the result list L is higher than the threshold score, L
can be returned immediately because no remaining item will have
a higher ranking score than the k-th item.

STa =

K∑
z̃=1

ϑqz̃ max
v∈Lz̃

ϕz̃v (23)

5. EXPERIMENTS
In this section, we experimentally evaluate the performance of

our proposed TCAM models.

5.1 Data Sets
Our experiments are conducted on four real data sets: Digg,

MovieLens, Douban Movie and Delicious. The basic statistics of
the four data sets are shown in Table 2.

• Digg: Digg is a popular social news aggregator, which al-
lows users to vote news stories up or down, called digging or
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Digg MovieLens

# of users 139,409 71,567
# of items 3,553 10,681

# of ratings 3,018,197 10,000,054
time span(year) 2009-2010 1998-2009

Douban Movie Delicious

# of users 50,885 201,663
# of items 69,908 2,828,304

# of ratings 52,604,958 36,966,661
time span(year) 2005-2010 2008-2009

Table 2: Basic statistics of the four data sets

burying, respectively. The Digg data set used in our experi-
ment is Digg2009 [17], a publicly available data set contain-
ing 3,018,197 votes on 3553 popular stories cast by 139,409
distinct users. Although this data set contains only the IDs
of news stories (the titles and the contents of stories are ex-
cluded), it is sufficient to evaluate the effectiveness of user
behavior modeling in our work.

• Douban Movie: Douban2 is the largest movie review web-
site in China. In total, we crawled 50, 885 unique users and
69, 908 unique movies with 52, 604, 958 movie ratings.

• MovieLens: MovieLens is a publicly available movie da-
ta set from the web-based recommender system MovieLens.
The data set contains 10M ratings on a scale from 1 to 5
made by 71567 users on 10681 movies. We selected users
who had rated at least 20 movies.

• Delicious: Delicious is a collaborative tagging system where
users can upload and tag web pages. We collected 201,663
users and their tagging behaviors during the period Feb. 2008
- Dec. 2009. The data set contains 2,828,304 tags. Topics on
technology and electronics account for about half of all web
pages. Most of the other web pages are about breaking news
with strong temporal features.

5.2 Comparisons
The temporal context-aware mixture model (TCAM) has two

variants: ITCAM (Section 3.2.1) and TTCAM (Section 3.2.2).
Both models can be enhanced by the item-weighting scheme, which
leads to two optimized versions: W-ITCAM and W-TTCAM. We
compare them with four categories of competitor approaches.

• User-Topic Model (UT): We implemented a user-topic mod-
el following the previous works [21, 24]. This model is sim-
ilar to the classic author-topic model (AT model) [23] which
assumes that topics are generated according to user interests.
The probabilistic formula of the user topic model is present-
ed as follows, where θB is a background for smoothing.

P (v|u;Ψ) = λBP (v|θB)+(1−λB)
∑
z

P (z|θu)P (v|φz)

• Time-Topic Model (TT): Following previous works [20, 26],
we implemented a time-topic model. This model considers
only the temporal information and ignores user interests. TT
assumes that topics are generated by the temporal context,
and that user behaviors are influenced by the temporal con-
text. The probabilistic formula of the time-topic model is
presented as follows.

P (v|t;Ψ) = λBP (v|θB) + (1− λB)
∑
x

P (x|θ′
t)P (v|φ′

x)

2http://douban.com

• BPRMF: This is a state-of-the-art matrix factorization model
for item ranking optimized using BPR [22]. This model out-
performs most of the existing recommender models in the
task of top-k item recommendation. We used the BPRMF
implementation provided by MyMediaLite, a free software
recommender system library [11].

• BPTF: This is a state-of-the-art recommender model for rat-
ing prediction which uses a probabilistic tensor factoriza-
tion technique by introducing additional factors for time [29].
This model outperforms most of the existing recommender
models that consider time information.

5.3 Performance on Recommendation
In this section, we evaluate both the effectiveness of the suggest-

ed recommendations and the efficiency of generating top-k recom-
mendations. Below, we first introduce the evaluation methods.

5.3.1 Evaluation Methods
Recommendation Effectiveness. For each user u, we randomly

split her rated items during time interval t, St(u), into 80% training
items Strain

t (u), and 20% test items Stest
t (u). Given a querying

user u in time interval t, if a recommended item is in the test set
Stest
t (u), it’s a “hit” item, otherwise it’s a “miss”. A five-fold cross

validation is employed to ensure the validity of the experimental
results. To make the experimental results comparable, we use mul-
tiple well-known metrics to measure the ranked results. Similar
to evaluations in information retrieval, we first use Precision@k to
assess the quality of the top-k recommended items as follows:

Precision@k =
#hits

k

where #hits is the number of “hit” items in the top-k recommend-
ed items. We also consider NDCG, a widely used metric for a
ranked list. NDCG@k is defined as:

NDCG@k =
1

IDCG
×

k∑
i=1

2ri − 1

log(i+ 1)

where ri is 1 if the item at position i is a “hit” item and 0 otherwise.
IDCG is chosen for the purpose of normalization so that the perfect
ranking has an NDCG value of 1. Considering that some users may
have a large number of items in the test data while some have just
a few, we also adopt the F1 score as our metric.

Recommendation Efficiency. The efficiency of the online rec-
ommendation mainly depends on 1) the number of items in the
dataset and 2) the number of items recommended. Therefore, we
test the efficiency of our proposed methods over these two factors.

5.3.2 Effectiveness of Temporal Recommendations
Figures 6 and 7 report the performance of the proposed mod-

els and other competitors in terms of Precision@k, NDCG@k and
F1@k on Digg and MovieLens data sets, respectively. From the re-
ported results, we observe that: (1) Our proposed models ITCAM,
TTCAM, W-ITCAM and W-TTCAM, outperform other competi-
tors such as UT, TT and BPRMF consistently on both data sets.
This observation shows that recommendation accuracy, especially
temporal recommendation accuracy, can be improved by consider-
ing both user intrinsic interests and the temporal context simulta-
neously. Note that, although BPTF performs almost as well as our
proposed ITCAM model since it also exploits the temporal context
information when recommending items, our W-ITCAM, TTCAM
and W-TTCAM consistently outperform it. (2) W-ITCAM and W-
TTCAM achieve higher temporal recommendation accuracy than
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Figure 6: Temporal Accuracy on Digg Data Set
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Figure 7: Temporal Accuracy on MovieLens Data Set

ITCAM and TTCAM, respectively, which shows the benefits brought
by the item weighting scheme. Comparing TTCAM (W-TTCAM)
with ITCAM (W-ITCAM), TTCAM (W-TTCAM) consistently per-
forms better than ITCAM (W-ITCAM), verifying the advantage of
modeling temporal context as a distribution over latent topics. (3)
Comparing UT and TT on the two data sets, we find that UT per-
forms better than TT on the MovieLens data set, while TT beats
UT on the Digg data set. This is because news is a type of time-
sensitive item while a movie is less time-sensitive. UT exploit-
ing user interests works better in recommending less time-sensitive
items while TT exploiting the temporal context is superior in rec-
ommending time-sensitive items.

There are three parameters in our models, namely, the length
of time interval, the number of user-oriented topics (K1) and the
number of time-oriented topics (K2). Tuning these model param-
eters is critical to the model performance. The experimental re-
sults presented above are obtained with the optimal parameter set-
tings: (1) the optimal time intervals are one month for MovieLens
and Douban Movie datasets, and three days for the Digg dataset,
respectively; (2) the default values for K1 and K2 are 60 and 40
in TTCAM and W-TTCAM. We study the impacts of varying the
three parameters below in details.

5.3.3 Effect of the Length of Time Interval
This experiment is to study the effect of the length of time in-

terval. The length of time interval controls the time granularity of
temporal recommendations. A larger length of time interval im-
plies that the recommendation results will be less time-aware. To
focus on the impact of the length of time interval, we only consider
the models which utilize temporal influence. We report NDCG@5
on the Digg data set in Table 3. We also tune the length of time
interval on other datasets and similar trends are observed, which
are omitted due to space constraints. From the table, we have the
following two observations.

• The first observation is that as the length of time interval in-
creases, the NDCG values of all methods first increase, and
then decrease. One possible reason for early increasing ND-

CG is that increasing the length makes the data in a time in-
terval denser. Later on, NDCG decreases as the length of
time interval gets larger, because increasing the length of
time interval reduces the temporal influence. All methods
achieve their best performance when the length of time in-
terval is set to three days on this dataset, which could be a
tradeoff of aforementioned two factors.

• Another important observation is that, for all lengths of time
intervals, our proposed methods outperform other compar-
ison methods. Among our proposed methods, W-TTCAM
and W-ITCAM outperform TTCAM and ITCAM, respec-
tively, showing the benefits brought by our proposed item-
weighting technology.

5.3.4 Effect of the Number of Topics
This experiment is to study the effect of number of user-oriented

topics (K1) and number of time-oriented topics (K2) on Digg dataset.
Figure 9 reports the results of varying K1 from 10 to 100 when
fixing K2 to 20, 40, 60 and 80, respectively. For example, W-
TTCAM-40 represents the model W-TTCAM with 40 time-oriented
topics. From the figure, we observe that the performance of our
proposed model W-TTCAM first increases with the increasing num-
ber of user-oriented topics (K1), and remains nearly stable when
K1 is larger than 60. By comparing W-TTCAM-20, W-TTCAM-
40, W-TTCAM-60 and W-TTCAM-80, we find that W-TTCAM-20
performs worst while other three almost perform equally well and
their curves almost overlap. For this dataset, the performance of W-
TTCAM does not change much when the number of time-oriented
topics (K2) is larger than 40.

5.3.5 Efficiency of Recommendations
We next proceed to perform an efficiency comparison of differ-

ent temporal recommendation algorithms on Douban Movie and
Movielens datasets. It is worth mentioning that there is different
number of movies in these two datasets, i.e., 69,908 and 10,681,
respectively. All the recommendation algorithms are implemented
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Length of time interval TT ITCAM TTCAM W-TTCAM BPTF W-ITCAM

1 day 0.1062 0.1254 0.1444 0.1594 0.1226 0.1287

2 days 0.1365 0.1612 0.1857 0.2050 0.1576 0.1655

3 days 0.1517 0.1791 0.2063 0.2278 0.1751 0.1839
4 days 0.1426 0.1684 0.1939 0.2141 0.1646 0.1729

5 days 0.1274 0.1505 0.1733 0.1913 0.1471 0.1545

6 days 0.1153 0.1361 0.1568 0.1731 0.1331 0.1397

7 days 0.1123 0.1325 0.1527 0.1685 0.1296 0.1361

8 days 0.1092 0.1290 0.1485 0.1640 0.1261 0.1324

9 days 0.1077 0.1272 0.1465 0.1617 0.1243 0.1306

10 days 0.1059 0.1253 0.1443 0.1589 0.1230 0.1283

Table 3: Performance of varying length of time interval on Digg dataset
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Figure 8: Efficiency w.r.t Online Recommendations
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Figure 9: Performance of varying number of topics

in Java (JDK 1.6) and run on a Linux Server with 32G RAM. In this
section, we first report their online recommendation time costs, and
then present their offline training time.

Efficiency of Online Recommendations. In the efficiency s-
tudy , we adopt two methods to utilize the knowledge learnt by
TCAM to produce online recommendations. The first is called
TCAM-TA and uses the proposed TA-based query processing tech-
nique in Section 4.2 to produce top-k recommendations. The sec-
ond is called TCAM-BF and uses brute-force algorithm to produce
top-k recommendations. In TCAM-BF, we scan all items within
the dataset and compute their ranking scores, and then recommend
k items with the highest scores. It should be noted that the state-
of-the-art temporal recommender model BPTF also needs to scan
all items to produce top-k recommendations because the ranking
function in BPTF does not have the nice property of monotonicity
which is required by TA algorithm [10].

Figures 8(a)-8(b) present the average online time costs of d-
ifferent methods with a varying number of recommendations for
datasets Douban Movie and MovieLens respectively. For example,
on average our proposed TCAM-TA can find top-10 items (that

could most interest a user) from the Douban Movie dataset in 46m-
s, from the Movielens dataset in 9 ms. From the figures, we can
observe that 1) TCAM-TA outperforms TCAM-BF and BPTF sig-
nificantly in both datasets, justifying the benefits brought by the
proposed TA-based query processing technique; 2) TCAM-BF is
more efficient than BPTF in both datasets because BPTF computes
the rating score that a user u will assign to item v at time t using
the inner product of three vectors (i.e., user, item and time latent
representations in a shared low-dimensional space) [29] while T-
CAM computes the ranking score using the inner product of two
vectors (i.e., the query and item latent representations), as shown in
Equation (22); 3) the time cost of TCAM-TA increases with the in-
creasing number of recommendations because TCAM-TA needs to
scan more items to find the k items with highest ranking scores, but
TCAM-TA is still much more efficient than TCAM-BF and BPTF
since the number of recommendations (i.e., k) is often constrained
in a small range (e.g., [1 · · · 20]); 4) the time cost (TC) of each algo-
rithm in Douban Movie is more expensive than that in Movielens,
showing that if a dataset has more items available, it requires more
processing time to produce top-k recommendations.

Douban Movie Movielens

BPRMF TCAM BPTF BPRMF TCAM BPTF

84.32 110.87 940.46 14.76 22.40 170.88

Table 4: Comparison on Model Training Time (Minute)

Efficiency of Offline Model Training. Table 4 shows the train-
ing time of three models on two datasets. From the table, we ob-
serve that our proposed TCAM model achieves comparable effi-
ciency performance with BPRMF. As is expected, the training of
BPTF is much slower than our TCAM and BPRMF. Note that al-
though BPRMF achieves best efficiency performance, its recom-
mendation accuracy value is much lower than our TCAM model
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because it does not exploit the temporal information, as is shown
and analyzed in Section 5.3.2.

5.4 Temporal Context Influence Study
In this section, we study the influence degrees of users’ person-

al interests and the temporal context on users’ decision making.
The user interest influence probability λu and the temporal contex-
t influence probability 1 − λu are learnt automatically in TCAM
models. Due to space constraints, we focus on W-TTCAM. We are
interested in how significantly the temporal context influences the
user’s decisions on different social media platforms.

Since different people have different mixing weights, we plot the
distributions of both the personal interest and the temporal context
influence probabilities across all users. The results on the Movie-
Lens data set are shown in Figure 10, where Figure 10 (a) plots the
cumulative distribution of personal interest influence probabilities,
and Figure 10(b) shows the temporal context influence probabili-
ties. It can be observed that, in general, people’s personal interest
influence is significantly higher than the influence of the temporal
context. For example, Figure 10(a) shows that the personal interest
influence probability of more than 76% of users is higher than the
0.82. This observation indicates that most movies consumed by
users are selected in accordance with their interests and tastes.
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Figure 10: Temporal Context Influence Result (MovieLens)
Figures 11(a) and 11(b) show respectively the personal interest

influence probabilities and temporal context influence probabilities
learnt from the Digg data. As shown in Figure 11(a), the personal
interest influence probability is smaller than the temporal context
influence probability. For example, the temporal context influence
probability of more than 70% of users is higher than 0.5. The im-
plication of this finding is that people are mainly influenced by the
temporal context when choosing news to read. By comparing the
analysis results obtained from the two datasets, we can observe that
the temporal context influence on users’ choice of news to read is
much more significant than it is on the selection of movies to watch.
This is probably because news is a time-sensitive item which is
driven by offline social events, while movies are less time-sensitive.
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Figure 11: Temporal Context Influence Result (Digg)

5.5 Analyzing Latent Topics
To analyze the topics detected by our TCAM models, we note

that Table 5 and Table 6 respectively present two time-oriented

TT TTCAM W-TTCAM

latest news michaeljackson
headline world mj

news death moonwalk
investigative jackson death

michaeljackson michaeljackson investigative
event headline news

Table 5: Time-Oriented Topic “Michael Jackson” Detected by
Different Models on Delicious

TTCAM W-TTCAM

Forrest Gump (1994) Transformers (2007)
Zodiac (2007) Tau ming chong (2007)

Transformers (2007) Zodiac (2007)
Roman Holiday (1953) Becoming Jane (2007)
Tau ming chong (2007) Kidnap (2007)

Edward Scissorhands (1990) Secret (2007)
Kidnap (2007) I Am Legend(2007)

Table 6: Time-Oriented Topic T2007 Detected by Different
Models on Douban Movie

topics detected by different models on the datasets of Delicious
and Douban Movie. We can make the following observations from
the tables: (1) On the Delicious dataset, the time-oriented top-
ics of “michael jackson’s death”, detected by TT and TTCAM,
rank popular tags with abstract semantics like “event”, “headline”,
and “world” in the top positions because of their high frequen-
cies. As a matter of fact, these tags are of little value in describ-
ing the event and users may not be interested in them. In con-
trast, our proposed W-TTCAM clearly promotes concrete words
like “moonwalk” because of the tight co-burst relationship with the
word “Michael Jackson”, which shows that W-TTCAM can clus-
ter correlated bursty tags into a time-oriented topic, enabling the
time-oriented topic to be represented by tags that are more rele-
vant to the real event. (2) On the Douban Movie data set, the
time-oriented topic T2007, detected by TTCAM, ranks popular
movies like “Forrest Gump”, “Roman Holiday” and “Edward S-
cissorhands” in the top positions as a result of their high popular-
ity. In contrast, the top movies in T2007 detected by W-TTCAM
were all released in the year 2007, which shows that W-TTCAM
can accurately cluster movies released around the same time into a
time-oriented topic by promoting bursty movies such as “Becoming
Jane” and “Secret”. Based on the above observations, we conclude
that the time-oriented topics can be better modeled with the item
weighting scheme.

To examine whether the user-oriented topics and time-oriented
topics detected by the TCAM models can really capture user inter-
est and temporal context, we present both user-oriented and time-
oriented topics detected by W-TTCAM on Douban Movie dataset
in Table 7. From the table, we can easily tell the difference between
the user-oriented and time-oriented topics on movies. Specifically,
the user-oriented topics capture the genres of films by clustering
similar-taste movies into a topic, while movies under each time-
oriented topic share a similar release time and the popularity of the
corresponding time-oriented topic also reaches its peak during that
period. The movie types and release time which are respectively
captured by the user-oriented and time-oriented topics are shown
in the second row of the table.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a temporal context-aware mixture

model (TCAM) to model user rating behaviors in social media sys-
tems, by taking into account two factors, user intrinsic interests
as an internal factor, and temporal context as an external factor.
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U1 U15 T2010 T2009

Same-Sex Horror/Thriller 2010 2009

Shelter (2007) Eden Lake (2008) Salt (2010) District 9 (2009)
Starcrossed (2005) Dead Silence (2007) Inception (2010) The Boat That Rocked (2009)

Get Real (1999) See prang (2008) The Expendables (2010) The Founding of A Republic (2009)
Maurice (1987) The Hills Have Eyes (2006) The Twilight Saga: Eclipse (2010) Sophie’s Revenge (2009)

For a Lost Soldier (1992) Dawn of the Dead (2004) Temple Grandin (2010) Eternal Beloved (2009)
The Trip (2002) Silent Hill (2006) Sex and the City 2 (2010) Empire of Silver (2009)

Lucky Blue (2007) The Last House on the Left (2009) Sherlock Season 1 (2010) Overheard (2009)

Table 7: Comparison between User-Oriented and Time-Oriented Topics Detected on Douban Movie

We introduced two different types of topics to model user inter-
ests and temporal context, respectively. We designed two methods
to model the temporal context, and an item-weighting scheme was
developed to enhance the TCAM models by exploiting the frequen-
cy distribution and temporal distribution information of items. To
demonstrate the applicability of TCAM, we deployed this model
to facilitate temporal recommendation. We also designed an effi-
cient query processing technique to speed up the process of online
recommendation. We demonstrated the superiority of the proposed
TCAM models on four popular social media datasets.

There are several directions for future research. First, we would
like to explore enhancements to our models by exploiting the effect
of user social network on user rating behaviors, e.g., to study how
a user’s friends affect her/his rating behaviors. Second, it would
be an interesting future direction to consider time-evolving user in-
terests which generally change over time. Third, since the user
generated data in social media is very noisy, it would be interesting
to incorporate a background distribution to filter the noise in social
media data.
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