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Newly emerging location-based and event-based social network services provide us with a new platform
to understand users’ preferences based on their activity history. A user can only visit a limited number
of venues/events and most of them are within a limited distance range, so the user-item matrix is very
sparse, which creates a big challenge to the traditional collaborative filtering-based recommender systems.
The problem becomes even more challenging when people travel to a new city where they have no activity
information.

In this article, we propose LCARS, a location-content-aware recommender system that offers a particular
user a set of venues (e.g., restaurants and shopping malls) or events (e.g., concerts and exhibitions) by
giving consideration to both personal interest and local preference. This recommender system can facilitate
people’s travel not only near the area in which they live, but also in a city that is new to them. Specifically,
LCARS consists of two components: offline modeling and online recommendation. The offline modeling
part, called LCA-LDA, is designed to learn the interest of each individual user and the local preference
of each individual city by capturing item cooccurrence patterns and exploiting item contents. The online
recommendation part takes a querying user along with a querying city as input, and automatically combines
the learned interest of the querying user and the local preference of the querying city to produce the top-
k recommendations. To speed up the online process, a scalable query processing technique is developed by
extending both the Threshold Algorithm (TA) and TA-approximation algorithm. We evaluate the performance
of our recommender system on two real datasets, that is, DoubanEvent and Foursquare, and one large-scale
synthetic dataset. The results show the superiority of LCARS in recommending spatial items for users,
especially when traveling to new cities, in terms of both effectiveness and efficiency. Besides, the experimental
analysis results also demonstrate the excellent interpretability of LCARS.
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1. INTRODUCTION

Newly emerging event-based social network services (EBSNs), such as Meetup
(www.meetup.com), Plancast (www.plancast.com) and DoubanEvent (www.douban.
com/events/) have provided convenient online platforms for users to create, spread,
track and attend social events which are going to be held in some physical locations [Liu
et al. 2012]. On these web services, users may propose social events, ranging from in-
formal get-togethers (e.g., movie night and dining out) to formal activities (e.g., culture
salons and business meetings) by specifying when, where and what the event is. After
the created event is available to the public, other users may express their intent to join
event by replying “yes,” “no” or “maybe” online. Meanwhile, the advances in location-
acquisition and wireless communication technologies enable users to add a location
dimension to traditional networks, fostering a growth of location-based social network-
ing services (LBSNs), such as Foursquare (foursquare.com) and Gowalla (gowalla.com)
which allow users to “check-in” at spatial venues (e.g., restaurants in New York) via
mobile devices.

In this article, we aim to mine more knowledge from the user activity history data in
LBSNs and EBSNs to answer two typical types of questions that we often ask in our
daily: (1) If we want to visit venues in a city such as Beijing, where should we go? (2) If
we want to attend local events such as dramas and exhibitions in a city, which events
should we attend? In general, the first question corresponds to venue recommendation,
and the second question corresponds to event recommendation. By answering these
two questions, we can satisfy the personalized information needs for people in their
daily routines and trip planning. For simplicity, we use the notion of spatial items to
denote both venues and events in a unified way, so that we can define our problem
as follows: given a querying user u with a querying location lu such as a city, find k
interesting spatial items within lu, that match the preference of u.

However, inferring user preferences for spatial items is very challenging by exploring
users’ activity history in an EBSN or LBSN. First, a user can only visit a limited
number of physical venues and attend a limited number of social events. This leads
to a sparse user-item matrix for most existing location-based recommender systems
[Levandoski et al. 2012; Horozov et al. 2006], which directly use collaborative filtering-
based methods [Ricci and Shapira 2011] over spatial items. Second, the observation
of travel locality [Levandoski et al. 2012] makes the task more challenging if a user
travels to a new place where he/she has no activity history. The observation of travel
locality on EBSNs and LBSNs shows that users tend to travel a limited distance
when visiting venues and attending events. In the analysis of Foursquare data, we
observe that 45% of users travel 10 miles or less and 75% of users travel 50 miles or
less. Another investigation shows that the activity records generated by users in their
non-home cities are very few and only take up 0.47% of the activity records they left
in their home cities. This observation of travel locality is quite common in the real
world [Scellato et al. 2011b], aggravating the data sparsity problem with personalized
spatial item recommendations (e.g., if we want to suggest spatial items located in Los
Angeles to people from New York City). In this case, solely using a CF-based method
is not feasible any more, especially when coping with the new city problem, because a
querying user usually does not have enough activity history of spatial items in a city
that is new to him/her.

Let us assume, for example, that querying user u is a shopaholic and often visits
shopping mall v′ in his/her home city; v is a popular local shopping mall in city lv that
is new to u. Intuitively, a good recommender system should recommend v to u when
he/she travels in lv. However, the pure CF-based methods fail to do so. For the item-
based CF [Linden et al. 2003; Sarwar et al. 2001; Deshpande and Karypis 2004], there
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Fig. 1. The Architecture Framework of LCARS.

are few common users between v and v′ according to the property of travel locality,
resulting in the low similarity between the two items’ user vectors. For the user-based
CF [Adomavicius and Tuzhilin 2005], it is most likely that all the k nearest neighbors
of user u live in the same city as u, and that few of them have visited v according to the
property of travel locality.

To this end, we propose a location-content-aware recommender system (LCARS) that
exploits both the location and content information of spatial items to alleviate the data
sparsity problem, especially the new city problem. As is shown in Figure 1, LCARS con-
sists of two main parts: offline modeling and online recommendation. The offline model,
LCA-LDA, is designed to model user preferences to spatial items by simultaneously
considering the following two factors in a unified manner. 1) User Interest: Music lovers
may be more interested in concerts while Shopaholics would pay more attention to shop-
ping malls. 2) Local Preference: When users visit a city, especially a city that is new to
them, they are more likely to see local attractions and attend events that are popular in
the city. Thus, the activity histories left by other people when they traveled in the query-
ing city are valuable resources for making a recommendation, especially when people
travel to an unfamiliar area where they have little knowledge about the neighborhood.
LCA-LDA can automatically learn both user interest and local preference from the
user activity history. Exploiting local preference can address the issue of data sparsity
to some extent, especially the new city problem. To further alleviate the data sparsity
problem, LCA-LDA exploits the content information (e.g., item tags or category words)
of spatial items to link content-similar spatial items together. It is worth mentioning
that LCA-LDA can also capture the item cooccurrence patterns to link relevant items
together, just like item-based collaborative filtering methods. Thus, LCA-LDA not only
has the ability to link spatial items together by their common users, just like the col-
laborative filtering-based methods, but also possesses the capability of linking items
together which do not have any overlap of users by their contents. So LCA-LDA is able to
facilitate people’s travel not only near their home regions but also to cities that are new
to them. To our best knowledge, ideas for unifying the influence of local preferences,
collaborative filtering and content-based recommendation are unexplored and very
challenging.
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Given a querying user u with a querying city lu, the online recommendation part
computes a ranking score for each spatial item v within lu by automatically combining
u’s interest and the local preference of lu, which are learned offline by LCA-LDA. To
speed up the process of online recommendation, we propose a scalable query processing
technique for top-k recommendations which separates the offline scoring computation
from online scoring computation to minimize the query time. Specifically, we partition
all spatial items into locations at a certain granularity such as cities. For each location,
as is shown in Figure 1, we pre-compute K lists of items according to the K latent
topics learned by offline model LCA-LDA. In each list Lz, items are sorted based on
their generative probabilities with respect to the corresponding topic z. At query time,
we access items from the K sorted lists within the querying city lu and compute top-k
items by running the TA algorithm. The algorithm has the nice property of terminating
early without scanning all items. Specifically, it terminates when the ranking score of
the k-th item in the result list is higher than the threshold score. This TA-based scheme
allows us to efficiently return the top-k recommendations by examining the minimum
number of items.

In practice, the querying user may be satisfied with an approximation top-k list to
get a faster query response. Given ρ > 1, we define a ρ-approximation to the top-k
recommendations for a ranking function S(u, lu, v) to be a ranked list of k items (each
along with its ranking score) such that for each v among these k items and each v′
not among these k items, ρS(u, lu, v) ≥ S(u, lu, v′), while S(u, lu, v) ≥ S(u, lu, v′) needs
to hold in the exact top-k recommendation. Thus, to provide an approximated top-k
recommendation with a faster online speed, we design a TA-approximation algorithm
based on the TA scheme. Furthermore, the TA-approximation algorithm enables an
interactive process where at all times LCARS can show the querying user its current
view of the top-k recommendations along with a guarantee of ρ-approximation to the
exact answer. At any time, the querying user can decide whether he/she is satisfied
with the recommendation results and stop the algorithm.

To sum up, we focus on the problem of spatial item recommendation in this article,
especially the spatial item recommendation to users who travel out of town (e.g., in new
cities). Note that we presented our preliminary study of spatial item recommendation
in [Yin et al. 2013b]. In this article, we extended [Yin et al. 2013b] with an in-depth
investigation and performance analysis. Specifically, this article makes the following
additional contributions: First, we provide a more comprehensive analysis and review
of related work. Second, we present the detailed inference procedure of our LCA-LDA
model, and provide extensive analysis and discussion about our designed TA-based
online algorithm. Third, based on the TA scheme, we design a new TA-approximation
algorithm to provide approximated top-k answers online, which enriches our spatial
item recommender system LCARS by enabling an interactive process. Fourth, we con-
duct a more extensive performance analysis (e.g., recommendation effectiveness, rec-
ommendation efficiency and the tradeoff between them) and case study (e.g., profile
study, local preference influence study and analysis of latent topics), using two publicly
available real-life datasets and one large-scale synthetic dataset.

The primary contributions of our research are summarized as follows.

—We argue that both local preference and item content information are important for
modeling user preference and handling the data sparsity problem, and propose LCA-
LDA, a novel location-content-aware probabilistic generative model that quantifies
and incorporates both local preference and item content information in the spatial
item recommendation process.

—We design a scalable query processing technique to improve the recommendation
efficiency, enabling an online recommendation scenario.
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Table I. Notations Used in the Article

SYMBOL DESCRIPTION
U, V, L, C the set of users, spatial items, locations, content words
Vl the set of spatial items located in location l
K the number of topics
Du the profile of user u
vui the spatial item of ith record in user profile Du

θu
the interest of user u, expressed by
a multinomial distribution over topics

θ ′
l

the local preference of location l, expressed by
a multinomial distribution over topics

φz
a multinomial distribution over spatial items
specific to topic z

φ′
z

a multinomial distribution over content words
specific to topic z

zui the topic assigned to spatial item vui

lui the location of spatial item vui

lu the querying location of the querying user u
cui a content word describing spatial item vui

Cui the set of content words describing spatial item vui

sui if spatial item vui is generated by θu or θ ′
lui

β, β ′ Dirichlet priors to multinomial
distributions φz, φ

′
z

α, α′ Dirichlet priors to multinomial
distributions θu, θ ′

l

λu
the mixing weight specific to user u;
the parameter for sampling the binary variable s

γ, γ ′ Beta priors to generate λu

—We design a TA-approximation algorithm to provide an approximated top-k recom-
mendation, enabling an interactive process where LCARS can show the querying
user its progressive view of the top-k recommendations along with a guarantee of
ρ-approximation to the exact answer.

—We conduct extensive experiments to evaluate the performance of our recommender
system on two large-scale real datasets. The results show the superiority of our
proposals in recommending spatial items for users, especially when traveling to new
cities, in terms of both effectiveness and efficiency. Besides, the empirical analysis
results also show the excellent interpretability of our LCARS.

The remainder of the article is organized as follows. Section 2 details the offline
modeling part of our recommender system LCARS. Section 3 presents the online rec-
ommendation part of LCARS. We report the experimental results in Section 4. Section 5
reviews the related work and we conclude the article in Section 6.

2. OFFLINE MODELING

In this section, we first introduce the key data structures and notations used in this
article, and then present the offline modeling part of our proposed location-content-
aware recommender system.

2.1. Preliminary

For ease of the following presentation, we define the key data structures and notations
used in this article. Table I lists the relevant notations used in this article.
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Definition 1 (Spatial Item). A spatial item v refers to either an event or venue
generated in various EBSNs or LBSNs.

Definition 2 (User Activity). A user activity is a triple (u, v, lv) that means user
u selects a spatial item v in location lv. Information about the user activity history is
given by S ⊆ U × V × L, where user activities are positive observations in the past.

The dataset D used for our model learning consists of four elements, and they are
users, spatial items, locations and content words, that is, (u, v, lv, cv) ∈ D where u ∈ U ,
v ∈ V , lv ∈ L, and cv ∈ Cv (i.e., Cv denotes the content word set associated with spatial
item v). Note that a spatial item may contain multiple content words. For an activity
history record of a user u selecting a spatial item v in lv, we have a set of four-tuples,
that is, Duv = {(u, v, lv, cv) : cv ∈ Cv}.

Definition 3 (User Profile). For each user u in the dataset D, we create a user profile
Du, which is a set of four-tuples (i.e., (u, v, lv, cv)) associated with u. Clearly, Duv ⊆ Du.

Definition 4 (Topic). A topic z in a spatial item collection V is represented by a topic
model φz, which is a probability distribution over spatial items, that is, {P(v|φz) : v ∈ V }
or {φzv : v ∈ V }. By analogy, a topic in a content word collection C is represented
by a topic model φ′

z, which is a probability distribution over content words, that is,
{P(c|φ′

z) : c ∈ C} or {φ′
zc : c ∈ C}.

It is worth mentioning that each topic z corresponds to two topic models in our work,
that is, φz and φ′

z. This design enables φz and φ′
z to be mutually influenced and enhanced

during the topic discovery process, facilitating the clustering of content-similar spatial
items into the same topic with high probability.

Definition 5 (User Interest). The intrinsic interest of user u is represented by θu, a
probability distribution over topics.

Definition 6 (Local Preference). The local preference of location l is represented by
θ ′

l , a probability distribution over topics. This modeling method can capture local folk-
customs and local attractions.

2.2. Location-Content-Aware LDA Model

In this subsection, we first describe the offline modeling part of LCARS, a probabilistic
generative model called LCA-LDA, and then present its inference process.

2.2.1. Model Description. The proposed offline modeling part, LCA-LDA, is a location-
content-aware probabilistic mixture generative model that aims to mimic the process
of human decision making on spatial items. As shown in Figure 2, LCA-LDA considers
both user’s personal interest and the influence of local preference in a unified manner,
and automatically leverages the effect of the two factors. Specifically, given a querying
user uwith a querying city lu, the likelihood that user uwill prefer item v when traveling
to city lu, is computed according to the following LCA-LDA model.

P(v|θu, θ
′
lu, φ, φ′) = λuP(v|θu, φ, φ′) + (1 − λu)P(v|θ ′

lu, φ, φ′), (1)

where P(v|θu, φ, φ′) is the probability that spatial item v is generated according to the
personal interest of user u, denoted as θu, and P(v|θ ′

lu, φ, φ′) denotes the probability
that spatial item v is generated according to the local preference of lu, denoted as θ ′

lu.
The parameter λu is the mixing weight which controls the motivation choice. That is,
when deciding individual preference on v, user u is influenced by personal interest
with probability λu, and is influenced by the local preference of lu with probability
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Fig. 2. Example of LCA-LDA model.

1−λu. It is worth mentioning that LCA-LDA holds personalized mixing weights for in-
dividual users, considering the differences between users in personality (e.g., openness,
agreeableness).

To further alleviate the data sparsity problem, LCA-LDA incorporates the content
information of spatial items. Thus, we reformulate Equation (1) as follows:

P(v|θu, θ
′
lu, φ, φ′) =

∑
c∈Cv

P(v, c|θu, θ
′
lu, φ, φ′) (2)

P(v|θu, φ, φ′) =
∑
c∈Cv

P(v, c|θu, φ, φ′) (3)

P(v|θ ′
lu, φ, φ′) =

∑
c∈Cv

P(v, c|θ ′
lu, φ, φ′), (4)

where Cv is a set of content words describing spatial item v. In LCA-LDA, both user
interest θu and local preference θ ′

lu are modeled by a multinomial distribution over
latent topics. Each spatial item v is generated from a sample topic z. LCA-LDA also
parameterizes a distribution over content words associated with each topic z, and thus
topics are responsible for simultaneously generating both spatial items and their con-
tent words. As shown in Figure 2, the weight (a, b) on the edge linking topic T 1 and
item v2 represents the probabilities of T 1 generating item v2 and its associated content
word “Sculptures”, respectively. It should be noted that here we assume that items and
their content words are independently conditioned on the topics. So, P(v, c|θu, φ, φ′) and
P(v, c|θ ′

lu, φ, φ′) can be computed according to Equations (5) and (6). Parameter estima-
tion in LCA-LDA is thus driven to discover topics that capture both item cooccurrence
and content word cooccurrence patterns. This encodes our prior knowledge that spatial
items having many common users or similar content should be clustered into the same
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Fig. 3. The graphical representation of LCA-LDA.

topic with high probability.

P(v, c|θu, φ, φ′) =
∑

z

P(v, c|z, φz, φ
′
z)P(z|θu)

=
∑

z

P(v|z, φz)P(c|z, φ′
z)P(z|θu)

(5)

P(v, c|θ ′
lu, φ, φ′) =

∑
z

P(v, c|z, φz, φ
′
z)P(z|θ ′

lu)

=
∑

z

P(v|z, φz)P(c|z, φ′
z)P(z|θ ′

lu).
(6)

Summary of LCA-LDA. The proposed LCA-LDA is a latent class statistical mixture
model. It can be represented by a graphical model in Figure 3 and a generative process
in Algorithm 1. The model discovers (1) user’s personal interest distribution over latent
topics, θu; (2) local preference distribution over latent topics, θ ′

lu; (3) topic distribution
over items, φz; (4) topic distribution over content words, φ′

z; (5) the mixing weight λu.
The generative model aims to capture the process of human behaviors and/or reasoning
for decision making. For example, a querying user u wants to choose a venue v in city
lu to visit. The person may choose one based on personal interest or choose the one
that is most popular in lu. In the case that u wants to choose the venue based on
personal interest (with a certain probability λu), a topic z is first chosen according to
the personal interest distribution θu, and then the selected topic z in turn generates a
venue v and relevant content words Cv following on the topic’s item and content word
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ALGORITHM 1: Probabilistic generative process in LCA-LDA

Input: a user profile dataset D;
Output: estimated parameters θ , θ ′, φ, φ′ and λ;

1 for each topic z do
2 Draw φz ∼ Dirichlet(·|β);
3 Draw φ′

z ∼ Dirichlet(·|β ′);
4 end
5 for each Du in D do
6 for each record (u, vui, lui, cui) ∈ Du do
7 Toss a coin sui according to bernoulli(sui) ∼ beta(γ, γ ′);
8 if sui = 1 then
9 Draw θu ∼ Dirichlet(·|α);

10 Draw a topic zui ∼ multi(θu) according to the interest of user u;
11 end
12 if sui = 0 then
13 Draw θ ′

lui
∼ Dirichlet(·|α′);

14 Draw a topic zui ∼ multi(θ ′
lui

) according to the local preference of lui ;
15 end
16 Draw an item vui ∼ multi(φzui ) from zui-specific spatial item distribution;
17 Draw a content word cui ∼ multi(φ′

zui
) from zui-specific content word distribution;

18 end
19 end

generative distributions (i.e., φz and φ′
z), respectively. In the case that user u follows the

local preference of lu, lu would generate an item and its content words following on lu’s
preference distribution θ ′

lu similarly. Thus, this model simulates the process that how u
picks the spatial item v, including how the local preference of lu influences u’s decision.
As a running example in Figure 2, the user is influenced by personal interest and the
local preference with probabilities 0.64 and 0.36, respectively. The top-4 topics of the
user’s interest and the local preference are also shown respectively, where the weights
representing user’s personal interest and the local preference in the topics are labeled
in the corresponding edges. We can see that there is only one overlapped topic for the
user and the local preference, and their dominated topics are different (i.e., T1:0.801
vs. T8:0.756). The probabilities of topic generating items and their associated content
words are also labeled in the corresponding edges. For example, the weights (a, b) on
the edge linking topic T1 and item v2 represent the probabilities of T1 generating item
v2 and its associated content word “Sculptures”, respectively.

With the model hyperparameters α, α′, β, β ′, γ and γ ′, the joint distribution of the
observed and hidden variables v, cv, z and s can be written as follows.

P(v, cv, z, s|α, α′, β, β ′, γ, γ ′)

=
∫

· · ·
∫

P(v|φ, z)P(φ|β)P(cv|φ′, z)P(φ′|β ′)

P(z|θ, θ ′, s)P(θ |α)P(θ ′|α′)P(s|λ)P(λ|γ, γ ′)
dφ dφ′ dθ dθ ′ dλ

(7)

2.2.2. Model Inference. The computation of the posterior distribution of the hidden vari-
ables is intractable for the LCA-LDA model. Therefore, we follow the studies [Tang et al.
2008, 2012] and use approximate method collapsed Gibbs sampling to obtain samples
of the hidden variable assignment and to estimate unknown parameters {θ, θ ′, φ, φ′, λ}
in the LCA-LDA. As for the hyperparameters α, α′, β, β ′, γ and γ ′, for simplicity, we
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take a fixed value (i.e., α = α′ = 50/K, β = β ′ = 0.01, γ = γ ′ = 0.5). Note that Gibbs
sampling allows the learning of a model by iteratively updating each latent variable
given the remaining variables. In the sampling procedure, we begin with the joint
probability of all user profiles in the dataset. Next, using the chain rule, we obtain the
posterior probability of sampling topics for each four-tuple (u, v, lv, cv). Specifically,
we employ a two-step Gibbs sampling procedure.

To begin with, we need to compute the conditional probabilities P(sui|s¬ui, z, v, c)
and P(zui|s, z¬ui, v, c), where s¬ui and z¬ui represent the s and z assignments for all
the spatial items except vui respectively. According to the Bayes rule, we can compute
these conditional probabilities in terms of the joint probability distribution of the latent
and observed variables shown in Equation (7). Next, to make the sampling procedure
clearer, we factorize this joint probability as:

P(v, cv, z, s) = P(v|z)P(cv|z)P(z|s)P(s). (8)

By integrating out the parameter φ in Equation (7) we can obtain the first term in
Equation (8):

P(v|z) =
(

	(
∑

v βv)∏
v 	(βv)

)K ∏
z

∏
v 	(nzv + βv)

	(
∑

v(nzv + βv))
, (9)

where nzv is the number of times that spatial item v has been generated by topic z.
	(·) is the gamma function. Similarly, for the second term P(cv|z) in Equation (8), we
integrate out the parameter φ′ and get:

P(cv|z) =
(

	(
∑

c β ′
c)∏

c 	(β ′
c)

)K ∏
z

∏
c 	(nzc + β ′

c)
	(

∑
c(nzc + β ′

c))
, (10)

where nzc is the number of times that content word c has been generated by topic z.
Next, we evaluate the third term P(z|s) in Equation (8). By integrating out the

parameters θu and θ ′
l , we compute:

P(z|s) =
(

	(
∑

z αz)∏
z 	(αz)

)|U | ∏
u

∏
z 	(nuz + αz)

	(
∑

z(nuz + αz))

·
(

	(
∑

z α′
z)∏

z 	(α′
z)

)|L| ∏
l

∏
z 	(nlz + α′

z)
	(

∑
z(nlz + α′

z))
,

(11)

where |U | is the number of users, and |L| is the number of locations (e.g., cities); nuz is
the number of times that topic z has been sampled from the multinomial distribution
specific to user u; nlz is the number of times that topic z has been sampled from the
multinomial distribution specific to location l.

Last, we need to derive the fourth term P(s). By integrating out λu we have:

P(s) =
(

	(γ + γ ′)
	(γ )	(γ ′)

)|U | ∏
u

	(nus1 + γ )	(nus0 + γ ′)
	(nus1 + nus0 + γ + γ ′)

, (12)

where nus1 is the number of times that s = 1 has been sampled in the user profile Du;
nus0 is the number of times that s = 0 has been sampled in the user profile Du.

Now, the conditional probability can be obtained by multiplying and canceling of
terms in Equations (9–12). Thus, we first sample the coin s according to the posterior
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probability:

P(sui = 1|s¬ui, z, .)

∝ n¬ui
uzui

+ αzui∑
z

(
n¬ui

uz + αz
) × n¬ui

us1
+ γ

n¬ui
us0

+ n¬ui
us1

+ γ + γ ′
(13)

P(sui = 0|s¬ui, z, .)

∝ n¬ui
lui zui

+ α′
zui∑

z

(
n¬ui

lui z + α′
z

) × n¬ui
us0

+ γ ′

n¬ui
us0

+ n¬ui
us1

+ γ + γ ′ ,
(14)

where the number n¬ui with superscript ¬ui denotes a quantity, excluding the current
instance.

Then, we sample topic z according to the following posterior probability, when sui = 1:

P(zui|sui = 1, z¬ui, v, c, .)

∝ n¬ui
uzui

+ αzui∑
z

(
n¬ui

uz + αz
) n¬ui

zuivui
+ βvui∑

v

(
n¬ui

zuiv
+ βv

) n¬ui
zuicui

+ β ′
cui∑

c

(
n¬ui

zuic + β ′
c

) ,
(15)

when sui = 0:

P(zui|sui = 0, z¬ui, v, c, .)

∝ n¬ui
lui zui

+ α′
zui∑

z

(
n¬ui

lui z + α′
z

) n¬ui
zuivui

+ βvui∑
v

(
n¬ui

zuiv
+ βv

) n¬ui
zuicui

+ β ′
cui∑

c

(
n¬ui

zuic + β ′
c

) .
(16)

After a sufficient number of sampling iterations, the approximated posterior can be
used to get estimates of parameters by examining the counts of (s, z) assignments to
four-tuple (u, v, l, c). Specifically, during the parameter estimation, the algorithm
keeps track of a K ×|V | (topic by spatial item) count matrix, a K ×|C| (topic by content
word) count matrix, an |U | × 2 (user by coin) count matrix, an |U | × K (user by topic)
count matrix and an |L| × K (location by topic) count matrix. Given these matrices, we
can estimate the parameters θ , θ ′, φ, φ′ and λ as follows:

θ̂uz = nuz + αz∑
z′ (nuz′ + αz′ )

(17)

θ̂ ′
lz = nlz + α′

z∑
z′ (nlz′ + α′

z′ )
(18)

φ̂zv = nzv + βv∑
v′ (nzv′ + βv′ )

(19)

φ̂′
zc = nzc + β ′

c∑
c′ (nzc′ + β ′

c′ )
(20)

λ̂u = nus1 + γ

nus1 + nus0 + γ + γ ′ . (21)

3. ONLINE RECOMMENDATION

In this section, we present the online recommendation part of our recommender system
LCARS. Given a querying user u with a querying location lu to which u is going to travel,
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the online part of LCARS will efficiently compute ranking scores for all spatial items
within lu and then return the top-k items as the recommendation results.

3.1. Ranking Score Computation for Spatial Items

The ranking scores of spatial items are computed using the knowledge, such as user
interest θ , local preference θ ′, mixing weight λ, topics φ and φ′, learned by the offline
model LCA-LDA. To improve the online query performance, we propose a ranking
framework in Equation (22) which separates the offline scoring computation from the
online scoring computation. Specifically, F(lu, v, z) represents the offline part of the scor-
ing, denoting the score of spatial item v with respect to location lu on topic z which is
learned in the LCA-LDA model. Note that F(lu, v, z) is independent of querying users.
The weight score W(u, lu, z) is computed in the online part, denoting the preference
weight of query (u, lu) on topic z. It is worth mentioning that the main time-consuming
components of W(u, lu, z) are also computed offline (e.g., θ̂uz, λu and θ̂ ′

luz), and the on-
line computation is just a simple linear fusion process, as is shown in Equation (23).
This design enables maximum precomputation for the problem considered, and in turn
minimizes the query time. At query time, the ranking score S(u, lu, v) in Equation (22)
only needs to aggregate F(lu, v, z) over K topics by a simple weighted sum function, in
which the weight is W(u, lu, z). From Equations (23) and (24), we can see that W(u, lu, z)
consists of two components, designed to model user interest and local preference re-
spectively, and each component is associated with a kind of user motivation. F(lu, v, z)
takes into account both the item cooccurrence information and the similarity of item
contents to produce recommendations.

S(u, lu, v) =
∑

z

F(lu, v, z)W(u, lu, z) (22)

W(u, lu, z) = λ̂uθ̂uz + (1 − λ̂u)θ̂ ′
luz (23)

F(lu, v, z) =
⎧⎨
⎩

φ̂zv
∑

cv∈Cv
φ̂′

zcv
v ∈ Vlu

0 v /∈ Vlu.

(24)

3.2. TA Algorithm for Top-k Recommendation

The straightforward method of generating the top-k items needs to compute the ranking
scores for all items according to Equation (22), which is computationally inefficient,
especially when the number of items becomes large (e.g., millions of items). To speed
up the online process of producing recommendations, we extend the Threshold-based
Algorithm (TA) [Fagin et al. 2001], which is capable of finding the top-k results by
examining the minimum number of items.

We first partition all spatial items into locations at a predefined granularity such
as cities. For each location, we precompute sorted lists of spatial items. This sorting is
done offline according to F(l, v, z) defined in Equation (24). Given K topics, we carry
out this procedure for each topic z (i.e., having spatial items along with their scores
on the same topic z in each sorted list Lz). When receiving a query q = (u, lu), we first
obtain K ranked lists Lz, z ∈ {1, 2, . . . , K}, of spatial items in location lu, and compute
the query preference weights W(u, lu, z) on each topic z, z ∈ {1, 2, . . . , K}. We then run
the Algorithm 2 to compute the top-k spatial items from the K lists and return them
(along with their ranking scores) in the priority list L. As is shown in Algorithm 2, we
first maintain a priority list PL for the K lists where the priority of a list Lz is the

ACM Transactions on Information Systems, Vol. 32, No. 3, Article 11, Publication date: June 2014.



LCARS: A Spatial Item Recommender System 11:13

ALGORITHM 2: Threshold-based algorithm

Input: A query (u, lu); the query preference weights W (u, lu, z), z ∈ {1, 2, . . . , K}; priority
lists (L1, . . . , LK);

Output: List L with all the k highest ranked spatial items;

/* PL, L and Lz are priority lists in which elements are automatically sorted
according to their priorities. They have five operations:
insert(element,priority) inserts an element into the list with a specific
priority; get() returns the head element; remove() removes the head element;
get(k) returns the k-th element; remove(k) removes the k-th element;
hasMore() returns true if the list is non-empty. */

1 PL, L = ∅;
/* initialize the threshold score ST a */

2 ST a = max;
3 for z = 1 to K do
4 v = Lz.get();
5 Compute S(u, lu, v) according to Equation (22);
6 PL.insert(z, S(u, lu, v));
7 end
8 ST a = Compute T hreshold();
9 while true do

10 nextListT oCheck = PL.get();
11 PL.remove();
12 v = LnextListT oCheck.get();
13 LnextListT oCheck.remove();
14 if v /∈ L then
15 if L.size() < k then
16 L.insert(v, S(u, lu, v));
17 end
18 else
19 v′ = L.get(k);
20 if S(u, lu, v′) ≥ ST a then
21 break;
22 end
23 if S(u, lu, v′) < S(u, lu, v) then
24 L.remove(k);
25 L.insert(v, S(u, lu, v));
26 end
27 end
28 end
29 if LnextListT oCheck.hasMore() then
30 v = LnextListT oCheck.get();
31 Compute S(u, lu, v) according to Equation (22);
32 PL.insert(nextListT oCheck, S(u, lu, v));
33 ST a = Compute T hreshold();
34 end
35 else
36 break;
37 end
38 end
39 return L;
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ALGORITHM 3: Function Compute Threshold()

Input: A priority list PL; priority lists (L1, . . . , LK); the query preference weights W (u, lu, z),
z ∈ {1, 2, . . . , K};

Output: The threshold score ST a;

1 ST a = 0;
2 for i = 1 to K do
3 z = PL.get(i);
4 v = Lz.get();
5 ST a = ST a + W (u, lu, z)F(lz, v, z);
6 end
7 return ST a;

ranking score (i.e., S(u, lu, v)) of the first item v in Lz (Lines 3–7). In each iteration, we
select the most promising item (i.e., the first item) from the list that has the highest
priority in PL and add it to the result list L (Lines 10–17). When the size of L is no less
than k, we will examine the k-th item in the result list L. If the ranking score of the k-th
item is no less than the threshold score (i.e., ST a), which is computed in Algorithm 3,
the Threshold-based Algorithm terminates early without checking any subsequent
items (Lines 19–22). Otherwise, the k-th item is either replaced by the current item
if its ranking score is lower than that of the current one, or reserved if otherwise
(Lines 23–26). In the end of each iteration, we update the priority of current list as well
as the threshold score (Lines 29–34).

Algorithm 3 illustrates the computation of the threshold score, which is obtained by
aggregating the maximum F(lu, v, z) represented by the first item in each list Lz. Con-
sequently, it is the maximum possible ranking score that can be achieved by remaining
unexamined items. Hence, if the ranking score of the k-th item in the result list L is
no less than the threshold score, L can be returned immediately because no remaining
item will have a higher ranking score than the k-th item.

3.2.1. Discussion. It is easy to understand that Algorithm 2 is able to correctly find the
top-k items with the monotone aggregation function S(u, lu, v) defined in Equation (22).
We will now prove it formally.

THEOREM 1. Algorithm 2 is able to correctly find the top-k items with the monotone
aggregation function S(u, lu, v) defined in Equation (22).

PROOF. Let L be a ranked list returned by Algorithm 2 which contains the k spatial
items that have been seen with the highest ranking scores. We only need to show
that every item of L has a ranking score at least as high as any other item v not in
L. By definition of L, this is the case for each item v that has been seen in running
Algorithm 2. So assume that v was not seen, and the score of v in each topic z is
F(lu, v, z). For each ranked list Lz, let ṽz be the last item seen in the list. Therefore,
F(lu, v, z) ≤ F(lu, ṽz, z), for every z. Hence, S(u, lu, v) ≤ ST a where ST a is the threshold
score computed in Algorithm 3. The inequality S(u, lu, v) ≤ ST a holds because of the
monotonicity of the aggregation function S(u, lu, v) defined in Equation (22). But by
definition of L, for every v′ in L we have S(u, lu, v′) ≥ ST a. Therefore, for every v′ in L
we have S(u, lu, v′) ≥ ST a ≥ S(u, lu, v), as desired.

Besides, Algorithm 2 has another nice property that it is instance optimal with ac-
cessing the minimum number of items, and no deterministic algorithm has a lower
optimality ratio [Fagin et al. 2001]. We use the word “optimal” to reflect the fact
that Algorithm 2 is best deterministic algorithm. Intuitively, instance optimality
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corresponds to optimality in every instance, as opposed to just worst case or the average
case. There are many algorithms that are optimal in a worst-case sense, but are not
instance optimal.

Next, we will investigate the instance optimality of Algorithm 2 by an intuitive
argument. If A is an algorithm that stops earlier than Algorithm 2 in a certain case,
before A finds k items whose ranking score is at least equal to the threshold score
ST a, then A must make a mistake, since the next unseen item v might have a ranking
score equal to F(lu, ṽz, z) in each topic z, and hence have ranking score S(u, lu, v) =
ST a. This new item, which A has not even seen, has a higher ranking score than
some item in the top-k list that was output by A, and so A erred by stopping too
soon.

3.3. TA-Approximation Algorithm for Top-k Recommendation

In practice, the querying user u may be satisfied with an approximation top-k list.
Assume ρ > 1, a ρ-approximation to the top-k answers for the aggregation function
S(u, lu, v) is defined to be a list of k items (each along with its ranking score) such that for
each v′ among these k items and each v not among these k items, ρS(u, lu, v′) ≥ S(u, lu, v).
Note that the same definition with ρ = 1 gives the exact top-k answers. We can modify
Algorithm 2 to find a ρ-approximation to the top-k answers by modifying the rule in
Line 20 to “if S(u, lu, v′) ≥ ST a/ρ”, namely as soon as at least k items have been seen
whose ranking score is at least equal to ST a/ρ, then halt. Let us call this approximation
algorithm TA-ρ.

THEOREM 2. The TA-ρ algorithm is able to correctly finds a ρ-approximation to the
top-k answers for the monotone aggregation function S(u, lu, v) defined in Equation (22).

PROOF. This follows from a straightforward modification of the proof of Theorem 1.

ALGORITHM 4: Interactive Process

if S(u, lu, v′) ≥ ST a/ρ then
Show the current view of the top-k list L to the querying user;
Get feedback from the querying user;
if the querying user is satisfied with L or ρ is equal to 1 then

break;
end
else

ρ = ηρ;
/* η is a predefined decay rate with the range (0 · · · 1) */

end
end

Furthermore, we can easily modify Algorithm 2 into an interactive process where at
all times LCARS can show the querying user its current view of the top-k recommenda-
tions along with a guarantee of ρ-approximation to the correct answer. Specifically, we
can modify the rule in Lines 20–21 “if S(u, lu, v′) ≥ ST a then break;” to an interactive
process illustrated in Algorithm 4. Thus, the querying user can decide whether he/she
is satisfied with the current recommendation results and can stop the algorithm early
at any time when the condition S(u, lu, v′) ≥ ST a/ρ is met. An example is shown in
Figure 4. The first results shown in the left column are unsatisfied, and the user clicks
the “dislike”. The system next reduces the ρ and recomputes the results shown in the
right column. The querying user is satisfied with the current recommendations, and
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Fig. 4. An example of interactive process.

the algorithm can terminate. Otherwise, the algorithm will continue to improve the ap-
proximation degree by decaying ρ value, and produce more accurate recommendations
until the querying user’s expectations are met, or the exact top-k recommendations are
produced (i.e., the ρ is decayed to one).

4. EXPERIMENTS

In this section, we first describe the settings of experiments including the datasets,
comparative approaches, and the evaluation method. We then report major experimen-
tal results on both the recommendation effectiveness and efficiency of our recommender
system, followed by their tradeoff. We also study the interpretability of our LCARS by
analyzing the learned user profiles, the effect of users’ personal interests and the local
preferences in users’ decision making for travelling, and the latent topics learned by
LCARS.

4.1. Experimental Settings

4.1.1. Datasets. In this article, we utilize one synthetic dataset with 10 million spatial
items and two real-life datasets for the performance evaluation. The detailed descrip-
tion for two real datasets are listed as follows.

—DoubanEvent. DoubanEvent is China’s largest event-based social networking site
where users can publish and participate in social events. On DoubanEvent, a social
event is created by a user by specifying what, when and where the event is. Other
users can express their intent to join events by checking-in online. This dataset
consists of 100,000 users, 300,000 events and 3,500,000 check-ins. Most of check-
in records are located in China’s four largest cities: Beijing, Shanghai, Guangzhou
and Shenzhen. To guarantee the validity of the experimental results, each user in
our dataset has provided at least 10 check-ins. Figure 5 describes the distribution
information of both users and events over cities. For instance, 22% of users live in
the city of Beijing and 24% of events are held in Beijing. The following information
is recorded when collecting the data: 1) user information, including user-id, user-
name and user-home city; 2) event information, consisting of event-id, event-name,
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Fig. 5. User and event distributions over cities.

event-latitude, event-longitude, event-summary and its category; 3) user feedback
information, including user-id and event-id. We make the dataset publicly available1.

—Foursquare. Another publicly available LBSNs dataset, Foursquare [Gao et al. 2012],
is also used in our experiment. Foursquare is one of the most popular online LBSNs.
It has more than 30 million users and 3 billion check-ins as of January, 20132. The
web site itself does not provide a public API to access users’ check-in data; however, it
provides an alternative way for users to link their twitter accounts with Foursquare,
and then share the check-in message as tweets to Twitter. Previous works [Gao
et al. 2012; Scellato et al. 2011b; Bauer et al. 2012; Cheng et al. 2011] used this
way to collect the data from Twitter for studying check-in behaviors. Similarly, the
dataset used in our experiment was collected by getting access to the check-in tweets
through the Twitter REST API from January 2011 to July 2011. This dataset contains
11, 326 users, 182, 968 venues and 1, 385, 223 check-ins. Note that this dataset does
not contain item content information.

To utilize these two datasets in our proposed models, we preprocess them as follows:
1) We first employ Google Maps API3 to partition all the spatial items into cities
according to their latitudes and longitudes. 2) For the DoubanEvent dataset, we then
use NLP toolkits4 to extract a set of content words for each event from its summary and
category description. To guarantee the quality of content words, we use tf-idf techniques
to rank all content words associated with each event and finally keep top five ranked
ones.

Note that, although we only utilize the city granularity to generate recommendation
to end-users for evaluation in this article, our approach can be easily extended to
facilitate the recommendation task at various granularities, by dividing the space into
multi-scale regions, inferring their local preferences offline, and automatically selecting
proper region when making recommendations. Specifically, we can use a spatial tree
structure, for instance, pyramid structure [Sarwat et al. 2013; Aref and Samet 1990], to
partition and index the space. Thus, the space can be divided recursively into numerous
cells at different levels with different granularities. After the space partition, we use
LCA-LDA model to learn the local preference θ ′

l for each cell l. When receiving a
query, LCARS searches the index to find a suitable granularity, and produces top-k
recommendations. If the querying user changes the granularity of the querying region,
LCARS can simply traverse the index and re-compute top-k recommendations. It is

1http://net.pku.edu.cn/daim/yinhongzhi/index.html.
2https://foursquare.com/about/.
3https://developers.google.com/maps/.
4http://nlp.stanford.edu/software/index.shtml.
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worth mentioning that the local preferences can be constructed offline, which will not
affect the efficiency of online recommendation. Thus, LCARS can also support another
recommendation scenario where end-users do not need to input querying locations
explicitly, and LCARS can automatically locate them by the interfaces of location-
based services such as Google Maps and Yelp, and then find the regions with proper
granularity.

4.1.2. Comparative Approaches. We compare our proposed LCARS with the following
six competitor methods, where the first four approaches are the existing recommender
systems, and the last two recommender models correspond to the two main components
of our proposed LCA-LDA.

—User interest, social and geographical influences (USG). Following recent location-
based recommendation work [Ye et al. 2011], a unified location recommendation
framework is implemented which linearly fuses user interest, along with the social
and geographical influences. The user interest component of USG is implemented
by a traditional user-based collaborative filtering technique, and the geographical
influence is computed by a power-law probabilistic model that aims to capture the
geographical clustering phenomenon that points of interest visited by the same user
tend to be clustered geographically.

—Social Trust Ensemble (STE). Social Trust Ensemble, proposed in [Ma et al. 2009], is
a probabilistic matrix factorization framework which linearly fuses the users’ tastes
and their friends’ favors together to produce recommendations. It should be noted
that the mixing weights in STE are manually set rather than learned automatically
from the data. Besides, the mixing weights in BTE are not personalized (i.e., all users
in a dataset share the same mixing weights), ignoring the differences between users.

—Category-based k-Nearest Neighbors Algorithm (CKNN). Following recently proposed
location-based recommendation technique [Bao et al. 2012] for dealing with the prob-
lem of data sparsity, a category-based KNN algorithm is implemented as our com-
petitor. CKNN first projects a user’s activity history into a well-designed category
space and models each user’s preference with a weighted category hierarchy. Mean-
while, it infers the authority of each user in a city with respect to different category
of spatial items according to their activity histories using HITS model [Kleinberg
1999]. When receiving a query q = (u, l), CKNN first selects a set of high-quality
users Nu in the querying city who have the same or similar preferences with the
querying user u. Then,CKNN constructs a user-item matrix using the selected users
Nu and their visited spatial items. Finally, CKNN employs a traditional user-based
CF model over the user-item matrix to infer the querying user’s rating of a candidate
item. The general intuition behind a user-based CF model is that similar users rate
the same items similarly. Formally, the rating that the querying user u would give
to spatial item v is calculated as follows.

S(u, v) =
∑

u′∈Nu

Sim(u, u′) × r(u′, v) (25)

where Sim(u, u′) denotes the similarity between u and u′ which is computed according
to their weights in the category hierarchy rather than the traditional Cosine value
between two users’ item vectors; r(u′, v) represents the rating that u′ gave to item v.

—Item-based k-Nearest Neighbors Algorithm (IKNN). IKNN is the most common way
that people come up with, which applies the collaborative filtering method directly
over the spatial items. This method utilizes the user activity history to create a
user-item matrix. When receiving a query, IKNN retrieves all users to find k near-
est neighbors in the querying city by computing the Cosine similarity between the
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querying user’s and other users’ item vectors. Finally, the spatial items in the user-
specific querying city that have a relatively high ranking score will be recommended.
It should be noted that when IKNN cannot help the querying user find k nearest
neighbors in the querying city, we recommend the most popular local ones.

—LDA. Following previous works [Jin et al. 2005; Chen et al. 2009], a standard LDA-
based method is implemented as one of our baselines. In this model, each user is
viewed as a document, and spatial items visited by the user are viewed as the words
appeared in the document. Compared with our proposed LCA-LDA, this method
neither considers the content information of spatial items, nor their location infor-
mation. For online recommendation, the ranking score is computed using our ranking
framework in Equation (22) where F(lu, v, z) = φ̂zv, W(u, lu, z) = θ̂uz.

—Location-Aware LDA (LA-LDA). As a component of the proposed LCA-LDA model,
LA-LDA means our method without considering the content information of spatial
items. For online recommendation, the ranking score is computed using our proposed
ranking framework in Equation (22) where F(lu, v, z) = φ̂zv and W(u, lu, z) = λ̂uθ̂uz +
(1 − λ̂u)θ̂ ′

luz.
—Content-Aware LDA (CA-LDA). As another component of the LCA-LDA model, CA-

LDA means our method without exploiting the location information of spatial items,
that is, local preference. It can capture the prior knowledge that spatial items with
the same or similar contents are more likely to belong to the same topic. This model is
similar to the ACT model [Tang et al. 2008] in the methodology. For online recommen-
dation, the ranking score is computed using our ranking framework in Equation (22)
where F(lu, v, z) = φ̂zv

∑
cv∈Cv

φ̂′
zcv

and W(u, lu, z) = θ̂uz.

4.1.3. Evaluation Methods. We evaluate both the effectiveness of the suggested recom-
mendations and the efficiency for generating online recommendations as well as their
tradeoff in our LCARS.

Recommendation Effectiveness. To make an overall evaluation of the recommenda-
tion effectiveness of our proposed LCA-LDA, we first design the following two real
settings: 1) querying cities are new cities to querying users; 2) querying cities are the
home cities of querying users. We then divide a user’s activity history into a test set
and a training set. We adopt two different dividing strategies with respect to the two
settings. For the first setting, we select all spatial items visited by the user in a non-
home city as the test set and use the rest of the user’s activity history in other cities
as the training set. For the second setting, we randomly select 20% of spatial items
visited by the user in personal home city as the test set, and use the rest of personal
activity history as the training set.

According to the designed dividing strategies, we split the user activity history S
into the training dataset Straining and the test set Stest. To evaluate the recommender
models, we adopt the similar testing methodology and the measurement Recall@k
applied in Cremonesi et al. [2010], Chen et al. [2009], Koren [2008], and Yin et al.
[2012]. Specifically, for each test case (u, v, lv) in Stest, we follow this methodology.

(1) We compute the ranking score for item v as well as all other spatial items located
in city lv and unvisited by u before.

(2) We form a ranked list by ordering all these spatial items according to their ranking
scores. Let p denote the rank of the test item v within this list. The best result
corresponds to the case where the test item v precedes all the unvisited items (i.e.,
p = 0).

(3) We form a top-k recommendation list by picking the k top ranked items from the list.
If p < k we have a hit (i.e., the test item v is recommended to the user). Otherwise
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Fig. 6. Top-k performance on DoubanEvent.

we have a miss. The probability of a hit increases with the increasing value of k.
When k is equal to the number of spatial items located in lv, we always have a hit.

The computation of Recall@k proceeds as follows. We define hit@k for a single test
case as either the value 1 if the test spatial item v appears in the top-k results, or else
the value 0. The overall Recall@k are defined by averaging all test cases:

Recall@k = #hit@k
|Stest| , (26)

where #hit@k denotes the number of hits in the test set, and |Stest| is the number of all
test cases. It should be noted that both DoubanEvent and Foursquare datasets have
a low density, which usually results in relatively low recall values [Yuan et al. 2013;
Konstas et al. 2009]. In addition, the spatial items visited by user u may represent only
a small portion of spatial items that u is interested in, so the hypothesis that all the
unvisited spatial items are non-relevant to user u tends to underestimate the computed
recall with respect to the true recall. However, this experimental setting and evaluation
are fair to all comparison approaches. So, we focus on the relative improvements we
achieve, instead of the absolute values in this article.

Recommendation Efficiency. The efficiency of the online recommendation mainly
depends on 1) the number of all spatial items in the user-specific querying city and 2) the
number of spatial items recommended. Therefore, we test the efficiency of our proposed
LCARS over these two factors. At the same time, we explore the benefit that our
designed TA-based query processing technique brings to the online recommendation
part.

Trade-off between Recommendation Effectiveness and Efficiency. We also study the
tradeoff between recommendation effectiveness and recommendation efficiency in our
LCARS using TA-ρ algorithm by varying ρ values.

4.2. Recommendation Performance of LCARS

In this subsection, we first report the performance of our LCARS on the recommen-
dation effectiveness and then compare the time costs of different recommendation
algorithms.

4.2.1. Effectiveness of Recommendations. In this part, we first present the optimal per-
formance with well-tuned parameters and then study the impact of model parameters.

Figure 6 reports the performance of the recommendation algorithms on DoubanEvent
dataset. We show only the performance where k is in the range [1...20], because a greater
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value of k is usually ignored for a typical top-k recommendation task. It is apparent
that the algorithms have significant performance disparity in terms of top-k recall. As
shown in Figure 6(a) where querying cities are new cities, the recall of LCA-LDA is
about 0.1 when k = 10, and 0.126 when k = 20 (i.e., the model has a probability of 10% of
placing an appealing event within the querying city in the top-10 and 12.6% of placing
it in the top-20). Clearly, our proposed LCA-LDA model outperforms other competitor
recommendation algorithms significantly. First, IKNN and USG perform the worst
in the new city setting. Both of them are traditional location-based recommendation
algorithms and cannot alleviate the data sparsity problem in new cities. Specifically,
without exploiting the content/category information of spatial items to build a bridge,
they cannot transfer the users’ preferences learned in home cities to new cities, and
hence fail to find k preference-similar users for the querying user in the new city
setting. Second, STE and USG perform better than LDA and IKNN, respectively, due
to the benefits brought by considering social influence from friends. Besides, STE and
LDA outperform both USG and IKNN consistently, showing the advantages of latent
factor models which overcome the data sparsity problem, to some extent, by dimension
reduction. But STE performs worse than CKNN and our LCA-LDA, which shows that
exploiting social influences and dimension reduction are not enough to alleviate the
new city problem although they can alleviate the data sparsity problem to some extent.
As is analyzed in Cho et al. [2011], most of a querying user’s friends live in the same
city with the querying user, and they also have few footprints in the querying city
that is new to the querying user due to the property of travel locality [Sarwat et al.
2013; Levandoski et al. 2012]. That is why exploiting social and geographical influence
cannot help much when alleviating the new city problem. Third, CKNN, which was
proposed for solving the new city problem [Bao et al. 2012], performs better than STE,
IKNN, USG and LDA, as is expected. CKNN depends on a well-designed category
hierarchy to facilitate users’ preferences across cities. So, it can find k high-quality
users who have similar/same preferences with the querying user. But, this method
ignores the observation of the shift of users’ preferences, that is, people’s preferences or
behavioral patterns may change when they travel in different cities, especially in cities
that are new to them. So, CKNN would fail to make accurate recommendations in the
case where users’ preferences shift, while our proposed LCA-LDA and LA-LDA models
can still work well in this case because they exploit the local preferences/attractions
of the querying city to produce recommendations, that is, what most of people have
done when they travel in the querying city. That is why our proposed LCA-LDA model
performs much better than CKNN. Fourth, LA-LDA outperforms LDA, justifying the
benefit brought by considering local preferences, and CA-LDA exceeds LDA due to the
advantages of taking item contents into consideration. Finally, LCA-LDA outperforms
both LA-LDA and CA-LDA, showing the advantages of combining local preferences
and item contents in a unified manner.

In Figure 6(b), we report the performance of all recommendation algorithms for
the second setting where querying cities are home cities of querying users. From the
figure, we can see that the trend of comparison result is similar to that presented in
Figure 6(a). The main differences are that 1) all recommendation algorithms perform
better in the home city setting than in the new city setting and 2) the performance
gaps between different recommendation methods narrow, because the data sparsity
problem is not so severe in the home city setting. Another observation is that USG and
STE almost performs as well as LA-LDA, and outperforms LDA, CKNN and IKNN
in the home city setting, verifying the benefit brought by considering the social and
geographical influences. However, the performances of USG and STE are not so well
in the new city setting, as shown in Figure 6(a), which shows that exploiting social and
geographical influences is not enough to alleviate the new city problem although it can
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Fig. 7. Top-k performance on Foursquare.

alleviate the data sparsity problem to some extent. The third observation is that CKNN
outperforms LDA and STE in Figure 6(a) while LDA and STE slightly exceeds CKNN
in Figure 6(b), showing that existing latent factor models (e.g., LDA and STE) better
suit the home city setting which is almost the same as the traditional recommendation
setting (e.g., movie recommendation), and the hybrid methods (e.g., CKNN) are more
capable of overcoming the difficulty of data sparsity, that is, the new city problem.

Figure 7 reports the performance of the recommendation algorithms on the
Foursquare dataset. We only compare LA-LDA, one component of our LCA-LDA model,
with LDA, STE, USG and IKNN since this dataset does not contain item content in-
formation. From the figure, we can see that the trend of comparison result is similar
to that presented in Figure 6, and LA-LDA performs best, showing the advantage of
exploiting the local preference.

Impact of Model Parameters. Tuning model parameters, such as the number of topics
for all topic models, is critical to the performance of models. We therefore also study the
impact of model parameters on DoubanEvent dataset. We only show the experimental
results for the new city setting since the experimental results for the home city setting
is similar.

As for the hyperparameters α, α′, β, β ′, γ and γ ′, following existing works [Tang
et al. 2008, 2012], we empirically set fixed values (i.e., α = α′ = 50/K, β = β ′ = 0.01,
γ = γ ′ = 0.5). We tried different setups and found that the estimated topic models are
not sensitive to the hyperparameters, but the performance of topic models such as LDA
are slightly sensitive to the number of topics. Thus, we tested the performance of LDA,
LA-LDA, CA-LDA and LCA-LDA models by varying the number of topics (e.g., K = 50,
100, 150, 200.) and present the results in Figure 8(a) to 8(d). From the figures, we
observe: 1) the Recall@k values of all latent topic-based recommender models slightly
increase with the increasing number of topics; 2) the performance of latent topic-based
recommender models does not change significantly when the number of topics is larger
than 150; 3) LA-LDA, CA-LDA and LCA-LDA perform better than LDA under any
number of topics, and LCA-LDA consistently performs best. It should be noted that the
performance reported in Figure 6 is achieved with 150 latent topics.

4.2.2. Efficiency and Scalability of Recommendations. In the efficiency study on Douban-
Event, we tested 10000 querying users for the querying cities of Beijing, Shanghai,
Guangzhou and Shenzhen respectively, by recommending a ranked list of events in each
querying city for each test user. It is worth mentioning that there are different numbers
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Fig. 8. Impact of the number of latent topics.

of events and users in these four cities (i.e., |VBeijing| > |VShanghai| > |VGuangzhou| >
|VShenzhen|, |UBeijing| > |UShanghai| > |UGuangzhou| > |UShenzhen|). All the recommendation
algorithms were implemented in Java (JDK 1.6) and run on a Linux Server with 64G
RAM.

For the online recommendation of LCARS, we adopt two methods to utilize the
knowledge learned offline by LCA-LDA to produce recommendations. The first is called
LCA-LDA-TA proposed in Section 3.2, which extends TA algorithm to produce top-k rec-
ommendations. The second is called LCA-LDA-BF which uses a brute-force algorithm
to produce top-k recommendations. In LCA-LDA-BF, we online compute the preference
score of a test user to all events within the querying city and subsequently select the
best k among them to recommend to the test user.

Figure 9(a)–9(d) present the average online efficiency of different methods, varying
in the number of recommendations, for querying cities Beijing, Shanghai, Guangzhou,
and Shenzhen, respectively. For example, on average our proposed LCA-LDA-TA can
produce top-10 recommendations in 11.4 ms, 6.7 ms, 6.1 ms and 5.4 ms for the querying
cities Beijing, Shanghai, Guangzhou and Shenzhen, respectively. From the figures, we
observe that 1) LCA-LDA-TA outperforms LCA-LDA-BF significantly in all querying
cities, justifying the benefits brought by the TA-based query processing technique;
2) both LCA-LDA-TA and LCA-LDA-BF are consistently better than CKNN and IKNN,
showing that the model-based methods can produce faster responses to querying users
than memory-based methods once the model parameters are learned offline; 3) the time
costs of all algorithms increase slowly with the increasing number of recommendations;
4) the time cost (TS) of each algorithm in four different cities can be ranked as follows:
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Fig. 9. Efficiency w.r.t recommendations.

TSBeijing > TSShanghai > TSGuangzhou > TSShenzhen, which is, however, due to different
causes for different algorithms. The time costs of LCA-LDA-TA and LCA-LDA-BF
mainly depend on the number of items while that of CKNN and IKNN mainly depend
on the number of users.

To evaluate the scalability of LCARS, we create a large-scale synthetic dataset con-
taining 1 million users, 10 million spatial items and 100 million check-ins in total.
Each spatial item is associated with a city and 5 content words. We control the number
of available spatial items to vary from 1 million to 10 millions to test the scalability of
LCARS, since the online time cost of LCARS mainly depends on the number of avail-
able spatial items, given a query and the number of recommendations. Note that we
do not compare LCARS with CKNN and IKNN in this experiment since the runtime
costs of CKNN and IKNN mainly depend on the number of available users rather than
items. Given a query, CKNN and IKNN need to scan all available users and compute
their similarity with the querying user to find k nearest neighbors in the querying city.
As shown in Figure 9, LCA-LDA-TA performs better than them significantly.

Figure 10 presents the time cost of producing top-10 recommendations with varying
number of available items from 1 million to 10 millions. From the figure, we can see that
both algorithms exhibit highly desirable scaling characteristics—linear in the amount
of available items to recommend. This is confirmed by a linear regression applied to
the running time data, which yields an R2 value close to one. Results also demonstrate
that LCA-LDA-TA is much faster than LCA-LDA-BF: 170 ms compared to 1660 ms
when the number of available items is 10 million (improvement by a factor of 9.76).
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Fig. 10. Scalability of LCARS on the synthetic dataset.

Fig. 11. Recommendation effectiveness of LCARS on DoubanEvent dataset, using TA-ρ algorithm.

4.3. Performance of LCARS with TA-Approximation Algorithm

In this subsection, we study the performance of LCARS with TA-approximation algo-
rithm, varying the ρ values from 1 to 6. Figure 11 and 12 show the recommendation
effectiveness and efficiency of LCARS with TA-ρ algorithm by varying the ρ values
from 1 to 6, respectively. From the figures, we observe that the recommendation effec-
tiveness decreases with the increasing ρ value while the recommendation efficiency
increases with the increasing ρ value, that is, the time cost of online recommendation
decreases with the increasing ρ value. Note that LCARS-TA-1 in Figures 11 and 12 is
the LCARS with exact TA algorithm. By comparison between Figures 11 and 12, we
can see that there is a tradeoff between recommendation effectiveness and efficiency.
Users can specify the value of ρ according to their needs, higher recommendation accu-
racy or faster query response. Fortunately, the TA-approximation algorithm can reduce
the time cost of online recommendation drastically (i.e., about 50%) at a little cost of
recommendation accuracy when ρ ≤ 3. Although the benefit of 50% time cost reduction
is small in our case study (e.g., several ms), it would become greatly significant when
the number of spatial items available is huge (e.g., millions of items).
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Fig. 12. Recommendation efficiency of LCARS on DoubanEvent, using TA-ρ algorithm.

Fig. 13. Example user profile and local preference influence learned from DoubanEvent, by using LCA-LDA.

4.4. Profile Study

Both the personal interest of querying user u, the local preference of the querying city
lu and their influences to u’s decision-making can be learned automatically through our
LCA-LDA model to build user profiles. In this section, we first analyze a user profile to
facilitate a better understanding of the user’s visiting behaviors. In Figure 13, we show
the profiles of user 102 who comes from Shanghai and the querying city Beijing. As
shown, user 102 is influenced by the local preference with influence probability value
0.36 . Also, the top-4 topics of the user’s interest and the local preference of Beijing are
also shown respectively, where the weights representing user’s personal interest and
the local preference in the topics are labeled in the corresponding edges. Notice that
there is only one overlapped topic for user 102 and the local preference of Beijing, and
their dominated topics are different (i.e., T1 vs. T8).

We also show two location profiles for two largest cities in China, Beijing and
Shanghai, in Figure 14 where top-4 topics for each city are presented. By comparing the
two location profiles, we can observe that there is only one overlapped topic between
Beijing’s local preference and Shanghai’s local preference. This indicates the phe-
nomenon of preference locality which suggests that users from a spatial region pre-
fer spatial items that are manifestly different from spatial items preferred by users
from other regions. This observation is consistent with the principle of homophily
[Wasserman and Faust 1994] in social network studies − birds of a feather flock to-
gether. Note that we show the contents of topics T8, T9 and T22 in Table II.
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Fig. 14. Example location profiles learned from DoubanEvent, by using LCA-LDA.

Table II. Latent Topics Learned by LCA-LDA

T8 T22 T9
Event ID Category Location Event ID Category Location Event ID Category Location
18852778 culture salon Beijing 14232509 exhibition Beijing 18567203 concert Shanghai
11177738 culture salon Shanghai 18833193 exhibition Shanghai 18131435 concert Beijing
18845712 culture salon Nanjing 18761132 exhibition Beijing 18898584 concert Shanghai
18833831 culture salon Beijing 18619185 exhibition Xi’an 18825734 concert Shanghai
18129058 culture salon Wuhan 18818656 exhibition Shanghai 18710070 concert Guangzhou
18840452 culture salon Beijing 18696716 exhibition Beijing 18465268 concert Chengdu
18867591 culture salon Guangzhou 18800412 exhibition Beijing 18631346 concert Beijing
18953054 culture salon Beijing 12104434 exhibition Shanghai 18394935 concert Shanghai

Fig. 15. Local preference influence result (DoubanEvent).

4.5. Local Preference Influence Study

In this section, we study the effects of personal interest and local preference on users’
decision making. The self interest influence probability λu and the local preference
influence probability 1−λu are learned automatically in our proposed LCA-LDA model.
Since different people have different mixing weights, we plot the distributions of both
self interest and local preference influence probabilities among all users. The results
on the DoubanEvent dataset are shown in Figure 15, where Figure 15(a) plots the
cumulative distribution of self interest influence probabilities, and Figure 15(b) shows
the local preference influence probabilities. It can be observed that, in general, people’s
self interest influence is higher than the influence of the local preference. For example,
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Fig. 16. Local preference influence result (Foursquare).

Table III. Latent Topics Learned by LDA

T9 T8 T16
Event ID Category Location Event ID Category Location Event ID Category Location
18825734 concert Shanghai 18852778 culture salon Beijing 18020482 exhibition Guangzhou
18830050 film Shanghai 18840452 culture salon Beijing 18425473 concert Guangzhou
18818656 exhibition Shanghai 18629384 film Beijing 18847061 culture salon Guangzhou
16578267 film Shanghai 18432390 drama Beijing 18937837 party Guangzhou
18567203 concert Shanghai 18668341 concert Beijing 18847604 film Guangzhou
17364244 drama Shanghai 18041992 exhibition Beijing 18829026 concert Guangzhou
18053337 concert Shanghai 18953054 culture salon Beijing 18412853 drama Guangzhou
13892914 culture Shanghai 18478314 drama Beijing 17364134 concert Guangzhou

salon

Figure 15(a) shows that the self interest influence probability of more than 70% of users
is higher than 0.5. The implication of this finding is that people mainly attend social
events based on their self interests, but they sometimes attend popular local events
regardless of their interests, especially when travelling in new cities. This finding also
explains the superiority of LCA-LDA and LA-LDA in the recommendation performance
(Section 4.2.1).

Figure 16(a) and 16(b) show, respectively, the self interest influence probabilities and
local preference influence probabilities learned from the Foursquare data by LA-LDA
model. We observe that the trend of the CDF curve in Figure 16 is similar to that in
Figure 15. As shown in Figure 16, although the self-interest influence probability is
generally higher than that of the local preference, the local preference still plays an
important role in the user decision-making for visiting. For example, the local prefer-
ence influence probability of about 40% of users is higher than 0.5. This finding also
shows the necessity of exploiting the local preference in spatial item recommendation.

4.6. Analysis of Latent Topic

To analyze why our proposed location content-aware probabilistic generative model
LCA-LDA performs better than LDA in the task of top-k recommendation, especially
spatial item recommendation in new cities, we investigate the latent information
learned from LCA-LDA and LDA.

Table II and Table III respectively show three latent topics (e.g., T8, T22, and
T9) learned by LCA-LDA and LDA on the DoubanEvent dataset. For each topic,
we present the top eight events with the highest probabilities, including their IDs,
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categories and locations. For locations, we present only the cities rather than detailed
addresses because of space constraints. Each event can be browsed online by combining
event-ID and the prefix URL5. For example, the event 18852778 can be accessed at
www.douban.com/event/11177738/. By comparing the topics in Tables II and III, we
observe that the events in each latent topic learned by LCA-LDA not only share the
same category, but are also located in different cities. In contrast, the topics learned
by LDA are not category-consistent. For example, concerts, culture salons, films and
exhibitions are mixed up in the topics T9, T8 and T16 learned by LDA. Besides, the
events in each topic learned by LDA take place in the same city. For example, the events
in topic T9 are located in Shanghai and the events in topic T8 are held in Beijing.

The comparative results reveal that when we use existing topic model LDA to analyze
the user activity history, we are unable to discover the users’ interests in the features
(latent topics) of spatial items such as “exhibition” and “concert”, and most of the
estimated topics describe the user’s spatial area of activity instead of user interests.
That is because 1) the user’s choice of spatial items is largely influenced by her/his
geographical coordinates, and spatial items in the user’s immediate neighborhood are
likely to be chosen; 2) traditional latent factor models (e.g., topic models and matrix
factorization methods) aim to capture item cooccurrence patterns. Another finding is
that exploiting the content information of spatial items facilitates the clustering of
items which are not only category-alike but also geo-diversity, alleviating the new
city problem. The experimental results also explains the superiority of LCA-LDA and
CA-LDA in the recommendation performance (Section 4.2.1).

5. RELATED WORK

In this section, we introduce the related works, including topic models, general recom-
mender systems and location-based recommendation.

5.1. Topic Model

Research in statistical models for cooccurrence data has given rise to a variety of useful
topic models in the domain of text mining. The most representative models include
PLSA [Hofmann 1999a, 1999b] and LDA [Blei et al. 2003; Griffiths and Steyvers 2004].
Yin et al. [2013a] proposed a probabilistic mixture model to detect both temporal topics
and stable topics in a unified way. In these studies, they do not consider the location in-
formation of documents, so they do not focus on geographical topics. Recently, a brunch
of work aims to study the geographic distributions of some topics in social media. For
example, Yin et al. [2011] studied the distributions of some geographical topics (e.g.,
beach, hiking and sunset) in USA using geo-tagged photos acquired from Flickr. [Mei
et al. 2006] proposed a probabilistic approach to model the subtopic themes and spa-
tiotemporal theme patterns simultaneously in weblogs. Pozdnoukhov and Kaiser [2011]
explored the space-time structure of topical content from a large number of geo-tweets.
The social media data generated in a geo-region is still used as static features to depict
a region. On the other hand, a few literatures have reported that human mobility can
describe the functions of regions. For example, Qi et al. [2011] observed that the getting
on/off amount of taxi passengers in a region can describe the social activity dynamics
in the region. Yuan et al. [2012] proposed a topic model which considers both static
features (POIs) of a region and human mobility between regions to infer the functions
(e.g., residential, commercial and entertainment) of an area (a set of nearby locations).

In the recommendation domain, topic models have been applied to collaborative
filtering. Jin et al. [2005] proposed an approach based on LDA to discover the hidden
semantic relationships among items for recommendations. In Chen et al. [2009], a

5http://www.douban.com/event/.
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hard-constraint-based LDA method was used to deal with user-community data, where
each user is viewed as a document, and the communities that this user joins are
viewed as words in the document. In contrast, Kang and Yu [2010] proposed a soft-
constraint-based LDA method for community recommendations. We refer to these topic
model-based CF methods as “traditional” recommendation techniques which produce
recommendations using non-spatial user activity history, failing to exploit the location
information of user activities. Kurashima et al. adopted the topic model for estimating
user’s interests based on geo-tag based histories on Flickr [2010]. However, the topic
model proposed in Kurashima et al. [2010] fails to alleviate the new city problem
because most of the discovered latent topics describes user’s immediate area of activity
instead of user interests (i.e., the estimated topics groups nearby locations). To facilitate
the discovered topics to capture user interests, a Geo Topic Model was proposed in
Kurashima et al. [2013] which jointly estimates both the user’s interests and activity
area hosting the user’s home and office. Compared with our proposed LCA-LDA model,
Geo Topic Model not only ignores the influence from the local preference, but also fails
to exploit the contents of spatial items and analyze geographic distributions of the
discovered topics.

5.2. General Recommender System

The Recommendation has been one of the most important services for many e-commerce
and social networking services (e.g., netfix.com, amazon.com and facebook.com). The
goal is to recommend an accurate list of items that match the target users’ preferences.
Collaborative filtering, Social filtering and Content-based filtering techniques are three
widely adopted approaches for recommender systems [Adomavicius and Tuzhilin 2005].
All of them discover users’ personal interests and utilize these discovered interests to
find relevant items. Collaborative filtering techniques [Herlocker et al. 1999; Chen
et al. 2009; Sarwar et al. 2001; Deshpande and Karypis 2004] automatically suggest
relevant items for a given user by making use of the activity/rating history of a group
of similar users or friends (i.e., user-based and social collaborative filtering) or a set of
similar items (i.e., item-based collaborative filtering). The content-based recommenda-
tion [Ricci and Shapira 2011] is based on the assumption that descriptive features of
an item tell much about a user’s preference to the item. Thus a recommender system
makes a decision for a user by matching a user’s personal interest to the descriptive
features of items. Recommender systems using pure collaborative filtering approaches
tend to fail when little knowledge about the user is known or when no one has sim-
ilar interest with the user. For example, if a user has little rating history or there is
rare overlap between his/her and others’ rating history, the item rating information of
others cannot help. To overcome the data sparsity problem, a probabilistic matrix fac-
torization framework, Social Trust Ensemble (STE), was proposed in Ma et al. [2009].
STE linearly fuses the users’ tastes and their friends’favors together to produce recom-
mendations. This method can alleviate the data sparsity, to some extent, by exploiting
friends’ preferences. It should be noted that the mixing weights in STE are manually
set rather than learned automatically from the data. Although content-based method is
capable of coping with the issue of lacking knowledge, it fails to account for community
endorsement. For example, even though we know a user is interested in Italian restau-
rants, content-based methods may possibly recommend a bad Italian restaurant to
him/her due to the lack of consideration of other users’ opinions. As a result, there has
been amount of research focusing on combining the advantages of both collaborative
filtering/social filtering and content-based methods [Popescul et al. 2001; Basilico and
Hofmann 2004; Kim et al. 2006; Ye et al. 2012]. Our proposal in this work is not only
able to integrate the ideas behind collaborative filtering and content-based methods
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but also incorporate the influence from the local preference into the recommendation
process.

5.3. Nonpersonalized Location-Based Recommendations

Early location-based services employ KNN technique [Hjaltason and Samet 1999] and
its variants [Papadias et al. 2005] to simply retrieve k objects nearest to a querying
user and completely ignore the notion of user personalization. Recent generic spa-
tial item recommendation systems encapsulate public opinions on spatial items and
provide users with the most popular spatial items. For example, the spatial activity
recommendation system [Zheng et al. 2010] mines GPS trajectory data embedded with
user-provided tags in order to detect interesting activities located in a city. Besides
considering only the number of user visits in GPS trajectory data, Zheng et al. [2009]
also considered the travel experience of users. Cao et al. [2010] further extended this
work to extract semantically meaningful and significant locations by considering the
relations between locations and between locations and users. Instead of learning from
the GPS data, recently, Venetis et al. [2011] study the problem of ranking nearby places
by analyzing direction queries derived from large user populations. Therefore, generic
location-based services exploit the location information of ratings in a fundamentally
different manner. These methods cannot provide personalized recommendations be-
cause they do not consider individual preferences.

5.4. Personalized Location-Based Recommendations

Traditional location-based services require users to express explicit preference con-
straints, and then use skyline-based techniques [Sharifzadeh and Shahabi 2006] or
sequential top-k query processing strategy [Marian et al. 2004] to retrieve interest-
ing locations for users. There are several studies [Monreale et al. 2009; Alvarez-Lozano
et al. 2012; Giannotti et al. 2007] that address the problem of predicting future locations
of moving objects by using a model (e.g., a decision tree model or Hidden Markov Model)
based on the mined trajectory patterns which are concise representations of behaviors
of moving objects as sequences of regions frequently visited with a typical travel time.

Recently, a branch of recent research focuses on automatically learning user prefer-
ences from the user’s location history to make recommendations by using collaborative
filtering models. Specifically, several researchers [Sarwat et al. 2013; Levandoski et al.
2012; Ye et al. 2010, 2011; Takeuchi and Sugimoto 2006] deposited user’s activity his-
tory into user-venue matrix where a row corresponds to a user’s venue history and
each column denotes a venue like a restaurant. Each entry in the matrix represents
the number of visits of a particular user paying to a physical venue. Then, a user-based
CF model is used to infer users’ preference to an unvisited venue. Geo-measured and
friend-based collaborative filtering [Ye et al. 2010] produces recommendations by using
only ratings that are from a querying user’s social-network friends who live in the same
city. Similar to the geo-measured and friend-based method, LARS [Sarwat et al. 2013;
Levandoski et al. 2012] is a location-aware recommender system that uses location-
based ratings to produce recommendations. LARS exploits user location information
through user partitioning techniques which makes recommendations by considering
only the ratings generated by users who are spatially close to the querying user. This
method makes the sparse user rating matrix more sparse, degenerating the issue of
data sparsity. LARS utilizes item location information through the travel penalty tech-
nique that penalizes the recommendation rank of items further in travel distance to
querying users. It should be pointed out that all aforementioned methods which solely
use a CF-based method, either the user-based or the item-based, cannot handle the data
sparsity problem [Desrosiers and Karypis 2011] well, let alone the new city problem,
as analyzed in Section 1.
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There is a line of research focusing on reducing the data sparsity to some extent.
Zheng et al. [2010] applied latent factor models such as matrix factorization to a
user-venue matrix. Recently, factorization machine(FM) [Rendle 2012] was proposed
to exploit the context information of user activities (e.g., location and time) to produce
recommendations, but FM is designed for the task of rating prediction, not for the top-k
recommendation. Gao et al. [2012] utilized the social network information to solve the
“cold start” location prediction problem, with a geo-social correlation model to capture
social correlations on LBSNs. Ye et al. [2011] exploited the geographical clustering
phenomenon to improve the recommendation performance, with a unified framework
to linearly fuse both user interest, social influence and geographical influence. Woerndl
et al. [2011] developed a proactive context-aware model for mobile recommender sys-
tems which first analyzes the current situation and then computes the ranking scores
of candidate items. Noulas et al. [2012] proposed a random walk-based model to rec-
ommend new venues over a user-venue graph by combining social network and venue
visit history data. Although these methods can alleviate the data sparsity problem,
to some extent, by reducing dimensions and exploiting social /geographical influences,
these methods do not work well in the new city setting because there are few, even no
overlapped users between spatial items which are located at home cities and new cities
respectively, that is, there is a gap between spatial items located in different cities,
especially disjoint cities. Specifically, when we use existing latent factor models to ana-
lyze user activity history data, the learned latent factors cannot capture the semantic
information of spatial items such as categories and genres, and most of them describe
the location information of spatial items. The top spatial items (with high weights) in
each latent factor appear to be within short distance, but share few semantics (e.g.,
categories and genres). Thus, the estimated latent factors represent geographical clus-
ters, rather than semantic clusters due to the fact that most of people’s activities are
spatially clustered rather than clustered by semantic [Cheng et al. 2012; Kurashima
et al. 2013; Cho et al. 2011]. Thus, it is most difficult for an estimated latent factor
to cluster two spatial items located in different cities. Besides, as analyzed in multi-
ple location-based social network datasets [Cho et al. 2011], more than 90% of users’
friends live in the same cities with themselves, and most of their activity histories are
in their living cities [Scellato et al. 2011b]. So, exploiting social influence cannot solve
the new city problem well. Compared with our proposed LCARS, these methods neither
exploit the content information of spatial items to build a bridge to link content-similar
items together, especially spatial items located in different cities, nor take into account
local preference and attractions.

Instead of using pure CF-based methods, Bao et al. [2012] proposed a hybrid method
to alleviate new city problem and here we call it CKNN. Specifically, CKNN first projects
a user’s activity history into a well-designed category space and models each user’s pref-
erences with a weighted category hierarchy. Meanwhile, it infers the authority of each
user in a city with respect to different category of spatial items according to their ac-
tivity histories using HITS model [Kleinberg 1999]. When receiving a query q = (u, l),
CKNN first selects a set of high-quality users Nu in querying city l who have the same or
similar preferences with the querying user u. Then, CKNN constructs a user-item ma-
trix using the selected users Nu and their visited spatial items. Finally, CKNN employs
a traditional user-based CF model over the user-item matrix to infer the querying user’s
rating of a candidate item. The advantage of CKNN over pure CF-based models is that
it can find a set of local users who have similar preferences with the querying user by
projecting users’ activity histories into a well-designed category hierarchy. Compared
with our proposed LCA-LDA model, CKNN ignores the observation of the shift of users’
preferences, that is, people’s preferences or behavioral patterns may change when they
travel in different cities, especially in cities that are new to them. For example, a user
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u living in a small city likes food very much, but does not like shopping. When she/he
travels in HongKong, especially for the first time, the user is very likely to visit local
shopping centers. CKNN would fail to recommend shopping centers in top positions
in this case because most users in Nu prefer food rather than shopping centers, while
our proposed LCA-LDA model can still work well in this case because it exploits the
local preferences/attractions of the querying city to produce recommendations besides
the querying user’s interest, that is, what most of people have done when they travel
in the querying city. That is why our proposed LCA-LDA model performs much better
than CKNN.

The interest in location-based data spans beyond the domain of spatial item recom-
mendation (e.g., points of interest and events). Many recent literatures [Scellato et al.
2011a; Wang et al. 2011; Cho et al. 2011; Quercia and Capra 2009] analyzed the inter-
play between users’ mobility and their online social connections. Based on the analysis
results, they proposed a link prediction framework to recommend social connections
based on users’ physical mobility.

5.5. Advantages of Our Proposed LCARS

Our proposed location-content-aware recommender system distinguishes from the
aforementioned works in the following four aspects: 1) We project a user’s activity
history into a latent space which integrates content knowledge of spatial items. This
method handles the data sparsity problem and enables clustering of spatial items
which do not share any user. So we can recommend spatial items to a user in a new city
by exploiting the content information about his/her preferred spatial items in other
cities (e.g., home city). 2) We take into account both user interest and local preference
to produce recommendations. This mixture modeling method mimics the process of the
user’s decision making on spatial items. The local preference, which has been neglected
before, is a valuable resource for making recommendations since people generally want
to see local attractions and attend local popular events, especially when they travel to
an unfamiliar city. 3) The ideas of integrating local preference’s influence, collaborative
filtering and content-based methods into a probabilistic generative model is unex-
plored. 4) Our proposed LCA-LDA model can generate an interpretable representation
of each user profile which can be presented alongside item recommendation. Providing
an interpretable user profile is very helpful for users to trust the recommender system
and accept the recommendations because users can understand why and how the rec-
ommendations were made by viewing their estimated user profiles. 5) An efficient and
scalable query processing technique enables LCARS to produce fast online top-k rec-
ommendations. Besides, LCARS can be deployed to support the scenarios of interactive
recommendations and real-time mobile recommendations.

6. CONCLUSIONS

This article proposed a location-content-aware recommender system, LCARS, which
provides a user with spatial item recommendations within the querying city based on
the individual interest and the local preference mined from the user’s activity history.
LCARS can facilitate people’s travel not only near their living areas but also to a city
that is new to them even if they do not have any activity history there. By taking
advantage of both the content and location information of spatial items, our system
overcomes the data sparsity problem in the original user-item matrix. We evaluated
our system using extensive experiments based on two publicly available real datasets,
DoubanEvent and Foursquare. According to the experimental results, our approach sig-
nificantly outperforms existing recommendation methods in effectiveness. The results
also justify each component proposed in our system, for instance, taking into account
of local preference and item content information. Meanwhile, the proposed scalable
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query processing technique based on TA and TA-ρ approximation algorithms, im-
proves the efficiency of our approach significantly, enabling an online recommendation
scenario and an interactive process. Besides, the experimental results also show that
LCARS can generate an interpretable representation of each user profile which can be
presented alongside spatial item recommendation.
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