
A time-sensitive user-specific recommendation system for Twitter

Shaunak Chatterjee
Computer Science Division

University of California
Berkeley, CA 94720

shaunakc@cs.berkeley.edu

Mobin Javed
Computer Science Division

University of California
Berkeley, CA 94720

mobin@eecs.berkeley.edu

Anupam Prakash
Computer Science Division

University of California
Berkeley, CA 94720

anupamp@cs.berkeley.edu

Abstract

Most modern analysis of social networks and so-
cial media assume a static network. The primary
reasons for this are better parameter estimation
and simpler inference. However, this assumption
often results in very erroneous deductions, espe-
cially for local (e.g. user-level analysis). The
aim of this project is to explore efficient ways to
model the temporal variation of influence on so-
cial links in Twitter. Using this temporally sen-
sitive model, we hope to perform better at pre-
dicting a user’s interest in a currently trending
topic.

1 Introduction

Social networks like FaceBook [1] and Twitter [2] are an
integral part of our lives today. They have become an in-
dispensable platform to disseminate information and keep
in touch with family, friends and the world in general.
The ability to predict a user’s interest in a particular topic
or product has tremendous social and commercial impact.
Therefore, it comes as no surprise that people have been
analyzing these social networks for a while now, with var-
ious applications in mind.

Our focus in this work is on Twitter, an online social net-
working and microblogging service which was created in
2006. Users send and read text-based posts of up to
140 characters known as tweets. Twitter has gained
worldwide popularity and has more than 140 million ac-
tive users (as of 2012) generating over 340 million tweets
daily. It has been described as “the SMS of the internet.”
Users can “follow” users, whose tweets would then show
up on their tweet feed.

Since a user who follows many other users would have a
lot of tweets showing up on their twitter feed, there needs
to be some way of ranking the tweets and showing the
most relevant ones at the current time. Hence, we need a

recommendation system for tweets which is customized for
each user, and is also time sensitive, to capture the user’s
current interests.

A user’s interests change over time and hence it is impor-
tant to consider a user’s long-term as well as short-term
preferences. Temporal dynamics were also modeled in the
now famous Netflix challenge. Koren [10] introduced tem-
porally sensitive parameters in his collaborative filtering
model and outperformed several more complex static mod-
els.

2 Problem Definition

In this project, we would like to design a collaborative
filtering scheme with temporal dynamics for Twitter users.
The grand objective is to be able to predict a user’s interest
in a particular topic which is currently trending.

The formal problem statement (and this is a step towards
the grand objective) for the scope of this project is as fol-
lows: Given a user u, a time window t, and a set of tweets
{TW}, rank the set of tweets based on the user u’s pref-
erences at time t.

To evaluate our recommendation system, we adopt the fol-
lowing scheme. We take a tweet (say tw∗) that a user u∗

has actually tweeted in time window t∗ and hence obvi-
ously finds interesting, and a sample of 9 other random
tweets. We then rank these 10 tweets in accordance with
that user’s preferences during that time window. Since
the other tweets are randomly chosen, it is very likely that
they will not be as relevant to the user as tw∗. Hence,
the predicted rank of tw∗ should be quite high (close to
1). The average rank predicted for tw∗ over a set of test
tweets, will give us a good indication of the accuracy of
our algorithm.

3 Data acquisition

We used the MarkLogic-Hadoop connector to query the
MarkLogic server for the tweets, XML parse them, filter

by English language and store a condensed version of each
tweet in the following format.

〈 created-at, text, user-id, screen-name, statuses-count,
friends-count, followers-count, location 〉

The input to mappers are 〈 Nodepath, MarkLogicNode

〉 pairs. The MarkLogic-Hadoop connector provides an
Xpath interface to generate the MarkLogicNodes. Figure
[3] shows a subset of the settings from our XML configura-
tion file. The mapreduce.marklogic.input.documentselector
and mapreduce.marklogic.input.subdocumentexpr proper-
ties are used in conjunction to form the MarkLogicNodes,
which in our case are the status nodes.

〈 property〉 〈 name〉
mapreduce.marklogic.input.namespace〈 /name〉 〈 value〉

tw,http://www.bid.berkeley.edu/statuses〈 /value〉 〈
/property〉

〈 property〉 〈 name〉
mapreduce.marklogic.input.documentselector〈 /name〉 〈

value〉 fn:collection()〈 /value〉 〈 /property〉

〈 property〉 〈 name〉
mapreduce.marklogic.input.subdocumentexpr〈 /name〉 〈

value〉 //tw:status〈 /value〉 〈 /property〉

〈 property〉 〈 name〉
mapreduce.marklogic.input.maxsplitsize〈 /name〉 〈 value〉

50000L〈 /value〉 〈 /property〉

The querying was extremely slow and we were able to col-
lect about only 2.5GB using 32 mappers running for about
96 hours. Here are some notes from our experiences:

• We tried to increase the number of mappers to make
the querying fast, but the MarkLogic-Hadoop connec-
tor doesn’t allow for that. It seems to split the data
by forests (hence 32 mappers). Changing the value of
mapreduce.marklogic.input.maxsplitsize didn’t change
anything.

• We couldn’t figure out a way to specify
the documentselector at a granuarlity lesser
than the whole database e.g. fn:collection()
and greater than a single document, for e.g.
doc(”/twitter/2011 11 23 tweet21.xml”). Due to
this, we were forced to query the full database.

This dataset has approximately 18 million tweets which
is about 2% sample of the total number of tweets (640
million) on the Marklogic server. Since, the Marklogic data
itself is a 1% sample, this dataset is a 0.02% sample of
the original Twitter datastream, and is hence very sparse.
This dataset will henceforth be referred to as the “sparse
dataset.”

To cater to this sparsity, we picked the top 10,000 users
with the highest statuses count, and then further filtered
this set down to 5000 users by selecting those with the
highest number of followers. Next, we used Twitter REST
APIs to get the statuses and network information for these
5000 most popular users. For each user id, we query for it’s
timeline and friend ids using HTTP GET requests [4],[5].
The timeline returns upto 3200 most recent statuses, but is
rate-limited to 200 statuses per query. The queries them-
selves are rate-limited to 150 an hour per IP address.

To use the network information, we also needed to query
for the statuses of the friends of these 5000 popular users.
But doing so forms an ever expanding set of users for which
we need the statuses. In order to limit the friends whose
statuses we query for, we use the following strategy: we
generated the masterlist of all the friends of these 5000
users and picked the top 5000 which are friends of multiple
users. Our final dataset therefore, has 10,000 users in total
with 3200 statuses per user. This dataset will be referred
to as the “dense dataset.”

In the following sections, we will describe two different
recommendation frameworks which we designed and im-
plemented — namely, latent space analysis with LSI pro-
jections and session-temporal graphs with LDA.

4 LSI model

The training dataset was a 0.02% sample of the twitter
data-stream over a three month period, the data was heav-
ily imbalanced with respect to time.

Twitter data is extremely noisy with 40% of it being bab-
ble, 38% conversation and 4% spam [6]. Moreover filtering
tweets according to language is not sufficient as in some
countries people combine the local language (eg: Indone-
sia) with English for tweets. From the initial dataset of 18
million tweets we filtered out tweets containing hyperlinks
and those for which half the words were not in the Webster
dictionary. The filtered corpus contained about 4 million
tweets.

4.1 Temporal variation in topics

With the sparse data set, we can see the evolution of topics
in the twitter verse at a coarse level of granularity. The
day is the number of days elapsed since the beginning of
the data set, Nov 21st 2011, trending words are those that
occur at least µ+ 3σ times on the given day where (µ, σ)
are the mean and variance for the appearance of the word.
The words have been selected to show that coarsely the
sparse twitter stream captures important events on these
days (see Table 1):

Day Trending words
3 lord cooking grandma xmas thanksgiving

breakfast america celebrate food family
40 happy years party friends tonight crazy year

mom fun parents family
83 music rihanna artist grammys hop houston
85 loving depressed buying gifts pink cute
99 santorum presidential ron baseball ohio
108 international children women apple cook

Table 1: Trending words capture important events

4.2 Feature extraction

The number of words occurring in the filtered twitter cor-
pus is of the order of millions, however the distribution of
words follows a power law and has a heavy tail. Elimi-
nating words that occur less than 10 times in the corpus
leaves us with a feature set of size about 80000. Stripping
off punctuation apart from @ and # which represent user
mentions and hash tags and filtering out stop words, the
feature set size further reduces to around 40000.

A topic model like Latent Semantic Indexing (LSI) that
relies on matrix factorization requires a small set of rele-
vant features. For topic modeling on twitter, the feature
set should have the following properties: (i) High cover-
age: Words from the feature set should occur frequently
in tweets. (ii) High relevance: Words in the feature set
should have high correlation with words with high infor-
mation content i.e. occurrence of a word in the feature set
should serve as an indicator that the tweet is topic specific
rather than babble/conversational.

We used the following heuristic with (t1, t2) = (100, 50) to
rank features and selected around 3500 of the top features
for training the LSI model:

1. Select a threshold t1, the weight of a word w occurring
k times in the corpus is:

wt(w) =

{
1

max(t,k) if w in dict

0 otherwise

2. The weight of a tweet is the total weight of words
contained in it. The score of a word is the average
weight of tweets containing the word.

3. Select words sorted by score that occur more than t2
times in the corpus.

4.3 Latent semantic indexing

The latent semantic indexing LSI model [8] constructs a
latent space for tweets by computing the singular value
decomposition of the term-document matrix weighted by

tf-idf scores. The terms are the feature sets constructed
as above while the documents are an aggregation of tweets
containing the terms. In addition we added tweets con-
taining popular hashtags and usernames as documents for
training the model.

The dimension of the latent space is chosen so that it cap-
tures around 0.8 fraction of the Frobenius norm of the tf-idf
matrix, about 200 dimensions suffice.

4.4 Ranking using the LSI model

The model was tested on the dense data obtained through
the twitter REST api described in section 2. The data was
split into training and test sets by aggregating the tweets of
users according to day and making an 80:20 split uniformly
at random. The test set contains 20% of the tweets by a
user on a day.

The prediction task for testing the model was the following:
for each test tweet, sample 9 other tweets from different
users in the test set and produce a ranking of the tweets
specific to the user who posted the test tweet and the time
at which the test tweet was posted.

The prediction task is expected to perform well for a rea-
sonable topic model as a few randomly sampled users are
likely to be very different in the topic space and should be
distinguishable, we used the following algorithm for rank-
ing using the LSI model:

1. Project the test tweet onto the LSI latent space to
obtain unit vectors in Rk. (k = 200)

2. The training set is stored as a list of unit vectors in
the the LSI latent space, the distance between a user
and the test tweet is the minimum distance between
a user tweet and the test tweet in the LSI space.

3. Rank users according to the distance in step 2.

The performance of the LSI based ranking algorithm on
the dense data set for varying values of k is presented in
Table 2 in Section 7. An average rank of 4.22 with a stan-
dard deviation of 0.088 was obtained.

4.5 Anchor Words

The performance of the ranking algorithm can be improved
by considering anchor words. An anchor word is a word
unique to the tweets of a given user that occurs on a large
enough number of days. Most of the users in the dense
data set had a long list of anchor words with high coverage,
which would help improve the performance of the ranking
algorithm.

The anchor words are mostly @ user mentions, they in-
dicate the strong social connections that the user actively

follows over a period of time and are valuable information
for a recommendation system.

5 Session Temporal graphs

5.1 Framework

In this section, we describe the basis of our more generic
recommendation system. Xiang et al [11] proposed the
session temporal graph framework which can combine a
user’s long-term and short-term preferences. Data in the
form of < user, item, time > triples (like we have), can
be modeled using a graph as shown in Figure 1(a). Note
that the user does not rate the item – the interaction is
an implicit indicator of interest. A “user” node represents
a user while an “item” node represents the type of object
to be recommended (e.g. books, movies). A “session”
node is associated with a user and a specific time window.
We represent the < user, item, time > triples through <
user, item > and < session, item > links by dividing the
time into bins and binding the bins with corresponding
users. Hence, the session node is a combined node with a
user and a specific time bin.

In a conventional time-series model, time is treated as a
universal dimension shared by all users. However, in rec-
ommendation systems, the authors argue that the time di-
mension is a local effect that should not be compared cross
all users arbitrarily. Correlation of users/items on time is
typically not useful while correlation of items on time for
a specific user is significant, i.e. items within a user ses-
sion are somewhat more relevant. For users whose interests
fluctuate quickly, the session window will be small and for
users with more slowly evolving preferences, the window
will be larger.

Formally, a session temporal graph (STG) is a directed
bipartite graph G(U, S, I, E,w) where U denotes the set
of user nodes, S is the set of session nodes, I the set of
item nodes, E denotes the interaction between U or S and
I. w : E → R denotes a non-negative weight function for
edges. A user node u connects to all the items the user has
interacted with and hence captures her long-term prefer-
ences. A session node only connects to the items inter-
acted with during a particular time-window (i.e. session),
hence capturing the user’s short-term preferences during
that time.

5.2 Recommendation on STG

When making recommendations for user u at time t, the
user node u and the session node corresponding to < u, t >
are injected with user preferences (see Figure 2). Prefer-
ences injected into the user node is propagated to the items
N(u) that the user interacted with at all times. This then
propagates to other unknown items similar to user u’s long-

term preferences via other users who have interacted with
items in N(u). Similarly, preferences injected into the ses-
sion node will propagate to items N(u, t), which u inter-
acted with during the session containing time t, and it is
then propagated to similar items through other users who
rated those items. For computational efficiency, we only
consider paths of length 3 – all odd-length paths starting
from a user or session node, end at an item node. Longer
length paths also add more noise. The preference of user
u at time t for item i is given by the sum of weights prop-
agated to item i by all paths of length 3.

6 Latent space STG

The STG framework is well-suited for our task because it
allows us to design a user-specific time-sensitive recommen-
dation system. However, an important modification is nec-
essary to adapt this to tweets. The STG framework works
for previously seen items. When working with tweets,
a test tweet is most likely going to be distinct from any
previously seen tweet. Therefore, we have to rely on sim-
ilarity of tweets to drive our recommendation algorithm.
A popular approach to express similarity between textual
entities (like tweets, blogs, news articles) is to project it
onto a latent space using a topic model.

Latent Dirichlet allocation (LDA) [7] is a generative topic
model, which has been very popular for modeling text
corpora. A topic distribution is sampled for each docu-
ment from a Dirichlet prior. Now, for each word, a topic
is sampled from the document-specific topic distribution.
Finally, the word is sampled from the topic-specific word
distribution. Due to space constraints, we will not delve
further into the details of LDA. Once an LDA model has
been trained forK topics on a corpus of tweets, given a new
tweet (say tw), it outputs a K-dimensional non-negative
real vector θtw, where θitw denotes the expected number of
words generated by topic i in tweet tw. Since it denotes
an expectation, θitw can be fractional. For our analysis,
we consider a normalized version of θtw (

∑
i θ

i
tw = 1). We

used David Blei’s LDA-C implementation for learning an
LDA model on our training dataset.

Our modified STG framework enhances the original STG
framework with the projection from the items (tweets) to
the latent space (LDA topic space) as shown in Figure 1(b).
The edge weights and preference propagation scheme is
detailed next.

6.1 Edge weights

The recommendation scheme in the latent space STG is
similar to the original STG scheme. Consider the case
when we are interested in the preferences of user u at time
t. Let < u, t > denote the corresponding session node.
Preference weights β and 1 − β are injected into nodes u

(a) (b)

Figure 1: (a) The original STG framework for item recommendation. (b) Our adapted STG framework for tweet
recommendation. Since new tweets are most likely distinct from previously seen tweets, we have to project the tweets
onto a common latent space to use the information from previous tweets.

and < u, t > respectively. β ∈ [0, 1] is the relative impor-
tance of long-term to short-term preference. β = 1 means
that the recommendation will be based solely on long-term
preferences of the user, while β = 0 means only the short-
term preferences will be considered.

Let wu,tw be the weight of the edge from user u to tweet
tw. The sum of the outgoing edges from any node is
1.0. If a user u has Tu tweets, then wu,tw = 1

Tu
. The

session-tweet edge weights are also similarly determined.
If T<u,t> is the number of tweets in session < u, t >, then
w<u,t>,tw = 1

T<u,t>
. The tweet-topic edge weights are the

normalized LDA-vectors θitw (as described previously).

The reverse edge probabilities are more computation-
intensive (due to the normalization). For the topic-
tweet edges, the weight wi,tw = θitw/

∑
tw′ θ

i
tw′ . The

tweet-user edge between tweet tw and user u is given by
wtw,u = wu,tw/(

∑
u′ wu′,tw +

∑
<u′,t′> w<u′,t′>,tw), while

the tweet-session edge weight is given by wtw,<u,t> =
w<u,t>,tw/(

∑
u′ wu′,tw +

∑
<u′,t′> w<u′,t′>,tw).

Finally, the preference propagation works as follows. Ini-
tially, some preference is injected into the specific user and
session nodes. The incoming preference at any node is dis-
tributed among all the outgoing edges, proportional to the
edge weights. This ensures that if two users or sessions
have significant overlap in tweet topics, then the prefer-
ence propagation would use this information in an analo-
gous way to two users rating the same item (in the original
STG setup). Further computational simplification is pos-
sible by marginalizing out the tweets, and the simplified
model is shown in Figure 2.

The tweet marginalization is based on the observation that

once some weight (say w∗) reaches a topic node, its out-
ward propagation into user and session nodes (via tweets)
and then back to the topic nodes (again via tweets) hap-
pens in the same way irrespective of which user and session
we are interested in. Let φij denote the weight propa-
gated to topic node j (via tweet-user/session-tweet) if unit
weight reaches topic node i. Computing phi is straight-
forward and hence the details are skipped. This reduced
framework is completely analogous to the original STG
framework, with the items replaced by topics.

Upon completion of preference propagation (for paths of
length 3 in the STG formulation in Figure 2), the prefer-
ences that reach the topics (let us call that vector θu,<u,t>)
reflect the preference vector of user u for session < u, t >.
Now for a tweet tw∗, the recommendation score of tw∗ for
user u at time t is θ>u,<u,t>θtw∗ . To rank a set of tweets,
we compute the recommendation score and rank them in
descending order.

6.2 Model extensions

The STG framework can also be extended to account for
user interactions. In Twitter, since a user u could be fol-
lowing another user u′, we can add a link from u to u′ (e.g.
link shown between user 2 and user 3 as shown in Figure 2).
Although we did collect the network information for our
dense dataset, we ran out of time to incorporate this into
the analysis before this submission. This is something we
are currently working on.

Figure 2: The latent space STG framework with the tweets
marginalized out.

7 Results

7.1 Experiments and prediction performance

The evaluation scheme of the recommendation framework
detailed above, is the same as for the LSI analysis. For
each tweet tw in the test set, we also randomly pick 9
other tweets. For tw, we also know the user u and session
< u, t > information about the tweet. We now rank these
10 tweets after computing θu,<u,t>. We used the same
datasets that were used for the LSI analysis.

Since there are 10 tweets to be ranked, the average rank
(which is also the performance of a random recommender)
is 5.5, since ranks range from 1 to 10. If our recommender
can predict an average rank of better than 5.5, then it is
catching some signal at least.

For the “sparse dataset” (as described in the Dataset sec-
tion), the performance numbers were quite weak. For
five different values of β ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, we
ran 20 simulations each (the randomness in the exper-
iment comes from the random selection of the 9 other
tweets for each test tweet). However, it should be noted
that the performance of STG with LDA projections was
consistently better than random (see Table 2). The
LSI projections do not work well with the STG framework
since the STG semantics are designed for non-negative pro-
jection weights (a property of LDA and probabilistic LSI
[9], but not of LSI). Squaring the LSI coefficients and re-
normalizing the vectors, did not improve the random per-
formance.

For the “dense” dataset, the performance numbers were
much better. Detailed results are shown in Table 2. We
removed all words whose count in the entire corpus was
either over 10000 (too common, hence like stopwords) or
below 100 (too rare to be informative). Total remaining
tokens were around 66000. In the 25 topics LDA model,
all topics learnt seemed too similar, which was why the
performance was akin to a random predictor.

Method Mean Std Comments
rank dev

Random 5.50 - Baseline
LSI-latent space 4.22 0.09 Best predictor
LSI-STG sparse 5.51 0.04 Quite random
LDA-STG sparse 5.30 0.05 25 topics
LDA-STG dense 5.48 0.02 25 topics
LDA-STG dense I 4.42 0.02 100 topics
LDA-STG dense II 5.19 0.05 200 topics

Table 2: Overall performance of different models

However, when we learnt 100 LDA topics, the topics learnt
were more discriminative and the predictive performance
improved significantly to 4.42. In the 200 topic model, we
had to reduce the number of tokens considered to around
30000 (done by further constraining the allowed range of
word counts) due to memory considerations. This model
did not perform that well.

Varying the value of β in the set mentioned above, did not
affect predictive performance. This could be due to the
short time frame of the “dense dataset”, which meant only
short-term preferences were captured in the training data.

Another variations we tried was changing the number of
tweets to be ranked from 10 to 100. As expected, the
performance numbers did not change much (modulo an
appropriate scaling factor).

7.2 Interpreting the results

The bad performance on the sparse dataset is not very
surprising. Since about 40% of all tweets are meaningless
babble and about 38% is conversational, it is quite diffi-
cult to predict interest for these two types of tweets. The
“sparse dataset” has only about 20 to 50 tweets in a 3-
month period for the densest users. Hence, the signal is
indeed very weak.

With the denser dataset, the significantly better perfor-
mance numbers indicate that there is some promise in this
framework. However, the superior performance of the sim-
plistic latent space distance metric over the STG frame-
work shows that the weighted random walk mechanism
needs further refinement. Also, using probabilistic LSI pro-
jections with the latent STG framework might yield better
results.

8 Conclusion

In summary, we have proposed two ways to build a recom-
mendation framework for twitter, which is time-sensitive
and user-specific. Also, the latent STG framework is flexi-
ble enough to allow for additional information sources like
network links (“follows” in Twitter). There are also ad-

ditional sources of user-user interaction in Twitter (via
retweeting, sharing hashtags and directing a tweet at a par-
ticular user). The experiments so far suggest that sparse
data will be difficult to learn enough about a user and
hence make good predictions. However, with dense data,
the predictions are significantly better.

Looking ahead, we are planning to incorporate the net-
work information into the framework and see if that leads
to better prediction. Also, a more careful study of the dis-
tance metrics in the various latent spaces should lead to
not only a better understanding of the appropriateness of a
metric, but also to performance improvements by choosing
a good one.

Acknowledgements

We are thankful to the instructors for providing us with
the sparse Twitter dataset. This helped us develop our
initial ideas. We are also thankful to Prof. Canny for some
interesting insights into topic models and for assisting us
in concretizing the problem.

References

[1] http://www.facebook.com.

[2] http://www.twitter.com.

[3] http://community.marklogic.com/products/hadoop.

[4] https://dev.twitter.com/docs/api/1/get/statuses/user-
timeline.

[5] https://dev.twitter.com/docs/api/1/get/friends/ids.

[6] http://en.wikipedia.org/wiki/Twitter.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022, March 2003.

[8] Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman. In-
dexing by latent semantic analysis. JOURNAL OF
THE AMERICAN SOCIETY FOR INFORMATION SCI-
ENCE, 41(6):391–407, 1990.

[9] Thomas Hofmann. Probabilistic latent semantic index-
ing. In Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’99, pages 50–57, New York, NY,
USA, 1999. ACM.

[10] Y. Koren. Collaborative filtering with temporal dynamics.
Communications of the ACM, 53(4):89–97, 2010.

[11] Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian
Zhang, Qing Yang, and Jimeng Sun. Temporal recom-
mendation on graphs via long- and short-term preference
fusion. In Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data min-
ing, KDD ’10, pages 723–732, New York, NY, USA, 2010.
ACM.

