
XEM: Managing the Evolution of XML Documents �

Hong Su, Diane Kramer, Li Chen, Kajal Claypool and Elke A. Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609–2280
fsuhongjdkramerjlichenjkajaljrundenstg@cs.wpi.edu

Abstract

As information on the world wide web continues to pro-
liferate at an astounding rate, the extensible markup lan-
guage (XML) has been emerging as a standard format for
data representation on the web. In many applications, spe-
cific document type definitions (DTDs) are designed to en-
force a semantically agreed-upon structure of the XML doc-
uments for management. However, both the data and the
structure of XML documents tend to change over time for a
multitude of reasons, including to correct design errors in
the DTD, to allow expansion of the application scope over
time, or to account for the merging of several businesses
into one. However, most of the current software tools that
enable the use of XML do not provide explicit support for
such data or schema changes. In this vein, we put forth
the first solution framework, called XML Evolution Man-
ager (XEM) to manage the evolution of XML. XEM provides
a minimal yet complete taxonomy of basic change primi-
tives. These primitives, classified as either data changes or
schema changes, are consistency-preserving, i.e., (1) for a
data change, they ensure that the modified XML document
conforms to its DTD both in structure and constraints; and
(2) for a schema change, they ensure that the new DTD is a
valid DTD and all existing XML documents are transformed
also to conform to the modified DTD. We prove the com-
pleteness of the taxonomy in terms of DTD transformation.
To verify the feasibility of our XEM approach we have im-
plemented a working prototype system using PSE Pro as our
backend storage system.

Keywords: Taxonomy of Changes, Schema Evolution,
Consistency Preservation, XML Data Model.

�This work was supported in part by several grants from NSF, namely,
the NSF NYI grant #IRI 94–57609, the NSF CISE Instrumentation grant
#IRIS 97–29878, and the NSF grant #IIS 9988776. We also thank HP for
partial support of Hong Su in terms of a grassroot grant and IBM for sup-
port of Li Chen in terms of an IBM Corporate Fellowship. Diane Kramer
also thanks WPI for support via the Goddard Fellowship.

1 Introduction

Motivation. XML has become increasingly popular as
the data exchange format over the Web [W3C00]. Although
XML data is self-describing, most application domains tend
to use Document Type Definitions (DTDs) to specify and
enforce the structure of XML documents within their sys-
tems. DTDs thus assume a similar role as types in program-
ming languages and schemata in database systems.

Many systems, such as Oracle 8i [Net00], IBM DB2
[IBM00] and Excelon [Obj99], have recently started to en-
hance their existing database technologies to accommodate
and manage XML data. Many of them [Net00] assume that
the DTD is provided in advance and will not change over the
life of the XML documents. They hence utilize the given
DTD to construct a fixed relational (or object-relational)
schema which then can serve as structure based on which
to populate the XML documents that conform to this DTD.

However, change is a fundamental aspect of persistent
information and data-centric systems. Information over a
period of time often needs to be modified to reflect perhaps
a change in the real world, a change in the user’s require-
ments, mistakes in the initial design or to allow for incre-
mental maintenance. While these changes are inevitable
during the life of an XML repository, most of the current
XML management systems unfortunately do not provide
enough (if any) support for these changes.

Motivating Example of XML Changes. We next give an
example of changes in XML documents. Figure 1 depicts a
DTD article.dtd and an XML document conforming to this
DTD, both used as running example hence forth. Changes
can be classified as either data updates or schema updates.
An example of a data update is the deletion of the editor
information, i.e, removal of �editor name= “Won Kim”�
from the actual XML document. In this case, an XML
change support system would have to determine whether
this is indeed a valid change that will result in an XML doc-
ument still conforming to the given DTD. Since the editor



is a REQUIRED element in the specified DTD, such a data
update should be rejected. Next, consider the DTD change
where the definition of the element monograph which must
have at least one sub-element editor is relaxed such that it
is optional to have the sub-element editor. For such a DTD
change, a change support system would need to verify that
the suggested change leads to (1) a new valid DTD and (2)
corresponding changes are propagated to all old XML doc-
uments to conform to the changed DTD. For our example,
this leads to a DTD change, requiring no changes of the
underlying XML data.

<!ELEMENT article (title,author+,related-work?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (name)>

<!ATTLIST author id ID #REQUIRED>
<!ELEMENT name (firstname,lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT related-work (monograph)*>
<!ELEMENT monograph (title,editor>)
<!ELEMENT editor EMPTY>

<!ATTLIST editor name CDATA #IMPLIED>

<article>
<title>XML Evolution Manager</title>
<author id = "dk">

<name>
<firstname>Diane</firstname>
<lastname>Kramer</lastname>

</name>
</author>
<author id = "er">

<name>
<firstname>Elke</firstname>
<lastname>Rundensteiner</lastname>

</name>
</author>
<related-work>

<monograph>
<title>Modern database systems</title>
<editor name = "Won Kim">

</monograph>
</related-work>

</article>

Figure 1. Article.dtd and One Valid Sample
XML Document

Problems with XML Management Systems. XML
management systems attempt to expose a virtual XML
document-view independent of the underlying storage sys-
tem, be it relational, object-based or some specialized XML
data structure. However in most current XML manage-
ment systems [Net00, IBM00], evolution support, if any,
is still inherently tied to the underlying storage system, to
its data model and its change specification mechanism. For
example, in Oracle 8i, if the structured XML documents are
stored as object-relational instances, the user has to write
SQL code to perform any type of updates. This requires
users to be aware of the underlying storage system and the
mapping mechanism between XML, DTD and their under-
lying storage model. It prevents users from expressing de-

sired transformations independent of the targeted underly-
ing system. It is likely to result in errors in terms of mis-
match of desired XML transformation and the actual sys-
tem change. In addition, the system-specific expression of
transformation may induce extensive re-engineering work
either for migration to another system or integration of sev-
eral systems. In short, the development of a standard XML
change specification and support system is necessary.

Moreover, as illustrated above, structural inconsistency
may arise in the XML management system. It hence is crit-
ical to detect in advance whether an update is a valid op-
eration that preserves the structural consistency. However,
this problem is ignored in most existing XML management
systems and not directly treated by the tools [Gro, Inf00]
specially designed for transforming XML documents from
one format to another.

XML Evolution Manager (XEM) Approach In this
work we propose an XML Evolution Manager (XEM) as
a middleware solution that provides uniform XML-centric
data and schema evolution facilities. To the best of our
knowledge, XEM is the first effort to provide such uniform
evolution management for XML documents. In brief the
contributions of our work are:

1. We identify the lack of generic support for change in
current XML management systems such as [Net00,
IBM00, Obj99].

2. We propose a taxonomy of XML evolution primi-
tives that provide a system independent way to specify
changes both at the DTD and XML data level.

3. We analyze change semantics and introduce the notion
of constraint checking to ensure structural consistency
during the evolution.

4. We can show that our proposed change taxonomy is
complete.

5. We describe a working XML Evolution Management
prototype system we have implemented to verify the
feasibility of our approach.

2 Background: XML Data Model and DTD
Data Model

2.1 The XML Data Model

Here we briefly review the XML Data Model [W3C00].
XML is composed of nested tagged elements. Each tagged
element has a sequence of zero or more attribute/value pairs,
and an ordered sequence of zero or more sub-elements.
These sub-elements may themselves be tagged elements,
or they may be “tag-less” segments of text data. A well-
formed document may have an associated schema, derived
from one or more XML Schema documents; it may have

2



an associated DTD; or it may have no schema, then called
“schema-less”.

An instance of the XML Data Model represents one or
more complete XML documents or document parts. XML
is a node-labeled, ordered tree-structured representation
that includes the concept of node identities. A document
is represented by a unique DocNode that is the root node of
the XML data tree. Each element and attribute data is rep-
resented by ElemNode and AttrNode respectively. Simple
type values such as String, Boolean, etc. are represented by
ValueNode.

2.2 The DTD Data Model

In order to enforce a structure as needed for effective
management, we assume that all XML documents have an
associated Document Type Definition (DTD). DTD allows
for properties or constraints to be defined on elements and
attributes. In a DTD, elements represent the tag names that
can be used in an XML document. Elements can in turn
have content particles or attributes or be empty. The struc-
ture of elements is defined via a content-model built out
of operators applied to its content particles. Content par-
ticles can be grouped as sequences (a,b) or as choices (ajb)
to be a content particle again. For every content particle,
the content-model can specify its occurrence in its parent
content particle using regular expression operators (�� ���).
There are also some special cases of the content-model:
EMPTY for an element with no content particles; ANY for
an element that can contain any content particles; #PCDATA
for an element that can contain only text. When the element
can contain content particles mixed with text, the content-
model is called a mixed-content.

Attributes can be of various types such as ID for a
unique identifier or CDATA for text. They can be optional
(#IMPLIED) or mandatory (#REQUIRED). Optionally, at-
tributes can have a default or a constant value (#FIXED).

A DTD can be modeled as a graph. We denote the graph
G = (N, p, e) where N is the set of nodes, p is the parent
function representing the edges in the graph, and l is the
labeling function representing a tuple of node’s properties
including the node’s name and other properties if any. Each
node n � N falls into three categories according to its label:

1. Tag node:
(a) Element node: Each element node e represents

an element type. l�e� �� Name � where
Name is element e’s name.

(b) Attribute node: Each attribute node a represents
an attribute type.
l�a� �� Name� Type�DefType� V al�a� �

where Name is attribute a’s name, Type is a’s
type, e.g., CDATA, ID, IDREF, IDREFS, ENU-
MERATION etc., DefType is a’s default type,

i.e., #REQUIRED, #IMPLIED, #FIXED, #DE-
FAULT, and V al is a’s default value if any.

We use l�a��Name to denote the property Name of
node a and jl�a�j to denote how many properties a has.

2. Constraint node:

(a) Group node: Each group node g represents how
its direct children are grouped together, that is,
by sequence (i.e., l�g� �� ���� �) or by choice
(i.e., l�g� �� �j�� �).

(b) Quantifier node: Each quantifier node q has only
one child. It represents how many times its child
can occur in its parent. The label of q can be:

i. � ���� �: the child is repeatable but not re-
quired

ii. � ���� �: the child is repeatable and re-
quired

iii. � ���� �: the child is neither repeatable nor
required

3. Built-in node

(a) Root node dtdRtNode: It is the entry for the DTD
graph. All the nodes in DTD graph can be tra-
versed starting from this node in a breadth-first
manner.

(b) Primitive data type node PCDATA: It represents
PCDATA which is XML-specific rather than ap-
plication specific. Its parent must be an element
node, indicating the element is of type MIXED.

For example, the DTD in Figure 1 can be represented as
the graph shown in Figure 2. The element article’s content
model consists of a sequence of content particles as repre-
sented by the group node with label “,”. The first content
particle, element title, is represented by an element node
with a label “title”. And author+, is represented by a group
node labeled “+” with a child element node labeled “au-
thor”. Similarly, related-work?, is represented by a group
node labeled “?” with a child element node labeled “related-
work”.

In addition to the nodes, DTD model also provides the
concept of Position in Content Particle. We traverse the
graph breadth- first and use a list of integers to refer to
a content particle node. To illustrate, we use the follow-
ing sample element type definition: �!ELEMENT a (b, (c
jd))�. Here position [1] refers to group (b, (cjd)); [1,1]
refers to sub-element b; [1,2] refers to group (cjd); [1,2,1]
refers to sub-element c; [1,2,2] refers to sub-element d.

An XML data tree is derived from a DTD graph by in-
stantiating each node in the DTD graph. We call the nodes
in XML data tree instance nodes of the DTD graph node
which they are associated with.

3



article

related-work

title

author

firstname

name

lastname

monograph

dtdRtNode

,

+ ?

#PCDATA

editor

*

name

,

title

,

built-in data node element node

virtual element

attribute node

parent/child relationship

constraint node

id
Id

REQUIRED

CDATA

IMPLIED

Figure 2. Graph Representation of Article.dtd

3 Taxonomy and Semantics of XML Change
Primitives

3.1 Introduction

In this section we present the taxonomy of XML change
primitives and define their semantics. The primitives fall
into two categories: those pertaining to the DTD, and those
pertaining to the XML data. We ensure that the execution
of primitives violates neither the invariants nor the content
model. Our goal is to provide a set of primitives with the
following characteristics:

� Complete: All valid changes to manipulate DTD and
XML are possible using our primitives.

� Minimal: Each primitive is atomic such that it cannot
be achieved by combining two or more primitives.

� Sound: Every primitive is guaranteed to maintain sys-
tem integrity in terms of well-formedness of both DTD
and XML data, and consistency between DTD and
XML data.

We list our primitives for DTD and XML data changes
in Table 1. We then give the details of the DTD change

primitives. Due to space limitations, we do not describe the
XML data change primitives in detail here [Kra01].

DTD Operation Description
createDTDEl(u) Create element with name u
destroyDTDEl(u) Destroy element with name u
renameDTDEl(u, u’) Rename element from name u to u’
insertDTDEl(E, pos, P, q, d) Add element E at position pos to parent P with

quantifier q and default value d
removeDTDEl(E, pos) Remove sub-element at position pos in parent E
changeQuant(E, pos, q, d) Change quantifier of content particle at position pos

in parent E to quantifier q with default value d
convertToGroup(E, start, end) Group sub-elements from position start to position

end in parent E into a list group
flattenGroup(E, pos) Flatten group at position pos in element E to a list

of sub-elements
changeGroupQuant(E, pos, q) Change quantifier of group at position pos in ele-

ment E to q
addDTDAtt(u, E, t, d, v) Add attribute with name u to element E with type t,

default type d, and default value v
destroyDTDAtt(u, E) Destroy attribute with name u from element E
changeAttDefType(u, E, t, v) Change element E’s attribute u’s type to t, with de-

fault value v
changeAttDefValue(u, E, v) Change element E’s attribute u’s default value to v
changeAttFixedValue(u, E, v) Change element E’s attribute u’s fixed value to v

XML Data Operation Description
addDataAtt(a, v, pos) Add attribute with name a with value v to position

pos
destroyDataAtt(a) Destroy attribute a
changeDataAtt(a, v, e) Change attribute a’s value in element e to v
addDataEl(e, pos) Add element e at position pos
destroyDataEl(e) Destroy element e p
changeDataEl(e, v) Change element e’s value to v

Table 1. DTD and XML Data Change Primitives

3.2 DTD Change Primitives

In this section, we define the semantics of each DTD
change primitive. To ensure that the targeted DTD is valid,
preconditions are enforced on each change primitive, i.e., a
primitive will not be executed unless the corresponding pre-
conditions are satisfied. We assume the following change
primitives are applied to G� � �N�� p�� l�� and produce
G� � �N�� p�� l�� as output. We use c��m� to represent
nodes m’s children where m � N�. And we denote the
child at position pos in node m in G� by c��m� pos�. A
node n � c��m� pos� may have more than one parent, and
we denote the parent which is on the path fromm to n from
which pos is derived by q��n�m� pos�. c��m�, c��m� pos�,
q��n�m� pos� represent the same concepts in G�.

3.2.1 Changes to the Document Definition

1. createDTDEl(u)

Preconditions: No element type with name u has been
defined, i.e., �n � N�� l��n� ��� u �.

4



Results: A new element E with name u will be created
with empty content. We get a graph G� � �N�� p�� l��
where N� � N� � fEg, p��E� � fdtdRtNodeg,
l��E� �� u �, and p��n� � p��n�, l��n� � l��n�,
�n � N�. This primitive causes no changes to the
XML data.

2. destroyDTDEl(E)

Preconditions: Element E must be a non-nested el-
ement node whose content model is either EMPTY
or composed of only PCDATA, i.e., c��E� � � or
c��E� � fPCDATAg.

Results: The element E will be removed from any con-
tent model in which it is a content particle. We get a
graph G� � �N�� p�� l�� where N� � N� � fEg, and
p��n� � p��n�, l��n� � l��n�, �n � N� � fEg. All
the instance nodes of element E will be deleted from
the XML data trees.

3.2.2 Changes to an Element Type Definition

1. insertDTDEl(E, pos, P, q, d)

Preconditions: If quantifier q signifies a required con-
straint and E is a PCDATA element, the default value d
must not be null.

Results: An existing element E will be added to the
content model of parent element P at position pos.
We get a graph G� � �N�� p�� l�� where N� � N�,
p��E� � p��E� � fPg, p��n� � p��n�, �n � N� �
fEg, and l��m� � l��m�, �m � N�. If q signifies a
required constraint, then an instance node of element
E with default value d will be added as a child to each
instance node of P in the XML data trees.

2. removeDTDEl(E, pos)

Preconditions: c��E� pos� must be a non-nested ele-
ment node.

Results: The element node m � c��E� pos� is re-
moved from E’s content model. We get a graph
G� � �N�� p�� l��whereN� � N�, p��m� � p��m��
q��m�E� pos�. All the instance nodes of content parti-
cle m are removed.

3. changeQuant(E, pos, q, d)

Precondition: c��E� pos� is a content particle node
which is either an element node or a constraint node.

Results: The quantifier for the content particle t �
c��E� pos� will be changed to q. We get a graph
G� � �N�� p�� l�� where N� � N�, p��n� � p��n�,
�n � N�, l��q��t� E� pos�� �� q �, and l��m� �
l��m�, �m � N� � fq��t� E� pos�g. The XML data
changes required for this primitive depend on the old
and new quantifier values. Due to space limitations,
we summarize using the following two rules:

(a) If the old quantifier represented a repeatable con-
straint and the new quantifier does not, we find
all the instance nodes of content particle t and re-
move all but the first occurrence of the instance
node of t.

(b) If the new quantifier represents a required con-
straint and the old quantifier did not, for each in-
stance node e of element E which did not contain
any instance node of t, we must create a new in-
stance node of element t with the default value d
and insert it to e’s children list.

4. convertToGroup(E, start, end)

Preconditions: All the content particles falling within
the range �start� end� share a same parent.

Results: All the content particles that range from po-
sition start to end in content particle E are grouped
into a list. We get a graph G� � �N�� p�� l��
where N� � N� � fgg, l��g� �� ���� �, p��m� �
�p��m� � q��m�E� pos�� � fgg, �m � c��E� pos�
where pos falls within the range �start� end�, and
l��n� � l��n�, n � N�. To illustrate, we
use the following sample element type declaration:
�!ELEMENT author (address, lastname, firstname)�.
convertToGroup�author� �	� 
�� �	� ��� will change
the element type declaration to �!ELEMENT au-
thor (address, (lastname, firstname))� This primitive
causes no changes to the XML data.

5. flattenGroup(E, pos)

Preconditions: c��E� pos� must be a list group node.

Results: The group g � c��E� pos� will be flat-
tened. We get a graph G� � �N�� p�� l�� where
N� � N��fgg, p��m� � q��g� E� pos�, �m � c��g�,
and l��n� � l��n�, �n � N� � fgg. To illustrate,
we use the following sample element type declara-
tion: �!ELEMENT author (address, (lastname, first-
name))�. flattenGroup�author� �	� 
�� will change
the element type declaration to �!ELEMENT author
(address, lastname, firstname)�. This primitive causes
no changes to the XML data.

6. changeGroupQuant(E, pos, q)

Preconditions: c��E� pos� must be a group node. We
do not allow the new quantifier to represent a required
constraint if the old quantifier did not. This is because
it would be difficult to specify appropriate default val-
ues for a group of element types to assign to their data
instances which do not already contain this group.

Results: The quantifier for the group g � c��E� pos�
will be changed to q. We get a graphG� � �N�� p�� l��
where N� � N�, q��n� � p��n�, �n � N�,
l��q��g� E� pos�� �� q �, and l��n� � l��n�, �n �
N� � q��g� E� pos�. The semantics for this primitive

5



are similar to those described above for changing the
quantifier of a sub-element.

7. addDTDAtt(u, E, t, d, v)

Preconditions: No attribute with name u has been de-
fined in elementE, i.e., �n � c��E� where jl��n�j � 	
(n is an attribute node), l��n��Name �� u. If the
default type is #FIXED or #REQUIRED, the default
value v must not be null.

Results: A new attribute will be added to the element
type definition ofE. We get a graphG� � �N�� p�� l��
where N� � N� � fag, l��a� �� u� t� d� v �. If de-
fault value v is not null, for each instance node e of el-
ement type E, a new instance node of the new attribute
type with value v will be added to e’s attribute set.

8. destroyDTDAtt(u, E)

Preconditions: There exists an attribute with name u
defined in Element E.

Results: The attribute with name u will be removed
from the element type declaration of element E. We
get a graph G� � �N�� p�� l�� where N� � N� � fng,
n � c��E�, jl��n�j � 	 and l��n��Name � u. The in-
stance node of this attribute type will also be removed
from the XML data trees.

3.2.3 Changes to an Attribute Type Definition

1. changeAttDefType(u, E, t, v)

Preconditions: If the default type t of attribute with
name u in element E is #REQUIRED or #FIXED, the
value v must not be null.

Results: The default type of the attribute with name
u in E will be changed to t. The XML data changes
required for this primitive depend on the old and new
attribute types. Rather than listing each possibility sep-
arately here, we summarize the rules for those DTD
changes that will induce data changes:

(a) If the attribute’s new default type is #REQUIRED
and the old default type is #IMPLIED, value v
will be assigned to the attribute’s each instance
node that does not have a value before.

(b) If the attribute’s new default type is #FIXED,
value v will be assigned to all the instance nodes
of the attribute.

2. changeAttDefValue(u, E, v)

Preconditions: The attribute with name u in element
E must be of default type #DEFAULT, as default val-
ues for the default types #REQUIRED and #IMPLIED
are not allowed in an attribute default declaration, and
changing the default value for the default type #FIXED
is taken care of in a separate primitive.

Results: The default value for the attribute will be
changed to v. All instance nodes’ values of the at-
tribute will be made to conform to the new default
value v by first checking whether there was a default
or an actual value before. If the value was a default
before, then the value will be changed to the new de-
fault v. Otherwise, the old value has higher precedence
over a new given default value and hence the actual old
value will remain unchanged.

3. changeAttFixedValue(u, E, v)

Preconditions: The attribute with name u in elementE
must be of default type #FIXED.

Results: The fixed value for the attribute will be
changed to v. All instance nodes’ values of the at-
tribute will be changed to the new fixed value v.

We illustrate in Figure 3 how to use these primitives to
achieve the changes we have described in Section 1, i.e.,
removal of �editor name = “Won Kim”� from the XML
document in Figure 1. First we use DTD change primitive
changeQuant to change the quantifier of content particle �
	� 
 � in element monograph to “?”, i.e., sub-element editor
is optional in its parent element monograph. And then we
can use XML data primitive destroyDataEl to safely destroy
the ElemNode specified by an XPath expression [W3C99]
which results in a new XML document conforming to the
new DTD.
changeQuant(monograph, [1,2], ‘‘?’’);

destroyDataEl(‘‘article/related-work/monograph[1]/editor’’);

Figure 3. Primitives to describe the change

4 Completeness of DTD Change Operations

The taxonomy in Section 3 intuitively captures all
changes needed to manipulate a DTD. In this section we
show that this set of changes indeed subsumes every possi-
ble type of DTD change (completeness criteria). The proof
given here has its basis on the completeness proof for the
evolution taxonomy of Orion [BKKK87].

With the DTD graph we focus primarily on manipula-
tions of nodes and of the directed edges between parent and
children nodes. Towards that end we define six operations
that correspond to the operations that we have defined for
a DTD in Section 3, Table 1. We prove that every legal
DTD graph operation is achievable using this set of six op-
erations. This set of operations and its basic semantics for
the DTD graph are given in Table 2.

Lemma 1 For any given DTD graph G, there is a finite se-
quence of fop6g that can reduce the DTD graph G to an-
other DTD graph E’ with only one root node.

6



EGM Notation Operation Description Taxonomy Equivalent

op1 add-attribute Adds new attribute to node 3.2.2.7
op2 delete-attribute Deletes new attribute from the node (element) 3.2.2.8
op3 remove-node-edge Removes the edge from the parent to the node 3.2.2.2, 3.3.2.5
op4 add-node-edge Adds an edge between the parent and node 3.2.2.1, 3.2.2.4
op5 create-nonattr-node Creates a new node; default is no parent 3.2.1.1
op6 delete-nonattr-node Deletes a leaf node 3.2.1.2

Table 2. The DTD Graph Operations.

Proof: It is apparent that if we repeatedly apply the oper-
ation op6 which removes a non-nested element node n, we
can after a finite number of applications reduce any given
DTD graph G to a new DTD graph G’ which only has the
root node.

Lemma 2 There is a finite sequence of operations fop1,
op4, op5g that generates any desired DTD graph G from
a DTD graph with only a root node G’.

The proof based on a construction algorithm that adds all
nodes in a breadth-first manner can be found in [Kra01].

Theorem 1 Given two arbitrary DTD graphs G and G’,
there is a finite sequence F of fop1, op4, op5, op6g,
such that F(G) � G’.

Proof: We can prove this by first reducing the DTD
graph G to an intermediate DTD graph G1 using Lemma 1.
The DTD graph G1 can then be converted to the EGM G’
using Lemma 2. �

Theorem 2 Given two arbitrary DTD graphs G and G’,
there is a finite sequence of DTD graph operations F such
that F(G) � G’.

Proof: The set of operations fop1, op4, op5,
op6g is a subset of the operations fop1, op2, op3,
op4, op5, op6g. Hence the completeness of this set of
operations is given from Theorem 1.

Soundness and Minimality of Primitives. A taxonomy
of primitives is sound if every operation on a DTD graph
produces as output a valid DTD graph. While we do not
formally prove soundness of our primitives, it is intuitive
that the semantics of the primitives such as adding a node
(op5) produce as output a valid graph model conforming to
the DTD properties.

Moreover, we have taken care to define minimal seman-
tics as well as a minimal set of primitives, i.e., no primitive
defined in the taxonomy subsumes the functionality of an-
other primitive defined in the taxonomy. We do not formally
prove this as the proof for this is rather laborious requiring
proof steps for each defined primitive.

5 System Implementation: MARROW

To verify the feasibility of our approach, we have im-
plemented the ideas presented in this paper in a prototype
system. We have implemented Marrow [Kra01], a working
framework for XML management�. In Marrow we use Ex-
celon Inc’s Pse Pro [Obj93], a lightweight object database
system repository, as the underlying persistent storage sys-
tem for XML documents. We require that the DTDs with
which the incoming XML documents will comply are en-
tered first into the system. PSE Pro’s schema repository has
been enhanced to not only manage traditional OO schema
but also DTD as meta-data. The DTD-OO schema map-
per generates an OO schema according to the DTD meta-
data. Then we load the XML documents into the just pre-
pared schema. The mapping and loading details are given
in [Kra01]. We implemented all the proposed change prim-
itives. Comparison of the performance of using the primi-
tives to achieve incremental change versus reloading from
scratch can be found in [Kra01].

6 Related Work

Most object database systems (ODB) [Tec94, Obj93] to-
day have build-in schema evolution facilities for supporting
the re-structuring of the application schema. Besides those
simple pre-defined schema evolution operations, research
has gone further to deal with complex changes [Bré96].
They string together several primitives to form higher level
yet still specific change transformations. Finally, SERF
[CJR98] is an extensible schema evolution framework that
allows complex user-defined schema transformations in a
flexible yet secure fashion.

Since XML data has an inherent nature of being
“loosely” structured, some projects either totally ignore the
schema of XML data or just consider it implicated by the
actual storage structure and hence to be a “second-class”
citizen. They therefore do not deal with schema evolution
issues. DOEM [CAW98] is further proposed as a model to

�The preliminary Marrow system - ReWeb [RCC�00] has been
demonstrated at ACM SIGMOD 2000.

7



represent changes in semi-structured data via temporal an-
notations. However, it only deals with the changes at the
data level and is schema-blind. All versions of a data item
will be stored together over time. Hence it results in an
ever-growing complex annotated data structure.

More recently, tools are emerging to map XML data to
traditional databases as data storage devices. Oracle’s XML
SQL Utility (XSU) [Net00] and IBM’s DB2 XML Exten-
der [IBM00] are well-known commercial relational prod-
ucts extended with XML support. They mainly provide two
methods to manage XML data. The first option is to store
XML data as a blob while the second option is to decom-
pose XML data to relational instances. However, if there is
any update to the external XML data, for the first storage
option, they need to reload the data, and for the second op-
tion, they have to first figure out and then make the change
on the relational schema level. In other words, the evolution
of the data inside or outside of the database are independent
from each other. Hence the change propagation from an
external XML document to its internal relational storage or
schematic structure is not supported. In a related effort at
WPI, we have developed the Clock system [ZMLR01] that
synchronizes internal relational storage with external XML
documents.

XSLT [Gro] is a language designed for transforming in-
dividual XML documents. It does not require any DTD and
users can specify arbitrary XML data transformation rules.
Hence no schema constraints are enforced on the data or on
the transformation. Lexus (XML Update Language) [Inf00]
is a declarative language proposed by an open source group,
Infozone, to update stored documents. However, its primi-
tives also only work on the document level without taking
DTD into account. So both XSLT and Lexus cannot serve
in the scenario where structure is required.

7 Conclusion

In this paper, we present the first of its kind - a taxon-
omy of XML evolution operations. These primitives as-
sure the consistency of XML documents, both when DTD
changes are made and XML documents have to conform to
the changes; and also when individual XML documents are
changed to ensure that the changed documents still corre-
spond to the specified DTD. We have implemented an XEM
prototype system. The performance analysis can be found
in [Kra01].

References

[BKKK87] J. Banerjee, W. Kim, H.J. Kim, and H.F. Ko-
rth. Semantics and implementation of schema

evolution in object-oriented databases. In ACM

SIGMOND Record, pages 311–322, 1987.

[Bré96] Philippe Bréche. Advanced Primitives for

Changing Schemas of Object Databases. In
CAISE, 1996.

[CAW98] S. Chawathe, S. Abiteboul, and J. Widom. Rep-
resenting and Querying Changes in Semistruc-
tured Data. In ICDE, pages 4–13, February 1998.

[CJR98] K.T. Claypool, J. Jin, and E.A. Rundensteiner.

SERF: Schema Evolution through an Extensible,
Re-usable and Flexible Framework. In CIKM,
pages 314–321, November 1998.

[Gro] W3C XSL Working Group. XSL Transforma-

tions (XSLT). http://www.w3.org/TR/xslt/.

[IBM00] IBM Software. DB2 XML Extender.
http://www-4.ibm.com, 2000.

[Inf00] Infozone Group. Lexus. http://www.infozone-
group.org/lexusDocs/html/wd-lexus.html, 2000.

[Kra01] D. Kramer. XML Evolution Management, Mas-

ter Thesis, Worcester Polytechnic Institute, 2001.

[Net00] Oracle Technologies Network. Oracle8i.
http://www.oracle.com/database/oracle8i, 2000.

[Obj93] ObjectStore, Inc. ObjectStore Manual, 1993.

[Obj99] Object Design. Excelon Data Integration Server.
http://www.odi.com/excelon, 1999.

[RCC�00] E. A. Rundensteiner, K. T. Claypool, L. Chen,

H. Su, and K. Onoeki. SERFing the Web: A
Comprehensive Approach for Web Site Manage-
ment. In SIGMOD, page 585, May 2000.

[Tec94] O� Technology. O� Reference Manual, Version

4.5 . O� Technology, Versailles, France, 1994.

[W3C99] W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 1999.

[W3C00] W3C. XML Query Data Model.
http://www.w3.org/TR/query-datamodel, 2000.

[ZMLR01] X. Zhang, G. Mitchell, Wang. Lee, and E. Run-
densteiner. Clock: Synchronizing Internal Rela-

tional Storage with External XML Documents.
In RIDE, April 2001.


