
USING PERSISTENCE TECHNOLOGY TO
CONTROL SCHEMA EVOLUTION

R.C.H. Connor, Q.I. Cutts, G.N.C. I~irbY and R. Morrison
University of St Andrews, Scotland

Key words and phrases: schema evolution, persistence, rerbrential integrity, iniegrated environment, h~,perprogramniing

A b s t r a c t software engineering environments [13. 14]. Object-Oriented
Datalgase Systems such,as GemStone [6] :~.d 02 [5] have at their

Traditional database technology may be extended by takin~
core a persistent object store. Process modelling systems use a

advantage of the facilities of an integrated persister, ~ persistent base to preserve their modellin,z activities over
programming environment. This paper focuses on how such an
environment may be used to provide new solutions to a long execu:io~ sessions [7].
standing problem in traditional databases, that of schema Recen0y, integrated persis!ent programming systems have
evolution• A general mechanism is first described, followed by 19een develoPed that allow the complete software and data
a description of a specific schema editing tool. process to take place entirely within the persistent

The persistent environment provides an underlying technology environment [1~, 16]. The facilities provided by traditional
which allows the schema editor to locate and change, either databases may be extended by taking advantage of such an
manually or automatically, all affected program and data. The environment• In particular, this paper focuses on how the
advantages of the mechanism are that it provides persistent environment may be used to provide new solutions

to a long standing problem in tradi~iona! databases, that of
understandable semantics for evolution by controlling when schema evolution• A general mechanism is first described,
the changes are made and by ensuring that changes to schema, followed by a description of a specific schema editin.~ tool. The
program and data are consistent and made in lock step. It is

advantage of the mechanism is that it provides understandable
shown how these changes together may be grouped as a semantics for evolution by controllinc, when the chan~es are
transaction within a live system; furthermore, the ~ "-
accommodation of lazy data changes allows minimum loss of made and by ensuring that changes to schema, program and data
availability, are consistent and made in lock step.

I n t r o d u c t i o n E v o l u t i o n

Databases become obsolete when they can no longer meet the
In an orthogonally persistent programming system, the changing needs of the applications that they support.
manner in which data is manipulated is independent of its Evolution is inevitable in a long running system as the people
persistence• The same mechanisms operate on both short-term who use the data, the data and the uses to which the data is put
and long-term data, avoiding the traditional need for separate
systems to control access to data of different degrees of all change. This is reflected within the database system by
longevity. Thus data may remain under the control of a single changes to the data, the programs which use the data and the

recta-data. Changes to program and data with the invariant of
persistent programming system for its entire lifetime. The fixed recta-data are normally handled by updates ~o program
benefits of orthogonal persistence have been described libraries and the database respectively. The difficult problem is
extensively in the literature [1, 2, 9, 14]. These can be
summarised as: to change the meta-data while keeping all the existing

programs and data consistent with the semantics of the change.

• improving programming productivity from simpler As an example of recta-data evolution consider Figure t which
semantics; describes a partial schema for a parts/suppliers database. A

• removing ad hoc arrangements for data translation and supplier, represented by the type Sl~pplier, has a name s h a m e
long term data storage; and and address s_address• A part, represented by the type Part. has

• providing protection mechanisms over the whole a part name p n a m e , a part number p n~: and a set o~:;uppliers
environment, suppliers. There are two entries in the schema, the set of parts

PARTS and the set of suppliers SUPPLIERS. This schema is
In recent years considerable, research has been devoted to the designed to model each part as having a set of suppliers.
investigation of the concept of persistence and its application
in the in.tegration of database systems and programming type addressis...

languages [2, 4]. As a result a number of persistent systems type Supplier is structure(s_name : string : s ~dress : address)
have been cieveloped including PS-algol [I 8], Napier88 [15], type Part is structure(p_name : string : p_no :in~ : suppliers :setl Supplier I)
Galileo [3], TI Persistent Memory System [21], Amber [8],
Trellis/Owl [19] and Tycoon [17]. The persistence abstraction entry PARTg is set[Part l entry SUPPLIERS is setl Supplier I
has been recognised as the appropriate underlying technology

f o r long lived, concurrently accessed and potentially large Figure 1. A p a r t i a l s c h e m a : parts have suppl iers
bodies of data and programs• Typical examples of such systems
are CAD~CAM systems, office automation, CASE tools and As the system evolves it may become appropriate to change

the organisation of the data to model each supplier as
supplying a set of parts. This could be represented by the

Permission to copy without fee all or putt of this material is granted provided that schema shown in Figure 2.
the copies are not made or dislributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

O 1994 ACM 089791..647-6/94/0003 $3.50 ,4,4

• ~:•. ~ .~,_~i~=-~i.~.~i;.~:<.~'=L~.~..~. -

type address is ...

type Part is structure(p_name : str ing : p_no : Jut)
lype Supplier is structure(s_name : sir ing : s_addmss : address :

supplied.parts : set[Pan I)

entry PARTS is sell Part I
entry SUPPLIERS b setl Supplier]

F i g u r e 2 . A p a r t i a l s c h e m a : s u p p l i e r s s u p p l y p a r t s

The databases represented in Figures I and 2 contain the same
information. However, the data has different structure, the
programs that operate over the data are different and the recta-
data is different. The challenges in performing this meta-data
evolution are:

• finding understandable semantics for the change;

• controlling when the changes are made; and

• ensuring that the changes to the meta-data, programs, and
data are made consistently and in lock step.

This papei" demonstrates a new mechanism for tackling these
challenges within an integrated persistent environment.

A n I n t e g r a t e d P e r s i s t e n t E n v i r o n m e n t

An integrated persistent environment is self supporting in that
it allows all the activities of manipulating program, data and
recta-data to be provided by the same mechanisms. The
advantages of integrated persistent environments are described
elsewhere [10, 11]. For our purposes, that is controlling
schema evolution, the persistent environment must:

• allow programs to be manipulated as data;

• provide an incremental loader; and

• guarantee referential integrity, which means that once a
link to an object in the persistent environment has been
established, the object will remain accessible for as long
as the link exists.

The incremental loader and the guarantee of referential integrity
provide the basic facilities that allow a new kind of program
representation called the hyper-program.

Traditionally programs are represented as linear sequences of
text. Where a program accesses a database object during its
execution, it contains a textual description of that object,
describing how to locate the object. At some stage the
description is resolved to establish a link to the object itself.
Commonly this occurs during linking for code objects and
during execution for data objects, and the environment in
which the resolution takes place varies accordingly. There is
no guarantee that a textual description of an object will remain
valid until the time of its resolution, even if it is valid when the
program is written.

In an integrated persistent environment, programs may be
constructed and stored in the same environment as that in
which they are executed. This means that objects accessed by a
program may already be available when the program is
composed. In this case links to the objects can be included in
the program instead of textual descriptions. By analogy with
hyper-text: a program containing both text and links to
objects is called a hyper-program. Various benefits of hyper-
program technology are detailed in [12]. The most important
benefit in the context of this paper is that it provides a
mechanism for representing all executable programs, since free
variables in closures may be represented as links within hyper-
programs. This means that the system may enforce
associations between all executable programs in the

environment and their corresponding hyper-program source
representations.

An example of a hyper-program is shown in the lower part of
Figure 3. The hyper-program is a query on the parts/suppliers
database to find the nearest supplier for a particular part. The
schema is that of Figure 1.The links embedded in the query are
denoted by rounded rectangles.

I t should be noticed that the integrated persistent environment
contains the data, the recta-data (schema) and the programs
(queries) of the traditional database. The referential integrity of
the persistent store guarantees secure links among these
entities. Tools for browsing programs and the schema are
designed to-take into account the presence of these links.

.tOu,ma

entryt~,l~t'PART.~

F ° " t
I I

type: Paa

L . . ~ . _ . . . ~ _ 4 , , ~ ,zruau~ r - . . ~ : ,ta.t: r-~.; m. : , .rr, ,~ : ,~l (~,,~.,,) I) I

emry polrd: SUPPU~S type: .$~l~r /

ql~wrle~

1 ki t th iLpa i ' l • ¢ h o m e p f r o m ~ PARTS) ~ II~i't p.p+ P~rr~: • rl..~n¢
le t I dd rc~..~.n • prY)Jeer th l , Oarl.su p p h , ~ o J I t n , ~ l d r L ~

1 end

1 I query

'I l :
I I

1 ,
I

Figure 3. An in tegra ted pers is tent da tabase

Schema evolution can also exploit one of the advantages of
hyper-programming, the ability to use the hyper-program
representation for both source and run-time representations of
programs. At program composition time the user may construct
a hyper-program using a tool which is a combination of an
editor and a browser. At run-time the hyper-program may also
be used to represent an active computation. This is possible due
to the non-flat nature of the hyper-program representation.
Free values in objects and procedures may be represented as
links and the inherent sharing of values and locations referred
to by links is preserved. The conceptual simplification given
by the provision of a single uniform representation throughout
the life of a program is called hyper-code.

Since a hyper-code program representation is itself an object it
may contain links, perhaps hidden to the user. to any compiled
or executable form. The compiler may also arrange for the
schema to record information about which programs use which
data, via links. This provides the basic information necessary
to find programs which access an evolving part of the schema
definition.

The hyper-code abstraction hides entities that the system may
support for efficiency only, such as object code, executable
code, compilers and linkers. These are maintained and used by
the underlying system but are artefacts of how the program is

4 4 2

stored" and executed: as such they are completely hidden from
the programmer.

A Mechanism for Schema Evolution

The essence of this paper is to demonstrate that by utilising the
persistent environment there are new solutions to the problem
of schema editing. Editing the schema requires location and
translation of affected querie.s and data. The essential elements
are at hand in the hyper-code syste m. The schema may keep a
record of which programs (queries) and data are associated with
particular parts of the schema via secure links. The programs
always have hyper-code source and therefore source code and
data translation is possible.

.The schema evolution mechanism transforms the programs and
data affected by a schema edit. This is achieved as follows:

• Locate. from the schema, all affected programs and data.

• For each program which may be affected, obtain its hyper-
code.

• Locate the points in the hyper-code which access the
changed part of the schema and edit the hyper-code to
reflect the new logical schema structure. This will involve
establishing new links both to and from the changed part
of the schema.

• Update the old program with the new one.

• Update the affected data with new versions. Some possible
strategies for performing this are discussed in Section 5.2.

The extent to which this process can be automated depends
upon the complexity of the schema change incurTed. The
essential point is that all interrogation and manipulation of
schema, program and data occurs within a single integrated
environment, and may therefore be represented as a meta-level
program within that environment.

The mechanism described here relies heavily upon the self-
contained nature of the persistent environment. As all the data
and code is held in the same environment as the schema, it is
possible to keep not only links from the schema to the data it
describes but also reverse links from the schema to programs
which bind to particular points of it. The hyper-code concept
makes it possible to map between executable and source
representations. The fact that these representations are
themselves values within the persistent environment, along
with the provision of a compiler in the same environment,
makes this strategy possible. The next section describes a
schema editing tool which exploits this mechanism.

T h e S c h e m a E d i t i n g T o o l

The schema editing tool allows the description and revision of
the schema through a graphical user interface. Unlike normal
schema editors, however, it also gives its user help in handling
the consequences of the schema change, by locating all affected
programs and data and allowing their revision to be partly or
even fully automated.

Figure 4 shows two windows provided by the schema editing
tool. The first contains a view of the schema which allows the
schema to be edited interactively. It can also be used to aid the
construction of queries. An example query is shown in the
second window: it calculates the address of the nearest supplier
of a particular part, using the schema of Figure 1. The query
contains links to the schema for address and PARTS, created by
mouse gesture over the schema diagram. Any change to these
parts of the schema may thus require the query to be changed.
Not shown in the diagram are the links from the schema

entities to the queries. Also not shown is the fun,~tion ~earest
which is hyper-code already in the persistent environment:

~ s ~.he~t ed.i.to= i

(.-t ~l'ral i p.,=~ :~t~,: ~i~ -] '
/ " " - ~ . . _ ~ 1 - ~ ' 1 p t i n ' i n t " "

PARTS • ~ p p l i c r s h ~ t l ~ I - : , . .
¢

i i i ~. _name : . t r i g "rrr rf::=;i: 7 o.

~q~,r[i~:Y!~Y !:!~!~!~i~i~:~:~::'/'::h~::;~!~!~ ~!~!~!::~:!:~:.~::.::,~i~'.~ii~i~i~i~i~ii::.::.'-i~:~i!~] ~ ~]]
r.~ ~.:y ~

i Ix~in
" i I¢1 this_pan • ¢11oo~4~ p f ront [~ w l l c re p.p_namc = nzn'm

let add~cs~cx = pro jec t ~his_lp~ ' t .~ .upphcts Onto s_addr~.,s]~J~5~i

' ~ 7 (Z~ a d d r c ~ . ~)

, end

1' ~1 1 l r r III I IIII I i

Figu re 4. Find the address of neares t s u p p l i , ~ r ~
p a r t s have s u p p l i e r s

The placing of the schema entry PARTS into the query causes
the query to be inserted into a table maintained by the schema
editor. This may occur when the query is edited or compiled,
depending upon the implementation details of the system.
When the schema is subsequently edited, and a change to the
type Part is made, this query is one of the candidates which may
require change as it is reachable through the closure of reverse
links from the changed type definition.

More sophisticated information may be derived from static
analysis of the query; in this case. for example, the query
accesses only p_name and suppliers fields of values of type
Part. If a change to the schema does not affect these fields there
is no need to change this query.

The required change is now made to the example schema. This
is achieved by invoking the schema editor and making the
changes as shown in Figure 5. Once the change has been made
the tool is still active and now goes through the phase of
locating affected programs and data. Firstly it deals with the
programs.

.1"• s,c.b_em~_ ceLl.Co= "t

/ ~ - ~ x ~ sell ~ . _ . _ _ . _ . _ . _ ~ _ ~ pname : string
- ~ " l = 4 ~ p n0 : int ::!ii!iii::

Figure 5. Changing the schema

Changing Affected Programs and Queries

The least to be expected is that each query which accesses data
of type Part is presented to the user for editing. However, in
some cases it may be possible to do better than this. The
provision of source representations and the compiler all within
the integrated persistent environment means that instead of

4 4 3

each program being manually changed, a change may be
specified once and applied to each program automatically.

The dialogue shown in Figure 6 could be made with the schema
editing tool.. As stressed before, the importance of the
persistent environment is that the technology exists to
program automated changes from such a user interface.

I I I I I

i i~ change manager

@
I l l

Field deleted: Pan.suppliers

Automated action in affected queries: ::~

.suppliers ~!!

becomes

select s from [Su~pp]~] where s.supplied_parts contains
i

I i i i I fl ii i I ~

Figure 6. Automat ing program change

This kind of automation could be dangerous in general, as can
any global search/replace facility; the programmer can specify
opt ions such as show individual occurrences , global
replacement, etc. One danger, for example, is that inefficient
code can result. Even so, the ability to automatically provide
at least working code is a considerable achievement. Of course
the semantic equivalence of the search/replace expressions can
not in general be decided automatically. Figure 7 shows the
new version of the query after being transformed:

, z " ~ ~ e z ~ /

Ix~in I
I let t h i s . p a n = ¢ f m o ~ . pfrnm ~ ' . ' h e r e p . p _ r ~ m ¢ = n a m e

:; let ~,ldn.-~,:es = p r e j e ¢ ! (

: ~,elect s from I SUPr' t~R~ I where s.supplicd.pan~conla;ns t h i s . p a n)onto s_add~ss

, I IIIII IIIIII .

Figu re 7. F ind the address of neares t s u p p l i e r ~
suppl iers supply p a r t s

There are a number of further dimensions to the process of
au{omatic query change that are not seen in this example. For
example, the automated change indicated will work correctly
'only when the suppliers field is used as an R-value; programs
which update the suppliers field must be handled quite
differently. This different usage can of course be detected by
the compiler and different automated Changes would need to be
provided for the different cases.

Automating Changes to Affected Data

Continuing with the example, the affected data must also be
changed to match the new schema.

The removal of the suppliers field from type Part causes no real
problems. The only purpose of physically removing the field
from the data is for efficiency, to avoid wasted space. For the
logical schema to be honoured it is necessary only that no
programs may access the old field, and that correct field
addressing is maintained by all programs using values of type
Part. The associations of the compiler, the schema definition
and the executable code make these relatively straightforward
to manage, including the physical reorganisation of the data if
required. It may be imagined that such reorganisation could be
automated to take place during quiescent periods in the system.

The addition of the supplied parts field to the Supplier type
requires logical.intervention by a programmer to specify initial

values for the reformatted data. Once again., however, the
architecture can be used to ease the initial value problem by
supplying a flexible range of possibilities. In the case of the
example, the initial values may be gleaned from the existing
database using the initial value dialogue as shown in Figure 8.
Once again, the description of the schema using the hyper-¢ode
principles allows the identification within the schema of all
instances of the changed type,

F~ ~hange manager

Field added: Supplier, supplied, pans Change strategy 4~i' p..

[El.supplied parts 0 other ...

initialise as

~lec¢ p Irrom ~ where p.suppiiers con.ins ~] 4

Figure 8. A u t o m a t i n g in i t i a l va lues

The initialisation code is expressed in terms of an expression
which, in this case, is resolved according to the previous
version of the schema. At this point the change to the schema
has not yet beert committed; this dialogue is part of the schema
editing process, and the old data is therefore still available.

Notice also that the initial value may be specified to be
evaluated immediately, when the individual new fields are
accessed, or with some flexible arrangement between these two
extremes. The tradeoffs among these are well documented
elsewhere: the point here is that the change management tool
is sufficiently flexible to allow for the creation of initial values
by any computable expression (including for example by
querying the user) and at a flexible range of times. It is even
possible for the association between the compiler and the
schema description to be used to allow expressions which
access the previous schema description, as in this example, to
be executed lazily at some point in the future. This is because
the arrangement for the physical deletion of obsolete data may
be left within the control of the same integrated system.

Committing the Schema Change

The change to the example schema is now complete. Changes
have been specified to the schema itself, and to all programs
and data which are affected by the schema change. These
changes are viewed as an atomic transaction: either all the
specified changes must be committed atomically or they must
all be discarded. The important point is that the problem of
programs and data being inconsistent with the changed schema
has been eliminated, as all such programs and data can be
detected, and the schema change can be automat ical ly
disallowed if appropriate matching changes have not been
specified,

K i n d s o f S c h e m a E v o l u t i o n

So far the only example of schema change given has been one
where the same net semantic data is modelled in the schema
before and after the change. To analyse the consequences of
different kinds of change, the following categories of schema
change are identified:

• additive extra semantic knowledge is modelled

• subtractive less semantic knowledge is modelled

• descriptive the same semantic knowledge is modelled in
a different manner

4 4 4

The necessary effects of these kinds of change on programs and
data is now examined.

Additive Evolution

There is a temptation to imagine that additive changes have no
required effect on existing programs, and require only initial
values to be entered into the database.~ This is not quite true,
however, as many queries are of a form which require the
presentation to the user of all known, or at least all available,
information about a data item, Therefore although all programs
that exist before the change will continue to execute correctly
in the mechanical sense, their intended semantics may require
them to be changed. An example of this is a query that writes
out all the fields of a Supplier.

This aggravates the problem of identifying all programs which
require change, as it requires semantic knowledge which cannot
be deduced from a program text. Two alternatives are possible.
Firstly, all programs which access any value of a data type to
which functionality has been added could be presented to the
programmer for possible update. The other possibility is for
this kind of program to be identified by the programmer at the
time it is created, so that only these programs will be presented
back to-the programmer in the circumstances of additive
change.

Additive change requires a corresponding change to the data.
As mentioned above, there are many times at which this change
can be made, so long as it occurs before the new data is
accessed. This kind of change with respect to data is possibly
the best documented, and requires no further elaboration here.

Subtractive Evolution

Subtractive change occurs when part of the data model becomes
obsolete and is no longer required. With respect to programs,
once again the query which presents all the available data about
an item must be considered. Without such programs, it is
reasonable to assume that any programs which are found to
access the deleted entities are themselves obsolete; if this is
not the case. then the schema change has been discovered to be
pre-emptive and should be aborted! However a number of
programs may well exist which routinely access the fields to be
removed, and these may be altered simply by removing the
obsolete accesses.

As already mentioned, this kind of schema change brings no
required action in terms of the data except in terms of space
wastage.

Descriptire Evolution

Descriptive change occurs wherever the description of the
schema is changed but the semantics modelled is equivalent
before and after the change. Such changes are made for
convenience or efficiency: they are typically regarded as the
hardest to handle in traditional" database systems.

In the light of the schema evolution strategy described here,
such changes are the easiest to handle. In terms of existing
code. this is the only kind of change where all affected
programs may be reliably detected and automatically updated to
preserve their previous semantics. Similarly for data, the
semantic difficulties of the initial value problem are avoided, as
any initial values may always be calculated from the previous
state of the schema.

T h e I n i t i a l V a l u e P r o b l e m

A powerful attribu.te of the mechanism described is the
flexibility with which the accommodation of initial values is
defined. They may be the result of arbitrary computations,

including those which depend upon the schema descriptior.
immediately before the schema edit is defined. These
computations may be programmed to occur at a range o f
different times.

Value access through obsolete schema definitions is achieved
through the persistent base technology, where ,a value 's
persistence is d.efined by its teachability. Even when values are
inaccessible from the schema, they will still persist for as long .
as the meta-lek, el progi-ams which implement the system can
reach them. values will be garbage collected only when the
meta-level system can no longer access them.

The time of calculation of the initial value is left as flexible as
possible to allow for different circumstances of user load,
schema update time and so on. If initial values are calculated at
the time of schema update then the system may be effectively
out of action for a considerable time. This is particularly so if
the specification of an initial value includes querying the user
for input, which will often be the case when additive schema
changes are made. In many cases it may be better to delay the
initial value calculation to a more suitable time, possibly as
late as when the individual new values are accessed.

The ability to delay the initial value calculation until the time
of first access is made possible by the integration of the
schema description mechanism and the compiler. When code
which accesses a possibly uninitialised value is compiled the
executable code contains a test for the initialisation of the
value. This information may be kept in a central table, or a
reserved value may be used. If the test fails then the system
suspends the accessing process and causes the initialisation
code to be executed [20].

Delaying initial value calculations to the time of access may
also cause problems. Peak calculation cost may occur at the
same time as peak user load, causing efficiency problems. On a
semantic level, it may not be acceptable for a query made by a
user to result in exactly the same query being presented back to
the user! This may occur when the programmer has specified
that initial values are to be obtained by querying the user. Thus
a number of mixed strategies may be allowed for, in which
delaying the calculation until access is used only as a catch-all
safety mechanism. For initial values which do not require user
interaction, the calculation may be performed at the time of low
user load. or a later "'down" period if this is acceptable to the
usage of the database. For those which do. a separate
initialisation process may be spawned for a data entry operator.
Even in this case, however, it should be noticed that the
database may become live immediately, by the programming of
an appropriate action for the case where an access should occur
before the data is entered.

T h e S c h e m a C h a n g e as a T r a n s a c t i o n

The database schema edit is a privileged operation, and. users of
the database should be shielded from its effects. Normally this
is possible to achieve only by closing down the database while
schema editing is in progress.

Since the schema is itself data in the persistent environment,
the schema edit may be regarded as a transaction in its own
right. The description of the schema editing changes can all be
carried out in parallel with any other activity: it is only at the
schema change commit time that contention may occur. If the
database concurrency control mechanism is generalised to
encompass access to the programs in the system, as well as the
data, then the updates associated with the schema edit can be
treated as a normal transaction within the system.

In cases where changes to the data are delayed to any time after
the schema change, then a standard readers/writers protocol has

4 4 5

the effect that the schema change commit may take place at any
time when none of the affected programs are actively in use.

C o n c l u s i o n s

This paper has outlined a mechanism by which schema
evolution can be integrated with changes to all affected
programs and'data within the system. 'A single evolutionary
step may be described as an atomic transaction within the
system, thus completely eliminating the problems associated
with inconsistencies between the schema, program, and data.

The ability to perform such comprehensive schema editing is
made possible by the use of persistence base technology. The
key point of the technology is that the representations of the
schema, programs, and data are all maintained within a single
persistent environment. This environment is able to maintain
data structures which model the conceptual bindings between
the three entities. This gives the ability for programs within
the persistent environment to enforce that changes are
performed in lock step.

A prototype implementation of the schema editing tool
described is under way at the University of St Andrews. It is
built using the language Napier88 [15], on top of the hyper-
programming environment [l I] and using the WIN graphical
user interface package. These systems are all available from
the authors: it is hoped that the schema editor will be made
available some time in the near future.

A c k n o w l e d g e m e n t s

The authors are-grateful to Malcolm Atkinson for the benefit of
his many ideas about database evolution, some of which have
undoubtedly found their way into this paper. Richard Connor is
supported by SERC Postdoctoral Fellowship B/91/RFH/9078.

Correspondence address:

Department of Mathematical and Computational Sciences,
University of St Andrews, St Andrews, Fife, KY 16 9SS, UK
email: { richard, quintin, graham, ton }@dcs.st-and.ac.uk

R e f e r e n c e s

[l] Atkinson, M.P. & Buneman. O.P. "Types and Persistence
in Database Programming Languages". ACM Computing
Surveys 19, 2 (1987) pp 105-190.

[2] Atkinson+ M.P., Bailey, P.J., Chisholm,. K.J.,
Cockshott, W.P. & Morrison. R. "An Approach to
Persistent Programming +'. Computer Journal 26, 4 (1983)
pp 360-365.

[3] Albano, A.+ Cardelli, L. & Orsini, R. "Galileo: a Strongly
Typed, Interactive Conceptual Language". ACM
Transactions on Database Systems 10. 2 (1985) pp 230-
260.

[4] Atkinson, M.P. "Programming Languages and
Databases". In Proc. 4th IEEE international Conference
on Very Large Databases (1978) pp 408-419.

[5] Bancilhon, F., Barbedette, G., Benzaken, V., Delobel,
C., Gamerman, S., L6cluse, C., Pfeffer, P., Richard, P. &
Valez, F. "'The Design and Implementation of 0 2. an
Object-Oriented Database System". In Lecture Notes
in Computer Science 334, Dittrich, K.R. (ed),
Springer-Vertag (1988) pp 1-22.

[6] Bretl, B., Otis, A., Penney, J., Schuchardt, B., Stein, J.,
Williams, E.H., Williams, M. & Maier, D. "The
GemStone Data Management System". In Objec t -
O r i e n t e d Concepts , Appl i ca t ions , and

Databases, Kim, W. & Lochovsky, F. (ed), Morgan-
Kaufman (1989).

[7] Bruynooghe, R.F., Parker, J.M. & Rowles, J.S. "PSS: A
System for Process Enactment". In Proc. 1st
International Conference on the Software Process:
Manufacturing Complex Systems (199 i).

[8] Cardelli, L. "Amber". AT&T Bell Labs. Murray Hill
Technical Report AT7T (1985).

[9] Connor. R.C.H., Dearie, A., Morrison, R. & Brown, A.L.
"Existentially Quantified Types as a Database Viewing
Mechanism". In Lecture Notes in Compute r
Science 416, Bancilhon, F., Thanos, C. & Tsichritzis,
D. (ed). Springer-Verlag (1990) pp 301-315.

[10] Farkas, A.M.. Dearie. A.. Kirby, G.N.C.. Cutts, Q.I.,
Morrison, R. & Connor. R.C.H. "'Persistent Program
Construction through Browsing and User Gesture with
some Typing". In Persis tent Object Systems,
AIban 9, A. & Morrison, R. (ed), Springer-Verlag (1992)
pp 376-393.

[I 1] Kirby, G.N,C.. Connor. R.C.H.. Cutts. Q.I., Dearie, A.,
Farkas, A.M. & Morrison. R. "'Persistent Hyper-
Programs". In Persistent Object Systems. Albano,
A. & Morrison, R. (ed), Springer-Verlag (1992) pp 86-
106.

[12] Kirby, G.N.C. "Reflection and Hyper-Programming in
Persistent Programming Systems". Ph.D. Thesis.
University of St Andrews (I 992).

[13] Morrison, R.. Bailey. P.J.. Brown, A.L.. Dearie. A. &
Atkinson, M.P. "The Persistent Store as an Enabling
Technology for an Integrated Project Support
Environment". In Proc. 8th IEEE International
Conference on Software Engineering, London (1985) pp
166-172.

[14] Mo~ison, R., Brown. A.L., Connor, R,C.H, & Dearie, A,
"Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object-Oriented Environment". Software
Engineering Journal December (1987) pp 199-204.

[15] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearie, A.
"The Napier88 Reference Manual". University of St
Andrews Technical Report PPRR-77-89 (1989).

[16] Morrison. R.. Baker, C.. Connor, R.C.H., Cutts, Q.I. &
Kirby, G.N.C. "Approaching Integration in Software
Environments". University of St Andrews Technical
Report CS/93/10 (1993),

[17] Matthes, F. & Schmidt, J.W. "Definition of the Tycoon
Language TL - A Preliminary Report". University of
Hamburg Technical Report 062-92 (1992).

[18] "PS-algol Reference Manual. 4th edition". Universities
of Glasgow and St Andrews Technical Report PPRR-12-
88 (1988).

[19] Schaffert, C., Cooper, T. & Wilpot, C. "Trellis Object-
Based Environment Language Reference Manual". DEC
Systems Research Center Technical Report 372 (1985).

[20] Skarra, A.H. & Zdonik, S.B. "Type Evolution in an
Object-Oriented Database". In Research Directions
in Object-Oriented Programming, Shriver, B. &
Wegner, P. (ed), MIT Press (1987) pp 393-415.

[21] Thatte. S.M. "Persistent Memory: A Storage Architecture
for Object Oriented Database Systems", In Proc.
ACM/IEEE International Workshop on Object-Oriented
Database Systems, Pacific Grove, California (1986) pp
148-159.

446

