
Impact of XML Schema Evolution on Valid Documents

Giovanna Guerrini
Università di Pisa, Italy

guerrini@di.unipi.it

Marco Mesiti
Università di Milano, Italy

mesiti@dico.unimi.it

Daniele Rossi
Università di Genova, Italy

dani reds@yahoo.it

ABSTRACT
In this paper we investigate the problem of XML Schema evolution.
We first discuss the different kinds of changes that may be needed
on an XML Schema. Then, we investigate how to minimize docu-
ment revalidation, that is, detecting the document parts potentially
invalidated by the schema changes that should be revalidated.

Categories and Subject Descriptors: H.2.1Logical Design:schema
and subschema

General Terms: Management, Algorithms

Keywords: XML, schema evolution, document revalidation

1. INTRODUCTION
The amount and speed of data interchanged nowadays have enor-

mously increased and so has the number of data sources. In the
same time, the need has arisen of providing data and documents
available on and interchanged through the Web with a structure, so
to make their retrieval more efficient and effective. This need has
lead to the development and to the quick acceptance of XML [13].
An XML document can be coupled with a DTD (Document Type
Definition) or with an XML Schema [14] that describes the struc-
ture, the order, and the type of subelements and attributes of each
element appearing in the document. A Schema presents some rel-
evant differences with respect to a DTD [5]: a Schema is an XML
document and allows a more sophisticated typing of elements, pro-
viding a set of data types compatible with those employed in most
data models. It supports the specification of order-irrelevant sets of
subelements (all), the definition of elements with empty content
(nil), and a finer specification of cardinality constraints.

It is natural and unavoidable that both data and schemas contin-
uously change. Systems must be frequently adapted to real-world
changes, new functionalities must be introduced, new data types
must be processed. Complex structures can be defined even in not
fully specified contexts, that are subsequently refined, design er-
rors occurring in a schema need to be fixed. Commercial alliances
change and expand. Moreover, in many contexts data represen-
tation format and domain-specific schemas are being specified in
XML. Before a proposal can officially be adopted as a standard,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’05, November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-194-5/05/0011 ...$5.00.

however, different versions are produced and the developed in-
stances continuously adapted. There is therefore a strong need to
evolve XML Schemas and to propagate the effects on documents.

Schema updates have several consequences. First of all, docu-
ments valid for the original schema are no more guaranteed to meet
the constraints described by the evolved schema. In principle, these
documents should be revalidated against the new schema. If some
of these documents are no more valid, they should be adapted to
the new schema. Moreover, if the documents to be revalidated are
stored on different sites, their transfer cost should be considered in
addition to the whole document revalidation cost. Apart from the
impact on documents, schema evolution may require a revision of
document access policies, such as access control policies or index
organizations. Finally, the evolution also impacts programs work-
ing on documents whose structure is described by the schema.

In this paper we address the problem of XML Schema evolution.
We first present a set of atomic evolution primitives to be applied to
the basic components of a schema (i.e., elements and types), being
them local or global. This set of primitives is complete, in that
all required transformations can be expressed through a sequence
of primitives in the set. Moreover, the primitives are ensured to
transform a consistent schema into a consistent schema. Then, a
set of high level evolution primitives is devised as well, that can be
expressed as a sequence of atomic primitives but that correspond
to frequent evolution needs and allow to express complex changes
in a more compact way. These primitives (both the atomic and the
high level ones) are made available to the user through a graphical
interface that we are currently finalizing.

The impact of the devised evolution primitives on documents
known to be valid for the original schema is then investigated.
Many documents can be associated with the same schema and val-
idation cost is known to be high [12]. Moreover, documents can
be stored in outsourced XML databases and thus the revalidation
process tends to be highly distributed. A brute-force revalidation
should thus be avoided and a more sophisticated solution should
be devised. The basic idea is to keep track of the updates made to
the schema and to identify the portions of the schema that, because
of these updates, require a revalidation. The document portions
affected by those updates can then be identified and revalidated,
thus avoiding a costly revalidation of the whole documents. Since
a schema evolution process may involve several updates, document
revalidation is postponed to the end of the process. Thus, our ap-
proach aims at identifying the parts of documents to be revalidated
after a certain number of updates have occurred on the schema.

In the remainder of the paper, Section 2 surveys related work.
Section 3 introduces the adopted XML Schema representation. Sec-
tion 4 presents the evolution primitives and Section 5 discusses the
impact on documents. Finally, Section 6 concludes.

39

ENG = {description, movies}, T = T T ∪ AT , {personType} ⊆ T T , AT = {t1, t2, t3}
RG(movies) = t3, RG(description) = string

ρ(t3) movie movie
→ t2

ρ(t2)

title
director
cast
release
genre
rating
description

title
→ string
director
→ personType
cast
→ t1
release-
→ date
genre
→ string
rating
→ integer
description
→ string

ρ(t1) actor actor
→ personType

ρ(personType)

sex
name
first-name
last-name

sex
→ string
name
→ string
first-name
→ string
last-name
→ string

Table 1: Movie schema representation

2. RELATED WORK
The need for XML schema evolution mechanisms has been ad-

vocated by Tan and Goh [11] for XML based specifications. A
classification of different required modifications is proposed but no
specific primitives are proposed nor the impact on existing docu-
ments is discussed. Schema evolution had been previously investi-
gated for schemas expressed by DTDs in [10], where a set of evolu-
tion operators is proposed and discussed in detail. Problems caused
by DTD evolution and the impact on existing documents are how-
ever not addressed. Moreover, since DTDs are considerably sim-
pler than XML Schemas [5] the proposed operators do not cover
all the set of schema changes that can occur on an XML Schema.
DTD evolution has also been investigated in [4] from a different
perspective. The focus was on dynamically adapting the schema
to the structure of most documents stored in an XML data source.
Required modifications are deduced by means of structure mining
techniques and documents are not required to exactly conform to
the corresponding DTD.

Schema evolution and its consequences on instances has been
thoroughly investigated in object-oriented databases [2, 8]. Though
object-oriented schemas bring some similarities with XML Schemas,
there are also fundamental differences that prevent to smoothly
adapt techniques developed in that context to XML Schemas. When
a class evolves, updates must be propagated to its instances to adapt
them to the new definition. In this process inheritance plays a
fundamental role. The high XML flexibility make these problems
more subtle. Moreover, the XML Schema inheritance notion sim-
ply is a support for the user in easily composing schema taking
advantage of modularity and declaration reuse, but has no impact
on element validity.

The problem of document revalidation is investigated in [12].
Documents to be revalidated may not be available in advance, they
are known to be valid for a given schema S1 and must be revali-
dated against a different schema S2, but the transformations lead-
ing from S1 to S2 are not known. Incremental validation of XML
documents, represented as trees, has been investigated for XML up-
dates [1, 3, 6]. Given an atomic update operation on an XML doc-
ument, the update is simulated, and only after verifying that the up-

dated document is still valid for its schema the update is executed.
Efficiency of those proposals is bound to the conflict-free schema
property. A schema is said to be conflict-free when in type defini-
tions subelement names appear only once. In this paper, we will ad-
dress the revalidation problem only for conflict-free schemas, both
for what concerns the original schema and the evolved one. Most
schemas employed on the Web do exhibit this property [7].

3. XML SCHEMA REPRESENTATION
In this section we introduce our representation for XML Schemas,

that extends the one proposed in [12] to our context. EN denotes
the set of element tags, T N the set of (both simple and complex)
type names. T N is the union of T T and AT , where T T is the
set of explicitly assigned type names and AT is the set of system-
assigned type names (to identify anonymous types).

Simple Types. A simple type can be an XML Schema native
type in the set τN or can be derived through restriction, list,
and union. Each simple type is characterized by a set of facets
allowing to state constraints on its legal values. The set of sim-
ple types is thus inductively defined as follows: native types in τN

(e.g., decimal, string, float, date) are simple types; if τ
is a simple type, list(τ) is a simple type; if τ1, . . . , τn are simple
types, union(τ1, . . . , τn) is a simple type; if τ is a simple type and
f is a facet applicable on t, restrict(τ, f) is a simple type.

Complex Types. The structure of a complex type is represented
through a labelled tree. A tree on a set of nodes N is inductively
defined by stating that: (i) v ∈ N is a tree; and (ii) if T1, . . . , Tn are
trees and v ∈ N , (v, [T1, . . . , Tn]) is a tree. A labelled tree is a pair
(T, ϕ), where T is a tree and ϕ is a total function from the set of T
nodes to a set of labels. Labels of the tree representing the structure
of a complex type are pairs (l, γ), where l ∈ EN ∪OP and γ ∈ Γ.
OP = {SEQUENCE, ALL, CHOICE} denotes the set of operators
for building complex types. The SEQUENCE operator represents a
sequence of elements, the CHOICE operator represents an alterna-
tive of elements, and the ALL operator represents a set of elements
without order. By contrast, Γ = {(min,max) | min,max ∈
IN,min ≤ max} denotes the set of occurrence constraints, where
min represents the attribute MinOccurs and max represents the

40

Insertion Modification Deletion

Simple Type insert glob simple type∗

insert new member type∗

change restriction
change base type
rename type∗

change member type
global to local∗

local to global∗

remove type∗

remove member type∗

Complex Type

insert glob complex type∗

insert local elem
insert ref elem
insert operator

rename local elem
rename global type∗

change type local elem
change cardinality
change operator
global to local∗

local to global∗

remove element
remove operator
remove substructure
remove type∗

Element insert glob elem

rename glob elem∗

change type glob elem
ref to local∗

local to ref∗
remove glob elem∗

Table 2: Classification of the evolution primitives

attribute MaxOccurs. The default value (1, 1) is not shown in our
graphical representation. Let root(T) be the root of tree T , ϕ(T)
denote the label of T root, and ϕ|i(v), i = 1, 2, denote the i-th
component of node v label. The structure of a complex type is a
tree T defined on the set of labels (EN ∪ OP) × Γ for which:

1. ϕ(T) ∈ OP × Γ;

2. for each subtree (v, [T1, . . . , Tn]) of T , ϕ(v) ∈ OP × Γ;

3. for each leaf v of T , ϕ(v) ∈ EN × Γ;

4. for each subtree (v, [T1, . . . , Tn]) of T , if ϕ(v) =
〈ALL, (min,max)〉, v = root(T) and ∀i, j ∈ {1, . . . , n}
ϕ(Ti), ϕ(Tj) ∈ EN × Γ and i �= j ⇒ ϕ|1(Ti) �= ϕ|1(Tj),
0 ≤ mini ≤ maxi ≤ 1 where ϕ(Ti) = 〈li, (mini,maxi)〉.

The last condition imposes that all labelled nodes can only ap-
pear as children of the root element and that their children must be
all distinct elements.

XML Schemas. XML Schemas, unlike DTDs, allow an element
to have different types depending on its context; however, an unique
type is assigned to each element of the schema depending on its
context (global or local to a type τ). A consistent XML Schema is
a 4-tuple (ENG, T , ρ,RG), where:

• ENG ⊆ EN is the set of labels of global elements,

• T = (T T ∪ AT) ⊆ T N is the set of type names,

• ρ associates each type τ ∈ T with its declaration, that is:

– if τ is a simple type, ρ(τ) ∈ τN ∪ {restrict(τ1, f),
list(τ1), union(τ1 . . . τN) | τ1, . . . , τn simple types};

– if τ is a complex type, ρ(τ)= (EN τ , Sτ , Rτ), where:
EN τ ⊆ EN is the set of local element names for type
τ , Sτ is the structure declared for type τ , Rτ : EN τ →
T is a total function assigning to each local element of
τ the corresponding type;

• RG : ENG → T is a total function assigning to each global
element the corresponding type.

EXAMPLE 1. Table 1 shows the representation of our reference
movie schema example. The first row reports the set of global el-
ement names, the set of type names, and function RG that asso-
ciates each global element with the corresponding type. Then, for
each complex type τ , its definition ρτ is provided, specifically the
names of local subelements in EN τ are listed, together with the
type structure Sτ and function Rτ that associates each local ele-
ment name with the corresponding type. ©

4. SCHEMA EVOLUTION PRIMITIVES
In this section we discuss atomic primitives and high level ones.

4.1 Atomic Primitives
Three categories of primitives have been devised: insertion, mod-

ification, and deletion of the XML Schema components (simple
types, complex types, and elements). Modifications can be further
classified in three sub-categories: structural, re-labelling, and mi-
gration modifications. Structural modifications allow to modify the
type of a (sub)element and its cardinality constraints. Re-labelling
modifications allow to change the name of an element/type. Migra-
tion modifications include: moving a subelement from an element
to another one and transforming a local type/element to a global
type/element (and viceversa). These categories should be comple-
mented with semantic modifications, that is, the possibility to use
the same element (with the same structure) to represent a different
kind of data. Such updates are hard to model and require the use of
ontologies associating each term with the corresponding meaning.

Table 2 reports the evolution primitives relying on the proposed
classification. The meaning of the ∗ near some of the operators
will be clarified in Section 5. For simple types the operators are
further specialized to handle restriction, list, and union
simple types. Because of space limitations the operators together
with their formal specifications are discussed in [9].

EXAMPLE 2. Suppose to evolve the XML Schema S in Table 1,
obtaining the schema in Table 3, as follows:

• element description becomes optional in the definition
of type t2; this is realized through the primitive change
cardinality((0, 1), 7, t2, S); since 7 is the position of el-
ement description in type t2 structure;

• a new stage-name element is added to the personType
structure, this change is realized through the primitive insert
local element(stage-name, (1, 1), string, (4, 3), person-
Type, S), where (4, 3) denotes the position in the structure
the new element is to be inserted;

• element rating is deleted by remove element(6, t2, S). ©
PROPOSITION 1. Let EP be the set of evolution primitives sum-

marized in Table 2.

• EP is sound: each primitive applied to a consistent schema
produces a consistent schema.

• EP is complete: each schema can be generated starting from
the empty schema by applying a sequence of primitives and
for each schema a sequence of primitives exist transforming
it in the empty schema. ✷

41

sequence

a

b c

choice

sequence

c
b

a

sequence

sequence (0,1)a

b c

sequence

a

(a) (b)

Figure 1: High level primitives

4.2 High Level Primitives
Atomic primitives can be composed in high level primitives in

order to express in a more compact way more complex updates
corresponding to common evolution needs. Their applications al-
low to perform sequences of atomic primitives as a single update.
Since they are realized through atomic primitives the consistency of
the resulting schema is guaranteed. Because of space limitations,
we cannot discuss all devised high-level primitives, which mainly
include primitives for inserting, moving, changing whole substruc-
tures rather than single elements.

EXAMPLE 3. Suppose that starting from the structure in the
left-hand side of Figure 1(a), we wish to add an optional sequence
of elements b and c. This can be obtained by the atomic primitives:
insert local element(b, (1, 1), τb, (0, 2), t, S),
insert operator(sequence, (0, 1), (2, 0), t, S),
insert local element(c, (1, 1), τc, (2, 2), t, S).
Alternatively, it can be obtained by the high level primitive:
insert substruct(T, (0, 2), t, S)), where T represents the struc-
ture of the tree inserted in the right-hand side of Figure 1(a).

Suppose moreover that starting from the structure in Figure 1(b),
we wish to collapse the b and c elements under a choice oper-
ator (as shown in the figure). This can be obtained through the
atomic primitives: insert operator(choice, (1, 1), (2, 0), t, S),
change position(4, t, (2, 2), S). Alternatively, it can be obtained
by the primitive collapse substruct(choice, t, 0, 2, 3, S). ©

5. IMPACT ON VALIDITY
Consider an XML Schema and a set of XML documents known

to be valid for the schema. When the schema evolves, documents
are no longer ensured to be valid for the new schema and, in prin-
ciple, should be revalidated. However, taking into account that
updates usually affect only few schema elements and that an up-
date does not necessarily compromise the document validity whole
document revalidation can be avoided and validity checks can be
restricted to the needed elements only. Well-formedness of docu-
ments need not to be checked, since documents are known to be
well-formed. Moreover, since documents are known to be valid for
the original schema and the applied evolution primitive is known,
validity checks can be considerably simplified.

The definition of a type τ corresponds to a grammar that defines
a set of documents L(τ): each instance in L(t) is valid for τ . A
function validPreserving [12] can be defined, that, taken two
type definitions τ and τ ′, returns OK if all valid instances for τ are
also valid for τ ′, it returns KO if τ and τ ′ share no valid instances,
and it returns MAYBE if neither disjointness nor inclusion holds.

validPreserving(τ, τ ′) =

8<
:

OK if L(τ)⊆L(τ ′)
MAYBE if L(τ)
⊆L(τ ′)∧L(τ)∩L(τ ′)
=∅
KO if L(τ)∩L(τ ′)=∅

We want to detect whether an update does not compromise valid-
ity by simply taking into account the invoked primitives, its para-
meters, and, if needed, by a quick analysis of the updated type. We

(a) (b)

(c) (d)

Figure 2: Validity preserving insert local element (a,b) and
change cardinality (c,d)

first investigate which evolution primitives are known not to com-
promise validity. Then, we propose a type labelling process that
allows us to keep track of the document portions whose validity
might have been compromised.

5.1 Validity Preserving Primitives
Primitives inserting a new type definition or a new global el-

ement cannot compromise document validity. Similarly, the re-
moval of a type/global element does not impact validity. The in-
serted/removed types/elements are indeed not yet/no more used in
the schema (otherwise the update would not have been applicable).
Primitives like local to global, global to local, rename global
type, that reorganize the schema but do not alter the constraints
imposed on documents, cannot affect validity. Thus, primitives
marked with a star in Table 2 are validity preserving.

Consider now changes in simple type definitions. A relationship
τ1 ⊆s τ2 exists among simple types modelling the fact that type
τ1 legal values are also values of type τ2. Primitive types can be
considered as restrictions of type anySimpleType and any other
simple type is obtained through restriction, list, or union
from a simple type. Derivation through restriction restricts
the base type legal value set, while list and union extends it.
Changes in a simple type definition can lead to modifications in the
⊆s relationship, easily detected by keeping this relationship stored
as a graph. Moreover, we can easily check whether changing the
type associated with an element in the schema from a simple type τ
to a new simple type τ ′ may impact document validity: if τ ⊆s τ ′

no check is needed since the validity set is being extended.
We now turn to discuss some primitives which are known to have

no impact on validity under certain conditions. We refer the reader
to [9] for the discussion of primitives we do not consider here.

Subelement Insertion. This update is realized by the primitive
invocation insert local element(l, (min,max), t, (p, j), ts, S).
If the inserted element is optional (i.e., min = 0), document va-
lidity is not compromised. Moreover, if the element is added in
a complex type as a child of a choice operator, then, indepen-
dently from the cardinality, there is no impact on document valid-
ity. As an example, Figure 2(a,b) shows the effect of the primitive
insert local element(nick-name, (1, 1), t, (0, 3), ts, S) insert-
ing a new subelement in type ts. Since the element is added as a
subelement in a choice, document validity is not impacted.

Cardinality Change. This update is realized through the prim-
itive invocation change cardinality((min′,max′), p, ts, S) Let
(min,max) be the cardinality constraints associated with the node
whose position is p in type ts structure. If the update extends the
allowed cardinalities, that is, if min′ ≤ min and max ≤ max′,

42

ENG = {description, movies}, T = T T ∪ AT , {personType, ratingType} ⊆ T T , AT = {t1, t2, t3}
RG(movies) = t3, RG(description) = string

ρ(t3) movie movie
→ t2

ρ(t2)

title
director
cast
release
genre
description

title
→ string
director
→ personType
cast
→ t1
release
→ date
genre
→ string
description
→ string

ρ(t1) actor actor
→ personType

ρ(personType)

sex
name
first-name
last-name
stage-name

sex
→ string
name
→ string
first-name
→ string
last-name
→ string
stage-name
→ string

Table 3: Evolved movie schema

then document validity is not compromised. As an example, Fig-
ure 2(c,d) shows the effect of the primitive change cardinality
((0, 1), 2, ts, S) that makes optional the director subelement
in type ts. Since the cardinality constraints are weakened, all valid
documents remain valid.

Substructure Insertion. This update is realized through the
high-level primitive invocation insert substruct(T, (p, j), ts, S).
If the substructure T is inserted under a specified node (the de-
noted position is (p, j) with j > 1), the case is analogous to
subelement insertion. Thus, if T is optional (i.e., ϕ|2(root(T)) =
(min,max) and min ≤ 1), it is inserted under a choice, or it
can validate an emptyContent element, the primitive is valid-
ity preserving. By contrast, if the substructure T is inserted over a
specified node (the denoted position is (p, j) with j = 0) the prim-
itive is validity preserving if T is optional, if its root is labelled by
choice (i.e., ϕ|1(root(T)) = CHOICE), or if all T subtrees either
are optional or validate emptyContent elements. Referring to
the update of Example 3, the call of the insert substruct primi-
tive is validity preserving, since the entire inserted substructure is
optional (its root cardinality is (0,1)). Note that not all the atomic
primitives corresponding to that primitive are validity preserving,
as stated by the following proposition, motivating the need to de-
vise validity preservation conditions also for high level primitives.

PROPOSITION 2. Let P be a high level primitive defined as the
sequence of atomic primitives AP1, . . . , APn. If ∀i = 1, . . . , n,
APi is validity preserving then P is guaranteed to be validity pre-
serving but the converse is not true. ✷

5.2 Type Graph Labelling
Relying on the analysis of the impact on validity of each sin-

gle primitive, we develop a process allowing the identification of
the types τ in schema S′ (the evolved schema obtained through a
sequence of evolution primitives applied on the original schema)
that do not describe any more instances valid for S (the original
schema). The process consists of 3 phases.

In the setup phase the whole schema is represented through a di-
rected graph, named type graph, by adding as child of each element

the tree corresponding to the structure of its type. The type graph
of our reference movie schema is depicted in Figure 3.

In the annotation phase, a label in {OK,KO,MAYBE} is as-
sociated with each node corresponding to a type in the graph for
each evolution primitive of the sequence. For each single primi-
tive, we have devised the labels to associate with the correspond-
ing types depending on the primitive parameters, as an extension
of what discussed in the previous section. Initially, all types are
labelled OK. Each primitive is considered in turn. Depending
on the applied primitive, the label of some types can be changed
to MAYBE or KO. When considering subsequent primitives, a
MAYBE label can be changed to KO.

The last propagation phase, which is executed at the end of the
schema evolution process, consists in propagating the annotation
labels to ancestor types as follows. If a subelement of a type defini-
tion τ is associated with a type τ ′ labelled with KO, if the element
is not optional and going up in the graph neither a choice nor an
operator with min cardinality equal to zero is encountered, type τ
is labelled KO as well, otherwise type τ is labelled MAYBE .

Annotations are then exploited for document revalidation as fol-
lows. First of all, we need to identify which elements in the doc-
uments are associated with τ through function get path(τ). This
function is defined on each type τ present in the schema and returns
the XPath expressions of elements whose type is τ . Referring to the
movie schema in Figure 3, for instance, get path(personType) =
{/movies/movie/cast/actor, /movies/movie/director}. In-
formation expressed through type labels are then used as follows.

• If a type is labelled OK, this means that it has not been
modified or the update is validity preserving; in both cases
L(τ) ⊆ L(τ ′) and no checks are needed.

• If a type τ is labelled KO, this means that its update com-
promised the validity of all documents valid for the previous
corresponding type τ ′, that is, L(τ) ∩ L(τ ′) = ∅; we can
thus simply check if the document contains elements associ-
ated with type τ by inspecting in the documents the contents
of paths in get path(τ). If one of such elements exists, the
document is not valid.

43

string string string

sex

string

type (movie)
t3

type (director)
t2

type (actor)
t1

type (sex)
personType

type (title)
t2

string

string

date

title

director (0,1)

cast(0,1) release(0,1)

gnre

description(0,1)

t3

movies

movie

t2

sequence

string

t1

sequence

personType

sequence

choice

name sequence

last−name stage−namefirst−name

string

RG

ρ

ρ

sequence(1,)

actor(1,)

ρ

KO

KO

OK
OK

OK
OK

OK

OK
OK

OK OK OK

MAYBE

Figure 3: Labelled type graph

• If a type τ is labelled MAYBE , this means that the update
may have compromised the validity of some documents, that
is, L(τ) �⊆ L(τ ′) ∧ L(τ) ∩ L(τ ′) �= ∅. In this case, again
through function get path, the elements associated with the
type must be retrieved and their subtrees must be revalidated.

EXAMPLE 4. We discuss the impact on validity of the evolution
operations of Example 2 (consider the graph in Figure 3).

• The change cardinality update is recognized as an exten-
sion of the set of valid instances for type t2. The correspond-
ing t2 label is thus not changed.

• The insert local element update is the insertion of a manda-
tory subelement in a sequence. The document validity
with respect to the sequence is compromised, however the
sequence is under a choice thus some documents may
not be affected by this update. Type personType is thus
labelled MAYBE .

• The remove element primitive removes a mandatory ele-
ment from a sequence and no choice ancestor nor an
ancestor operator with minOccurs=0 exist. Thus, type t2
is labelled KO.

Type labels are now propagated. The only type labelled by KO
is t2 which is associated only with the movie subelement of type
t3. Since element movie is not optional and going up the type
definition neither choice nor operators with minOccurs=0 are
encountered, type t3 is labelled KO as well. ©

PROPOSITION 3. The annotation process is sound, that is, all
the document portions that can have been invalidated by the schema
updates are detected. ✷

Note that the annotation process allows to identify the minimal
document portions potentially invalidated by a schema update, if
single update primitives are considered. When processing update
sequences, however, minimality is lost since the net effect of differ-
ent updates should be considered (e.g., the insertion of a mandatory
element and its subsequent deletion, which have a null net effect).

6. CONCLUSIONS AND FUTURE WORK
In this paper we have investigated the problem of XML Schema

evolution, by proposing a set of evolution primitives and analyzing
the impact of such primitives on the validity of XML documents
known to be valid for the original schema.

We are extending the work reported in this paper along sev-
eral directions. First of all, we are finalizing the implementation
of a graphical interface providing the devised schema evolution
primitives. The minimal revalidation approach based on graph la-
belling is being implemented as well, and the performance gain
over the brute-force revalidation approach would be evaluated over
real XML document collections. The tool under development of-
fers support for document adaptation as well by proposing the user
a restructuring structure when it can be devised and helping her in
specifying such a structure when user intervention is required. It
will finally allow the specification of customized high-level primi-
tives as composition of atomic ones.

The problem of adaptation of no more valid documents to the
new schema has being addressed as well, which involves subtleties
related both to the kind of update performed and to the structure
of the updated type. Several updates require the detection of the
minimal substructure for an element whose insertion/deletion is re-
quired to make the documents valid for the evolved schema. Our
approach to document adaptation is based on the use of restructur-
ing structures, that are structures like the ones introduced in Section
3 in which labels can also be ∆ε

l , ∆l
ε, and ∆lo

ln
, with l, ln, lo ∈ EN .

These structures allow the specification of the minimal modifica-
tions to be performed on documents invalidated by a schema up-
date. These structures are automatically inferred from the schema
update whenever possible, they are provided by the user otherwise.
The adaptation process will occur during the revalidation process
and the idea is that to validate the special subelement ∆ε

l element
l should be inserted. Similarly, to validate the special subelements
∆l

ε and ∆lo
ln

element l should be deleted and element lo should be
renamed to ln, respectively.

Finally, as a longer term goal, we are also interested in investi-
gating the impact of schema evolution on access control policies,
indexing structures, and programs working on the XML documents
whose schema is being evolved.

7. REFERENCES
[1] A. Balmin, et al. Incremental Validation of XML Documents. ACM TODS

29(4): 710–751, 2004.
[2] J. Banerjee, W. Kim, H. Kim, and H. Korth. Semantics and Implementation of

Schema Evolution in Object-Oriented Databases. SIGMOD, 311–322, 1987.
[3] D. Barbosa, et al. Efficient Incremental Validation of XML Documents. ICDE,

671–682, 2004.
[4] E. Bertino, et al. Evolving a Set of DTDs according to a Dynamic Set of XML

Documents. EDBT Workshops, LNCS 2490, 45–66, 2002.
[5] G.J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: A

Practical Study. WebDB, 79–84, 2004.
[6] B. Bouchou and M.H. Ferrari Alves. Updates and Incremental Validation of

XML Documents. DBPL, 216–232, 2003.
[7] B. Choi. What are Real DTDs Like? WebDB, 43–48, 2002.
[8] F. Ferrandina, et al. Schema and Database Evolution in the O2 Object

Database System. VLDB, 170–181, 1995.
[9] G. Guerrini, M. Mesiti, and D. Rossi. XML Schema Evolution, TR Universit‘a

di Genova, 2005.
[10] D. K. Kramer and E. A. Rundensteiner. Xem: XML Evolution Management.

RIDE-DM, 103–110, 2001.
[11] M. B. L. Tan and A. Goh. Keeping Pace with Evolving XML-Based

Specifications. EDBT Workshops, LNCS 3268, 280–288, 2004.
[12] M. Raghavachari and O. Shmueli. Efficient Schema-Based Revalidation of

XML. EDBT, 639–657, 2004.
[13] W3C. Extensible Markup Language 1.0, 1998.
[14] W3C. XML Schema Part 0: Primer, 2001.

44

