
A System Implementation of Interruption
Management for Mobile Devices

William Vilwock Praveen Madiraju and Sheikh Iqbal Ahamed
Department of Computer Science,
Carroll College, Helena, MT, USA

wvilwock@carroll.edu

Department of Mathematics, Statistics and Computer
Science

Marquette University
Milwaukee, Wisconsin, USA

{praveen.madiraju, sheikh.ahamed}@marquette.edu

Abstract— As the number of worldwide cellular subscriptions
approaches the world’s population, the negative effects of cell
phone disruption have become increasingly apparent. With
advances in mobile phones, specifically their sensor technology,
mobile phones are now capable of moderating interruptions
based on whether or not the user would want an interruption.
Research into the area of interruption management has provided
models and architectures for the creation of such an application.
However, to our knowledge, there are no interruption
management systems currently available in the Android or
iPhone app stores that utilize a probabilistic model to moderate
cell phone interruptions. A probabilistic model would be an
improvement over current binary decision models as the user
would not need to predetermine every possible outcome. In this
project, we have used a probabilistic model to implement an
interruption management system for Android OS 4.0 which
utilizes five contexts: schedule, time of day, location, caller
relationship, and driving. Our system intercepts the call,
calculates the probability of interruption, and then changes the
phone’s audio profile to vibrate, silent, or ring based on our
model. Our performance evaluations indicate minor application
foot print size, reasonable battery consumption, and very little
time overhead for the application.

Keywords- interruption management; Probability of
Interruption (POI); mobile application

I. INTRODUCTION
Interruptions are a common part of everyday life. They can

be necessary, such as a fire alarm going off to warn of danger.
At the same time, unwanted interruptions can prove to be
detrimental, such as a co-worker barging in on a meeting.
While unwanted interruptions can be caused by an infinite
number of things, one device has opened the gateway like
never before: the cell phone.

Cell phones have become ubiquitous within our society.
The International Telecommunication Union predicts that by
2014 the global number of cell phones subscriptions will hit 7
billion, closing in on the number of people who inhabit the
planet [10]. The services and capabilities of cell phones are
immense. Yet, at the same time, this level of connectedness
leaves users more vulnerable to harmful distractions than ever
before. Research has provided quantitative evidence to display
the negative effect of cell phone interruptions on society.
Commonly affected spheres include business, education, and

driving. As cellular devices become even more common in
everyday life, it is apparent of the need to manage their
interruptions.

The goal to produce an interruption management system
has been the center of a moderate amount of research. This
previous research provides ample information on the benefits
and harms of interruptions, models to measure the impacts of
interruptions, and methods of producing an application to
facilitate interruption management. An important aspect of
many of these research projects is the ability to measure Cost
of Interruption (COI) [1,7,9,11]. COI is a measurement of the
cost an interruption has on a user. Related to COI is POI, or
Probability of Interruption. POI is the probability an individual
would want to be interrupted. Both can be used to determine
whether or not an interruption would be desired by the
individual. For this research we will be using POI.

As cell phones have advanced, they have been embedded
with sensors that can comprehend their surroundings. By using
these sensors with other features on the phone it is possible to
understand the state of the user, which can be used to calculate
POI. Despite the amount of research done on interruption
management, to our knowledge, a widely available application
has not been released that utilizes a POI or probabilistic
method. Our application looks to be the first to accomplish this
task.

In previous work [18], we have proposed a mathematical
model for calculat ing COI based on Dempster-Shafer [5, 13]
theory, taking into account uncertainty of context information.
In [17], we proposed a system architecture which takes user
preferences and relevant context as input, and then produces
whether or not the phone should be allowed to ring as output.
The system used binary decision tree based implementation of
different scenarios of contexts. In this paper, we propose a
probabilistic model for calcu lating the POI. The system takes
an incoming call as input, calculates the probability of
interruption, and based on POI alters the state of the phone to
vibrate, ring, or silent. We report on our experience with
implementing the application on the Android platform.

The rest of the paper is organized as follows. Section II
provides motivation for interruption management research.
Section III provides a survey of related researches. Section IV
provides our model for calculating probability of interruption

mailto:wvilwock@carroll.edu

(POI). In Section V we discuss the implementation and
performance evaluation of the system. The last section
concludes our results and paves the way for future work.

II. MOTIVATION
In a society filled with cell phones, it is easy to see the

motivation behind managing their interruptions. We have all
experienced a time when an untimely cell phone interruption
has had a negative impact. It becomes even clearer when seeing
statistical impacts cell phones have on society as a whole. To
display their negative impact we explore several spheres that
are particularly influences by cell phone disruption: business,
education, and driving.

In the business sphere, cell phones have been shown to be a
significant disruption. Undesirable interruptions, such as a cell
phone ringing, take up 28 percent of a knowledge worker’s day
[14]. In a year, that totals to 28 b illion hours wasted and results
in a total loss of over 650 billion dollars, considering the
average labor rate of $24 an hour [2]. Productivity is clearly a
victim of unwanted cellular interruption. In addition to
productivity, safety can be jeopardized due to cell phone
distraction, especially while driving.

The National Highway Traffic Safety Admin istration did a
study on 100 vehicles for one year. They collected information
on the vehicles, such as how many crashes, near crashes, and
critical incidents occurred. They found that around 80 percent
of crashes, and 65 percent of near-crashes, involved distraction
of the driver within 3 seconds of the crash. The most common
distraction for drivers was found to be cell phones [12]. The
distraction cell phones cause is so great that eleven states in the
USA prohibit all drivers from using hand-held cell phones
while driving [6].

Cell phone distractions also have negative impacts on
school settings. A pilot study of graduate students indicated
that 85.1% of students believed ringing phones were a
distraction, and 72.3% stated that they have had their phone go
off in class [3]. With a h igh percent of students believing cell
phones to be disruptive, and a high percent of students who
admit to having their phone go off in class, it is clear to see the
problems of cell phone disruptions in an educational setting.

III. RELATED WORKS
Figure 1 d isplays a comprehensive selection of applications

(searchable by their name in the Android/iPhone app store)
currently available that do interruption management. The list
displays the application’s name, the platform it runs on, and the
contexts it can measure. Most of these applications only look
into one or two of these contexts. While none of the
applications in our sample measures all of the contexts, our
application incorporates all of them.

In addition, none of these applications utilize a probabilistic
method to make the decision. Instead, they are all binary
decisions based on user input beforehand, which requires the
user to predetermine all possible situations. Previous research
also provides interruption models based on Bayesian
Probability and Dempster-Shafter theory.

Limitations of Binary Decisions

The limitation of using binary decisions to determine the
interruption profile is the fact that the user must predetermine
every possible outcome. For example, say one of these
currently available applications makes decisions based on three
contexts: location, schedule, and contact. In order to function
correctly, the individual must specify how the phone profile
should act given each context, and every combination of the
contexts. This can become tedious, and it is not logical for the
user to predetermine every possible situation they will
encounter. This is the advantage of using a Probability of
Interruption (POI) model. A POI model does not require the
user to predetermine every possible outcome. Instead, it judges
the relevant criteria to produce the probability a user would
want an interruption. Different POI models use different
contexts and have different ways of evaluating them. The
creation of the POI model we used is explained in the next
Section.

Figure 1: Current Interruption Management

Applications

Bayesian and Dempster-Shafer Model

In previous research, Bayesian Probability models were
often used for interruption management [8,15]. However, as we
discussed in our earlier works [17], Bayesian models have
several limitations. The first is they require having complete
knowledge of a system, including all the a priori and
conditional probabilities. This information can be very d ifficult
to determine beforehand. Also, a priori probabilities are
traditionally measured from empirical data or uniform
distribution, which is not always available. For these reasons a
Bayesian Probability method was not pursued.

The solution that was offered in [18] was an
implementation of the Dempster-Shafer theory [5, 13]. Using
this theory, it is not necessary to know the a priori and the
conditional probabilities. In addition, this model takes into
account uncertainty. Uncertainty arises from not knowing or
not having access to all the information about a user or context.
As there are many factors that can go into whether a user would
want an interruption, and they can differ for each person, this
method is highly relevant to cellular interruption management.
However, in this current work, we assume that probability of
contexts is available, and if they are not, we simply assign a
default value (see Section 4.4).

IV. OUR MODEL FOR PROBABILITY OF
INTERRUPTION (POI)

Here we use a weighted sum of the probabilities of different
contexts to calculate the probability of interruption.

The Process of Determining the Weighted Sum Model

A weighted sum/average provides either a sum or an
average for a group of values that do not contribute equally to
the whole. This is exactly the case for a POI model. Each
person is affected differently by each context. Person A, for
example, may not want an interruption while they are driving,
but Person B may be fine with this. In this sense, each context
can be assigned its own POI. However, these contexts cannot
simply be considered in isolation from one another. Instead,
each context has a different degree with which they influence
the overall POI for the individual. In other words, a weight
could be assigned to each context. The overall POI is then a
sum of the POI of each context, times its respective weight. To
get to our weighted sum model, we first started out with a
weighted average.

4.1 Weighted Average

P(I) is the probability of interruption. },,,,{)(DTCSLIP are
the probabilities of interruption based on location, schedule,
contact, time of day, and driving. },,,,{ DTCSLW are the weights
assigned to each respective context. For this model, only the
measurable contexts were evaluated. The term measurable
means that the information for the particular context is
obtainable. This requires the POI for the context to be set
before hand by the user, and for the context to be relevant to
the situation the user is in. If the user is not driving, for
example, the driving context is considered not measurable.

As this is a weighted average, the function is divided by a
sum of the weights attributed to each context. This function
also requires the POI and weight of each context to be between
0 and 1. Both the weights and the POI are in increments of 0.1.
If P(I) is determined to be greater than 0.5, than it is okay for
an interruption to occur. If it is less than 0.5, then the
interruption profile will go to silent.

A set of scenarios was produced to test this model. In total,
we created 15 real life scenarios that looked to utilize d ifferent
contexts, as well as incorporate values from d ifferent types of
individuals. The scenarios we used, the POI of each context,
the corresponding weights, and the results can be found in the
extended version of the paper available online at [16] (we are
not presenting here, because of space constraints). When using
this method to evaluate the 15 scenarios, the model produced
the intended result 10 out of the 15 times. While a good start,
we believed a better model could be created.

4.2 Weighted Average with Default Values

Upon receiving the results from this method we decided to
see what would happen if a default value of 0.5 was used for
non-measurable contexts. This way all the contexts would be
evaluated regardless of being assigned a value, or being
pertinent to the situation. In the end, this model also produced
the intended result 10 out of the 15 times.

4.3 Weighted Sum (Using a Ranking Method)

Learning that a default value was not the solution to
determin ing POI, we decided to attempt a different approach.
One thing we notice was that undesired results often occurred
when different contexts had the same weight values. Instead of
allowing weights to have the same value, we decided we would
make the weights sum to one. This then changed the model
from a weighted average to a weighted sum, as the
denominator now summed to one. The modified model can be
seen below.

To determine the values of the weights we devised a
ranking system. As there are 5 contexts, the most important
context to the user (when determining whether or not they
would want an interruption) will get a value of 5. The next
most important context will get a value of 4, and so on and so
forth. To make sure the weights sum to one we divide these
values by 15 (the sum of the integers between 1 and 5,
inclusive). In our new model, we also use default values. As all
the values now have a direct impact on each other due to the
weighting scheme, it only makes sense to use default values if a
context is not measurable. However, as it is unknown how a
person would react if a context is not measured, the default
values are initially set to 0.5. This means unless the user
changes the default values, the values will not influence the
result one way or the other. Evaluating this model, we found it
produced the intended result 11 out of the 15 times. This is an
improvement on the previous model, yet could still be
improved.

4.4 Weighted Sum with Adjusted Weights

The final variation on this model, and the one we proceeded
to implement, is an intuitive change. As the model previously
stood, if you had a context with a particu larly high or low POI,
and it had a low rank, it would not have much of an impact.
This could throw off the model, especially if the individual had
programmed default values. It did not make sense for a non-

measurable context to receive more impact than a measurable
one. This led to the inclusion of adjusted ranks.

The weights are adjusted by first checking whether or not
the context is measurable. Any non-measurable context,
regardless of the weight attributed by the user, cannot be
allowed to have a higher weight than a measurable context. The
weights are first readjusted so all the measurable contexts have
a higher ranking than the non-measurable contexts. The exact
ranks from here are then determined by the ranks set by the
user.

For further clarification, say the user has ordered the
contexts in order of most important to least important as
follows: driving, contact, location, schedule, time of day. A call
comes in for which the measurable contexts are contact and
time of day. The model is then readjusted so contact and time
of day receive the greatest weights. As contact was initially
ranked higher, it would receive the greatest weight. Time of
day would then receive the next greatest weight. Finally, the
remaining contexts, in order of importance, would be driving,
location, and schedule

Evaluating the scenarios with this model produced the
correct results 12 out of 15 t imes, or 80%. These results are not
bad, but could still be improved. The scenarios this model
evaluated incorrectly provide insight into a couple of situations
where the model fails. The first situation is when one context
has a considerably higher weight to the user than all the other
contexts. An example of this is a business meeting where
location, time of day, and schedule suggest no interruption, but
the caller is the boss, making the interruption desirable. The
second shortcoming is when a context’s POI, besides time of
day, is directly dependent on time. For example, a college
student may not want their phone to ring in a building during
school hours, but after school hours it may be fine.

V. SYSTEM IMPLEMENTATION
We implemented the application on the Android platform,

which was chosen for several reasons. For starters, Android is
open source. This allowed us access to a lot of the features of
the phone, such as the sensors, the native applications, and the
audio profile manager. As our application requires access to all
of these features, this was the preferred platform to develop it
on. In addition, as of May 2013 there were over 900 million
Android devices activated [4]. The popularity of Android
devices provides a large community for feedback on the
application.

Application System Flow

Our application evaluates contextual informat ion upon a
call coming in. Prior to a call, no decisions are made about the
interruption profile (vibrate, ring or silence).

The System Flow of the application can be seen in Figure 2,
with the orange boxes representing the contexts. The term
calendar is used to represent the schedule context.

Figure 2: Application System Flow

The application can be divided into 5 main sections: 1)
Incoming Call/Text 2) Broadcast Receiver 3) POI Calculation
4) Audio Manager 5) Ring/Vibrate/Silent

1. Incoming Call/Text:

The first stage occurs when the phone receives an incoming
call/text, which changes the phone state. When the phone state
of the Android devices changes, a message known as an intent
is broadcast. This intent can be received by what is called a
Broadcast Receiver, assuming the receiver is looking for that
particular intent.

2. Broadcast Receiver

The Broadcast Receiver looks for the intent that is launched
when the phone state is changed. Examples of phone states
include being idle, off the hook, or ringing. To determine when
a call or text is coming in, the application waits to hear an
intent that advertises the phone is ringing. This indicates a call
or text is coming in and launches the POI Calculation.

3. Probability of Interruption (POI) Calculation

The POI calculation utilizes the Weighted Sum with
Adjusted Weights model we produced (see Section 4.4). It is a
service that runs in the background and is launched by the
broadcast receiver. In order to evaluate this model, it requires
obtaining all of the context information. This includes
determin ing whether the context is measurable, the POI for
each context, the weight assigned to each context, and the
preferred method of interruption (PMI). To obtain these values
this component queries databases, as well as uses saved user
preferences. By these means the POI Calculation service has all
the required values. It then runs the model and determines the
audio mode the phone should be in. The changing of the audio
mode is handled by the audio manager.

4. Audio Manager

The Audio Manager provides access to changing the mode
of interruption. After using the POI calculation to determine the
mode the phone should be in, the audio manager proceeds to
change the phone to that mode.

5. Ring/Vibrate/Silent

At this point the phone is now in the mode the application
has determined it should be in. The call or text now is
presented to the user in the form deemed best by the model.

Determining the Preferred Method of Interruption
(PMI)

If the POI is above 0.5, the application then has a decision
to make: ring or vibrate. In some situations it is okay to receive
a vibration, but it is not okay for the phone to ring. An
assumption we make is that if it is okay for the phone to ring
then it is okay for the phone to vibrate. From this logic we
devised a way to determine the user’s preferred method of
interruption, or PMI.

To accommodate for the PMI, we allow the user to specify
a PMI for each context. By default it is set to vibrate. If all of
the measurable context have a PMI of ring, and if an
interruption is deemed as okay, then the phone will ring.
However, if even one of the measurable contexts has a PMI of
vibrate, then the phone will vibrate instead of ring.

Obtaining and Setting Preferences for the Contexts and
Weights

Our model requires complete knowledge of all contexts.
This means determining whether or not the contexts are
measurable, the probability of interruption for each context, the
weight assigned to each context, and the PMI. If the context is
not measurable, a default POI is used. Upon installation, all the
default probabilities are set to 0.5, though they can be changed
later by the user. To acquire this information, the user must
specify their preference for all of the contexts. The UI is
designed to accommodate quickly adding or altering
preferences. An image of the main UI is seen below.

Figure 3: Main Menu

From this main menu the user can then navigate and enter
the required information for the six main sections: weight,
location, schedule, contact, time of day, and driving. Most of
the preferences (e.g. POI and PMI) can be set from drop down
menus. In addition, the user can also set the default phone
profile. If none of the contexts are measurable, a default profile
is used. For the default phone profile the user is able to choose
between ring, vibrate, and silent.

Weight Preferences

The Weight Preferences UI is used to set the ranks of each
context. As our model uses a ranking system, the user simply
has to list the weights in order from most important to least
important. This is done by using arrow controls to the side of
each of the contexts. The selected order is then saved as a user
preference. When the POI Calculation service is launched, it
retrieves the values from the saved preferences.

 Location Preferences

The Location UI allows the user to create location profiles.
Each of these profiles gets its own set of preferences. For
example, the user could create a profile called work. From
here they can specify an address of where their work is located.
The address that is entered is checked against a database of
known street addresses for possible matches. If any matches are
found, the UI presents these addresses to the user, and the user
can select the correct one. For each profile the user is able to
specify a POI and PMI. A SQLite database is used to store the
user’s preferences, as well latitude and longitude of the location
specified.

To determine the user’s proximity to a specified location,
our application relies on Google Play Serv ices. In May of 2013,
Google released an update to the Google Play Services that
provides additional APIs for functionality. One of these APIs,
the Location Service API, automatically keeps track of the
user’s current location. The Location Service handles
maintaining user location updates without any additional
configuration.

Upon a call coming in, the last known location of the phone
is obtained. The POI Calculation compares the user’s last
known location with that of the user’s location profiles. Current
technology does not always provide the most accurate location.
With this in mind, when the POI Calculation compares the two
locations it allows them to be off by a certain margin. This
margin is the radius of accuracy, represented in meters, which
the Location Services provides when making its location
prediction. If the two locations are off by a distance less than
the radius of accuracy, then the situation is considered
measurable, and the user’s preferences are used in the
calculation. Otherwise, the situation is considered non-
measurable and the default values are used.

Schedule Preferences

For the user’s Schedule Preferences this application utilizes
the native calendar application. There are several possible
options when evaluating the schedule context. The first
possible outcome is the user has nothing scheduled at the time
of the call/text. If this is the case, then the context is considered
non-measurable and the default probability is assigned. The
next outcome is the user has something scheduled, but they do
not have a POI or a PMI assigned for that specific event. In this
case the user can set a default event POI and PMI. The final
outcome is an event that occurs where the user has specified
both POI and a PMI in the native calendar application.

Currently, to specify POI and PMI in the native calendar
application, the user must place the POI (in increments of 0.1),
and the PMI (R for ring, V for vibrate) between dollar sign

delimiters. When a call or text comes in, the application uses
the current time to decide if an event is currently scheduled,
and evaluates the schedule preferences accordingly.

Contact Preferences

The Contact Preferences UI is very similar to the Location
Preferences UI. The user is able to create group profiles, assign
contacts to each group, and specify preferences for each of
these profiles. Each contact is only allowed to be in one group
at a time. The contact’s name, phone number, and group are
stored in a SQLite database, along with the POI and PMI of
each group. When the application needs to do its calculations it
queries the database, using the incoming phone number to
determine whether or not the contact is in a group. If nothing is
returned by the query, then the default POI is assigned and the
context is considered non-measurable. If the contact is found to
be in a group, then the POI and PMI are retrieved to be used in
the calculation.

Time of Day Preferences

Like both the Location and Contact Preferences, the Time
of Day Preferences allows the user to create mult iple profiles.
Each profile gets a start time, an end time, a POI, a PMI, and
the day(s) of the week for which this preference is applicable.
As the profiles are specified for each day, the user cannot span
between one day and the next using the same profile. If this
result is desired then the user must specify two profiles. All this
information is stored in a SQLite database.

To check whether or not the Time of Day context is
measurable, the POI Calculation service does a query of the
database. It is looking for a return value where the current time
is after the start time, but before the end time. The day of the
week must also match the system’s day of the week. A returned
result indicates a measurable Time of Day context, and the
necessary values are retrieved. Otherwise, the context is
considered non-measurable and the default value is used.

Driving Preference

The Google Play Services update introduced the Activity
Recognition API. Through this API it is possible to request the
user’s current activity. As it takes several seconds to request an
activity update and get a response, it is not feasible to do this
upon the call/text coming in. Instead, this service runs in the
background and receives location updates every 30 seconds.
The last 5 activity updates are kept on record, and if driving
was one of the last five activities, a shared Boolean value is
saved as true. While this may not be the most accurate method,
the application is trying to balance accuracy with battery usage.

When the POI Calculation is run it determines whether or
not the user is driving from the saved Boolean value. The POI
for driv ing, as well as the PMI, can be set from the Driving
Preferences UI. If the driving context is evaluated as non-
measurable a default POI is used. As the user may not always
desire the phone to continuously track their activity and use
battery resources, it is possible stop the activity recognition.
Stopping the updates from activity recognition means the
driving context will always get the default value.

Evaluation

Currently the application’s footprint is 2.30 MB, with the
source code being 147KB. The application is constantly
running, and generally uses 7MB-9MB of RAM. For CPU
usage, it does not have an impact when running in the
background. Upon init ially being launched for the user to enter
values, the application uses 2-3% of the CPU. When doing
calculations the application uses 1-2% of the CPU.

For the location services, the constant connection to the
Google Play Serv ices to retrieve location and activity updates
places a drain on the battery, as expected. However, if a
different application were already using constant location and
activities updates, then our application would cause no
additional overhead for battery usage.

VI. CONCLUSIONS
In this research, we have implemented an interruption

management application that utilizes a probabilistic approach.
The system uses an adjustable weighted average of
probabilities of interruption for each of the five contexts,
namely, schedule, time of day, location, caller relat ionship, and
driving. With this model we then succeeded in designing and
implementing the application, such that when a call comes in it
uses the model to determine a cell phone’s appropriate
interruption profile.

The production of this application has provided steps,
measurable contexts, a system flow, and an application that
future interruption management research can use, modify, or be
compared to. In addition, the production of this application has
provided insight into its limitations. Most apparent is requiring
the user to provide all the values needed for each context.
Future research should look to implement applications that can
acquire contextual values for the user without relying solely on
user input. The limitations of modern day technology, such as
inaccurate measurements and battery constraints, should also
be considered when designing an interruption management
application.

While much work still needs to be done on the application,
upon completion and publication it will then be possible to
receive user feedback. This feedback could prove to be
extremely valuable to the topic of interruption management as
it will provide insight and effectiveness from its target
audience. As no widely available application has been released,
this information has not been recorded. Also, the proposed
implementation’s computation module can be easily replaced
with other models, such as the Dempster-Shafer model, and
then subsequent comparisons can be carried out.

Finally, with this application it is easy to see the possible
future work that can be done in the topic of interruption
management. By being able to determine probabilities of
interruption for each context without relying on user input, the
application would be more reliable and user friendly. Currently,
the complexities of the application could prevent users from
actually using it. One possible way of obtaining these values
could be through machine learning and data mining techniques.
In addition, the steps, model, and system flow for this
Smartphone application may be able to be used on other
context aware devices, such as laptops and tablets. By

expanding beyond Smartphones we increase the ability to
prevent unwanted interruptions.

ACKNOWLEDGMENT
This work was supported by the National Science Foundation
grant CNS-REU-1063041.

REFERENCES
[1] Bailey, B. P. and Iqbal, S. T .: Understanding changes in mental

workload during execution of goal-directed tasks and its application for
interruption management. ACM Trans. Comput.-Hum. Interact. 14, 4,
Jan. 2008, 1-28.

[2] Bureau of Labor Statistics,
http://www.bls.gov/news.release/empsit.t19.htm

[3] Burns, Shari M, Lohenry, Kevin., “Cellular phone use in class:
implications for teaching and learning a pilot study”, in College
Student Journal, Sep2010, Vol. 44 Issue 3, pp. 805-810.

[4] Business Insider, http://www.businessinsider.com/900-million-android-
devices-in-2013-2013-5

[5] Dempster, A. P., “Upper and Lower Probabilit ies Induced by a
Multivalued Mapping,” The Annals of Statistics 28, 1967, pp. 325-339.

[6] Governors Highway Safety Association,
http://www.ghsa.org/html/stateinfo/laws/cellphone_laws.html

[7] Grandhi, S.A., Schuler, R.P., & Jones, Q.: To answer or not to answer:
that is the question for the cell phone users. Proceedings of the 27th
international conference extended abstracts on Human factors in
computing systems, 2009, 4621-4626.

[8] Horvitz E., Koch P. and Apacible, J., “BusyBody: creating and fielding
personalized models of the cost of interruption,” in the ACM Conference
on Computer Supported Cooperative Work, 2004, pp. 507-510.

[9] Iqbal, S. T . and Bailey, B. P.: Leveraging characteristics of task structure
to predict the cost of interruption. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Montréal,
Québec, Canada, April 22 - 27, 2006, 741-750.

[10] International Telecommunication Union,
https://www.itu.int/net/pressoffice/press_releases/2013/05.aspx

[11] Mark, G., Gudith, D., and Klocke, U.: The cost of interrupted work:
more speed and stress. In Proceeding of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing Systems,
Florence, Italy, April 05 - 10, 2008, 107-110.

[12] National Highway Traffic Safety Administration,
http://www.nhtsa.gov/Driving+Safety/Distracted+Driving/Breakthrough
+Research+on+Real-World+Driver+Behavior+Released

[13] Shafer, G., “A Mathematical Theory of Evidence. Princeton," NJ,
Princeton University Press, 1976.

[14] Spira J.B. and Feintuch J.B., “The Cost of Not Paying Attention: How
Interruptions Impact Knowledge Worker Productivity”, Basex, 2005

[15] Turney P., “Robust Classification with Context-Sensitive Features,” in
the 6th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, 1993.

[16] William, V., Madiraju, P., and Ahamed, S.I. unpublished report
available from http://www.mscs.mu.edu/~praveen/Research/im]

[17] Zulkernain S., Stamm K., Madiraju P. and Ahamed S.I., “A Mobile
Intelligent Interruption Management System”, in Journal of Universal
Computer Science, Vol. 16, No. 15, 2010, pp. 2060-2080.

[18] Sina Zulkernain, Praveen Madiraju and Sheikh Iqbal Ahamed. "A
Context-aware Cost of Interruption Model for Mobile Devices",
Proceedings of 8th IEEE Workshop on Context Modeling and
Reasoning (CoMoRea 2011) in conjunction with the 9th IEEE
International Conference on Pervasive Computing and Communication
(PerCom'11), Seattle, USA, March 21-25, 2011, pp.421-425

	I. Introduction
	II. motivation
	III. Related Works
	IV. OUR MODEL FOR PROBABILITY OF INTERRUPTION (POI)
	V. system implementation
	VI. Conclusions
	acknowledgment
	References

