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Abstract— As the number of worldwide cellular subscriptions 
approaches the world’s population, the negative effects of cell 
phone disruption have become increasingly apparent. With 
advances in mobile phones, specifically their sensor technology, 
mobile phones are now capable of moderating interruptions 
based on whether or not the user would want an interruption. 
Research into the area of interruption management has provided 
models and architectures for the creation of such an application. 
However, to our knowledge, there are no interruption 
management systems currently available in the Android or 
iPhone app stores that utilize a probabilistic model to moderate 
cell phone interruptions. A probabilistic model would be an 
improvement over current binary decision models as the user 
would not need to predetermine every possible outcome. In this 
project, we have used a probabilistic model to implement an 
interruption management system for Android OS 4.0 which 
utilizes five contexts:  schedule, time of day, location, caller 
relationship, and driving. Our system intercepts the call, 
calculates the probability of interruption, and then changes the 
phone’s audio profile to vibrate, silent, or ring based on our 
model. Our performance evaluations indicate minor application 
foot print size, reasonable battery consumption, and very little 
time overhead for the application. 

Keywords- interruption management; Probability of 
Interruption (POI); mobile application 

I.  INTRODUCTION 
Interruptions are a common part of everyday life. They can 

be necessary, such as a fire alarm going off to warn of danger. 
At the same time, unwanted interruptions can prove to be 
detrimental, such as a co-worker barging in on a meeting. 
While unwanted interruptions can be caused by an infinite 
number of things, one device has opened the gateway like 
never before: the cell phone. 

Cell phones have become ubiquitous within our society. 
The International Telecommunication Union predicts that by 
2014 the global number of cell phones subscriptions will hit 7 
billion, closing in on the number of people who inhabit the 
planet [10]. The services and capabilities of cell phones are 
immense. Yet, at the same time, this level of connectedness 
leaves users more vulnerable to harmful distractions than ever 
before. Research has provided quantitative evidence to display 
the negative effect of cell phone interruptions on society. 
Commonly affected spheres include business, education, and 

driving. As cellular devices become even more common in 
everyday life, it is apparent of the need to manage their 
interruptions.  

The goal to produce an interruption management system 
has been the center of a moderate amount of research. This 
previous research provides ample information on the benefits 
and harms of interruptions, models to measure the impacts of 
interruptions, and methods of producing an application to 
facilitate interruption management. An important aspect of 
many of these research projects is the ability to measure Cost 
of Interruption (COI) [1,7,9,11]. COI is a measurement of the 
cost an interruption has on a user. Related to COI is POI, or 
Probability of Interruption. POI is the probability an individual 
would want to be interrupted. Both can be used to determine 
whether or not an interruption would  be desired by the 
individual. For this research we will be using POI. 

As cell phones have advanced, they have been embedded 
with sensors that can comprehend their surroundings. By using 
these sensors with other features on the phone it is possible to 
understand the state of the user, which can be used to calculate 
POI. Despite the amount of research done on interruption 
management, to our knowledge, a widely available application 
has not been released that utilizes a POI or probabilistic 
method. Our application looks to be the first to accomplish this 
task.  

In previous work [18], we have proposed a mathematical 
model for calculat ing COI based on Dempster-Shafer [5, 13] 
theory, taking into account uncertainty of context information. 
In [17], we proposed a system architecture which takes user 
preferences and relevant context as input, and then produces 
whether or not the phone should be allowed to ring as output. 
The system used binary decision tree based implementation of 
different scenarios of contexts. In this paper, we propose a 
probabilistic model for calcu lating the POI. The system takes 
an incoming call as input, calculates the probability of 
interruption, and based on POI alters the state of the phone to 
vibrate, ring, or silent. We report on our experience with 
implementing the application on the Android platform. 

The rest of the paper is organized as follows. Section II 
provides motivation for interruption management research. 
Section III provides a survey of related researches. Section IV 
provides our model for calculating probability of interruption 
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(POI). In Section V we discuss the implementation and 
performance evaluation of the system. The last section 
concludes our results and paves the way for future work. 

II. MOTIVATION 
In a society filled with cell phones, it is easy to see the 

motivation behind managing their interruptions. We have all 
experienced a time when an untimely cell phone interruption 
has had a negative impact. It becomes even clearer when seeing 
statistical impacts cell phones have on society as a whole. To 
display their negative impact we explore several spheres that 
are particularly influences by cell phone disruption: business, 
education, and driving.  

In the business sphere, cell phones have been shown to be a 
significant disruption. Undesirable interruptions, such as a cell 
phone ringing, take up 28 percent of a knowledge worker’s day 
[14]. In a year, that totals to 28 b illion hours wasted and results 
in a total loss of over 650 billion dollars, considering the 
average labor rate of $24 an hour [2]. Productivity is clearly a 
victim of unwanted cellular interruption. In addition to 
productivity, safety can be jeopardized due to cell phone 
distraction, especially while driving. 

The National Highway Traffic Safety Admin istration did a 
study on 100 vehicles for one year. They collected information 
on the vehicles, such as how many crashes, near crashes, and 
critical incidents occurred. They found that around 80 percent 
of crashes, and 65 percent of near-crashes, involved distraction 
of the driver within 3 seconds of the crash. The most common 
distraction for drivers was found to be cell phones [12]. The 
distraction cell phones cause is so great that eleven states in the 
USA prohibit all drivers from using hand-held cell phones 
while driving [6]. 

Cell phone distractions also have negative impacts on 
school settings. A pilot study of graduate students indicated 
that 85.1% of students believed ringing phones were a 
distraction, and 72.3% stated that they have had their phone go 
off in class [3]. With a h igh percent of students believing cell 
phones to be disruptive, and a high percent of students who 
admit  to having their phone go off in class, it is clear to see the 
problems of cell phone disruptions in an educational setting.  

III. RELATED WORKS 
Figure 1 d isplays a comprehensive selection of applications 

(searchable by their name in the Android/iPhone app store) 
currently available that do interruption management. The list 
displays the application’s name, the platform it runs on, and the 
contexts it can measure. Most of these applications only look 
into one or two of these contexts. While none of the 
applications in our sample measures all of the contexts, our 
application incorporates all of them.  

In addition, none of these applications utilize a probabilistic 
method to make the decision. Instead, they are all binary 
decisions based on user input beforehand, which requires the 
user to predetermine all possible situations. Previous research 
also provides interruption models based on Bayesian 
Probability and Dempster-Shafter theory.  

Limitations of Binary Decisions 

The limitation of using binary decisions to determine the 
interruption profile  is the fact that the user must predetermine 
every possible outcome. For example, say one of these 
currently available applications makes decisions based on three 
contexts: location, schedule, and contact. In order to function 
correctly, the individual must specify how the phone profile 
should act given each context, and every combination of the 
contexts. This can become tedious, and it is not logical for the 
user to predetermine every possible situation they will 
encounter. This is the advantage of using a Probability of 
Interruption (POI) model. A POI model does not require the 
user to predetermine every possible outcome. Instead, it judges 
the relevant criteria to produce the probability a user would 
want an interruption. Different POI models use different 
contexts and have different ways of evaluating them. The 
creation of the POI model we used is explained in the next 
Section. 

 
Figure 1: Current Interruption Management 

Applications 

 

Bayesian and Dempster-Shafer Model 

In previous research, Bayesian Probability models were 
often used for interruption management [8,15]. However, as we 
discussed in our earlier works [17], Bayesian models have 
several limitations. The first is they require having complete 
knowledge of a system, including all the a priori and 
conditional probabilities. This information can be very d ifficult 
to determine beforehand. Also, a priori probabilities are 
traditionally measured from empirical data or uniform 
distribution, which is not always available. For these reasons a 
Bayesian Probability method was not pursued.  



The solution that was offered in [18] was an 
implementation of the Dempster-Shafer theory [5, 13]. Using 
this theory, it is not necessary to know the a priori and the 
conditional probabilities. In addition, this model takes into 
account uncertainty. Uncertainty arises from not knowing or 
not having access to all the information about a user or context. 
As there are many factors that can go into whether a user would 
want an interruption, and they can differ for each person, this 
method is highly relevant to cellular interruption management. 
However, in this current work, we assume that probability of 
contexts is available, and if they are not, we simply assign a 
default value (see Section 4.4). 

IV. OUR MODEL  FOR PROBABILITY OF 
INTERRUPTION (POI) 

Here we use a weighted sum of the probabilities of different 
contexts to calculate the probability of interruption.  

The Process of Determining the Weighted Sum Model 

A weighted sum/average provides either a sum or an 
average for a group of values that do not contribute equally to 
the whole. This is exactly the case for a POI model. Each 
person is affected differently by each context. Person A, for 
example, may not want an interruption while they are driving, 
but Person B may be fine with this. In this sense, each context 
can be assigned its own POI. However, these contexts cannot 
simply be considered in isolation from one another. Instead, 
each context has a different degree with which they influence 
the overall POI for the individual. In other words, a weight 
could be assigned to each context. The overall POI is then a 
sum of the POI of each context, times its respective weight. To 
get to our weighted sum model, we first started out with a 
weighted average.  

4.1 Weighted Average 

 

 
 

P(I)  is the probability of interruption. },,,,{)( DTCSLIP are 
the probabilities of interruption based on location, schedule, 
contact, time of day, and driving.  },,,,{ DTCSLW are the weights 
assigned to each respective context. For this model, only the 
measurable contexts were evaluated. The term measurable 
means that the information for the particular context is 
obtainable. This requires the POI for the context  to be set 
before hand by the user, and for the context to be relevant to 
the situation the user is in. If the user is not driving, for 
example, the driving context is considered not measurable.   

As this is a weighted average, the function is divided by a 
sum of the weights attributed to each context. This function 
also requires the POI and weight of each context  to be between 
0 and 1. Both the weights and the POI are in increments of 0.1. 
If P(I) is determined to be greater than 0.5, than it is okay for 
an interruption to occur. If it is less than 0.5, then the 
interruption profile will go to silent.  

A set of scenarios was produced to test this model. In total, 
we created 15 real life scenarios that looked to utilize d ifferent 
contexts, as well as incorporate values from d ifferent types of 
individuals. The scenarios we used, the POI of each context, 
the corresponding weights, and the results can be found in the 
extended version of the paper available online at  [16] (we are 
not presenting here, because of space constraints). When using 
this method to evaluate the 15 scenarios, the model produced 
the intended result 10 out of the 15 times. While a good start, 
we believed a better model could be created.  

4.2 Weighted Average with Default Values 

Upon receiving the results from this method we decided to 
see what would happen if a  default value of 0.5 was used for 
non-measurable contexts. This way all the contexts would be 
evaluated regardless of being assigned a value, or being 
pertinent to the situation. In the end, this model also produced 
the intended result 10 out of the 15 times.  

4.3 Weighted Sum (Using a Ranking Method) 

Learning that a default value was not the solution to 
determin ing POI, we decided to attempt a different approach. 
One thing we notice was that undesired results often occurred 
when different contexts had the same weight values. Instead of 
allowing weights to have the same value, we decided we would 
make the weights sum to one. This then changed the model 
from a weighted average to a weighted sum, as the 
denominator now summed to one. The modified model can be 
seen below. 

 

 
 

To determine the values of the weights we devised a 
ranking system. As there are 5 contexts, the most important 
context to the user (when determining whether or not they 
would want an interruption) will get a value of 5. The next 
most important context will get a value of 4, and so on and so 
forth. To make sure the weights sum to one we divide these 
values by 15 (the sum of the integers between 1 and 5, 
inclusive). In our new model, we also use default values. As all 
the values now have a direct impact on each other due to the 
weighting scheme, it only makes sense to use default values if a 
context is not measurable. However, as it is unknown how a 
person would react if a context is not measured, the default 
values are initially set to 0.5. This means unless the user 
changes the default values, the values will not influence the 
result one way or the other. Evaluating this model, we found it 
produced the intended result 11 out of the 15 times. This is an 
improvement on the previous model, yet could still be 
improved.   

4.4 Weighted Sum with Adjusted Weights 

The final variation on this model, and the one we proceeded 
to implement, is an intuitive change. As the model previously 
stood, if you had a context  with a particu larly  high or low POI, 
and it had a low rank, it would not have much of an impact. 
This could throw off the model, especially if the individual had 
programmed default values. It did not make sense for a non-



measurable context to receive more impact than a measurable 
one. This led to the inclusion of adjusted ranks.  

The weights are adjusted by first checking whether or not 
the context is measurable. Any non-measurable context, 
regardless of the weight attributed by the user, cannot be 
allowed to have a higher weight than a measurable context. The 
weights are first readjusted so all the measurable contexts have 
a higher ranking than the non-measurable contexts. The exact 
ranks from here are then determined by the ranks set by the 
user.  

For further clarification, say the user has ordered the 
contexts in order of most important to least important as 
follows: driving, contact, location, schedule, time of day. A call 
comes in for which  the measurable contexts are contact and 
time of day. The model is then readjusted so contact and time 
of day receive the greatest weights. As contact was initially 
ranked higher, it would  receive the greatest weight. Time of 
day would then receive the next greatest weight. Finally, the 
remaining contexts, in order of importance, would be driving, 
location, and schedule 

Evaluating the scenarios with this model produced the 
correct results 12 out of 15 t imes, or 80%. These results are not 
bad, but could still be improved. The scenarios this model 
evaluated incorrectly provide insight into a couple of situations 
where the model fails. The first situation is when one context 
has a considerably higher weight to the user than all the other 
contexts. An example of this is a business meeting where 
location, time of day, and schedule suggest no interruption, but 
the caller is the boss, making the interruption desirable. The 
second shortcoming is when a context’s POI, besides time of 
day, is directly dependent on time. For example, a college 
student may not want their phone to ring in a building during 
school hours, but after school hours it may be fine. 

V. SYSTEM IMPLEMENTATION 
We implemented the application on the Android platform, 

which was chosen for several reasons. For starters, Android is 
open source. This allowed us access to a lot of the features of 
the phone, such as the sensors, the native applications, and the 
audio profile  manager. As our application requires access to all 
of these features, this was the preferred platform to develop it 
on. In addition, as of May 2013 there were over 900 million 
Android devices activated [4]. The popularity of Android 
devices provides a large community for feedback on the 
application.  

Application System Flow 

Our application evaluates contextual informat ion upon a 
call coming in. Prior to a call, no decisions are made about the 
interruption profile (vibrate, ring or silence).  

The System Flow of the application can be seen in Figure 2, 
with the orange boxes representing the contexts. The term 
calendar is used to represent the schedule context.     

 
Figure 2: Application System Flow 

 

The application can be divided into 5 main sections: 1) 
Incoming Call/Text  2) Broadcast Receiver 3) POI Calculation 
4) Audio Manager 5) Ring/Vibrate/Silent 

1. Incoming Call/Text:  

The first stage occurs when the phone receives an incoming 
call/text, which changes the phone state. When the phone state 
of the Android devices changes, a message known as an intent 
is broadcast. This intent can be received by what is called a 
Broadcast Receiver, assuming the receiver is looking for that 
particular intent.  

2. Broadcast Receiver 

The Broadcast Receiver looks for the intent that is launched 
when the phone state is changed. Examples of phone states 
include being idle, off the hook, or ringing. To  determine when 
a call or text is coming in, the application waits to hear an 
intent that advertises the phone is ringing. This indicates a call 
or text is coming in and launches the POI Calculation. 

3.  Probability of Interruption (POI) Calculation 

The POI calculation utilizes the Weighted Sum with 
Adjusted Weights model we produced (see Section 4.4). It is a 
service that runs in the background and is launched by the 
broadcast receiver. In order to evaluate this model, it requires 
obtaining all of the context information. This includes 
determin ing whether the context is measurable, the POI for 
each context, the weight assigned to each context, and the 
preferred method of interruption (PMI). To obtain these values 
this component queries databases, as well as uses saved user 
preferences. By these means the POI Calculation service has all 
the required values. It then runs the model and determines the 
audio mode the phone should be in. The changing of the audio 
mode is handled by the audio manager. 

4. Audio Manager 

The Audio Manager provides access to changing the mode 
of interruption. After using the POI calculation to determine the 
mode the phone should be in, the audio manager proceeds to 
change the phone to that mode.  

5. Ring/Vibrate/Silent 



At this point the phone is now in the mode the application 
has determined it should be in. The call or text now is 
presented to the user in the form deemed best by the model.  

Determining the Preferred Method of Interruption 
(PMI) 

If the POI is above 0.5, the application then has a decision 
to make: ring or vibrate. In some situations it is okay to receive 
a vibration, but it is not okay for the phone to ring. An 
assumption we make is that if it is okay for the phone to ring 
then it is okay for the phone to vibrate. From this logic we 
devised a way to determine the user’s preferred method of 
interruption, or PMI.   

To accommodate for the PMI, we allow the user to specify 
a PMI for each context. By default it is set to vibrate. If all of 
the measurable context have a PMI of ring, and if an 
interruption is deemed as okay, then the phone will ring. 
However, if even one of the measurable contexts has a PMI of 
vibrate, then the phone will vibrate instead of ring.  

Obtaining and Setting Preferences for the Contexts and 
Weights 

Our model requires complete knowledge of all contexts. 
This means determining whether or not the contexts are 
measurable, the probability of interruption for each context, the 
weight assigned to each context, and the PMI. If the context is 
not measurable, a default POI is used. Upon installation, all the 
default probabilities are set to 0.5, though they can be changed 
later by the user. To acquire this information, the user must 
specify their preference for all of the contexts. The UI is 
designed to accommodate quickly adding or altering 
preferences. An image of the main UI is seen below.  

  
Figure 3: Main Menu 

  

From this main  menu the user can then navigate and enter 
the required information for the six main sections: weight, 
location, schedule, contact, time of day, and driving. Most of 
the preferences (e.g. POI and PMI) can be set from drop down 
menus. In addition, the user can also set the default phone 
profile. If none of the contexts are measurable, a default  profile 
is used. For the default phone profile the user is able to choose 
between ring, vibrate, and silent.  

Weight Preferences 

The Weight Preferences UI is used to set the ranks of each 
context. As our model uses a ranking system, the user simply 
has to list the weights in order from most important to least 
important. This is done by using arrow controls to the side of 
each of the contexts. The selected order is then saved as a user 
preference. When the POI Calculation service is launched, it 
retrieves the values from the saved preferences.  

 Location Preferences 

The Location UI allows the user to create location profiles. 
Each of these profiles gets its own set of preferences. For 
example, the user could create a profile called work.  From 
here they can specify an address of where their work is located. 
The address that is entered is checked against a database of 
known street addresses for possible matches. If any matches are 
found, the UI presents these addresses to the user, and the user 
can select the correct one. For each profile  the user is able to 
specify a POI and PMI. A SQLite database is used to store the 
user’s preferences, as well latitude and longitude of the location 
specified.   

To determine the user’s proximity to a specified location, 
our application relies on Google Play Serv ices. In May of 2013, 
Google released an update to the Google Play Services that 
provides additional APIs for functionality. One of these APIs, 
the Location Service API, automatically keeps track of the 
user’s current location. The Location Service handles 
maintaining user location updates without any additional 
configuration. 

Upon a call coming in, the last known location of the phone 
is obtained. The POI Calculation compares the user’s last 
known location with that of the user’s location profiles. Current 
technology does not always provide the most accurate location. 
With this in mind, when the POI Calculation compares the two 
locations it allows them to be off by a certain margin. This 
margin is the radius of accuracy, represented in meters, which 
the Location Services provides when making its location 
prediction. If the two locations are off by a distance less than 
the radius of accuracy, then the situation is considered 
measurable, and the user’s preferences are used in the 
calculation. Otherwise, the situation is considered non-
measurable and the default values are used.  

Schedule Preferences 

For the user’s Schedule Preferences this application utilizes 
the native calendar application. There are several possible 
options when evaluating the schedule context. The first 
possible outcome is the user has nothing scheduled at the time 
of the call/text. If this is the case, then the context is considered 
non-measurable and the default probability is assigned. The 
next outcome is the user has something scheduled, but they do 
not have a POI or a PMI assigned for that specific event. In this 
case the user can set a default event POI and PMI. The final 
outcome is an event that occurs where the user has specified 
both POI and a PMI in the native calendar application.  

Currently, to specify POI and PMI in the native calendar 
application, the user must place the POI (in increments of 0.1), 
and the PMI (R for ring, V for vibrate) between dollar sign 



delimiters. When a call or text comes in, the application uses 
the current time to decide if an event is currently scheduled, 
and evaluates the schedule preferences accordingly. 

Contact Preferences 

The Contact Preferences UI is very similar to the Location 
Preferences UI. The user is able to create group profiles, assign 
contacts to each group, and specify preferences for each of 
these profiles. Each contact is only allowed to be in one group 
at a time. The contact’s name, phone number, and group are 
stored in a SQLite database, along with the POI and PMI of 
each group. When the application needs to do its calculations it 
queries the database, using the incoming phone number to 
determine whether or not the contact is in a group. If nothing is 
returned by the query, then the default POI is assigned and the 
context is considered non-measurable. If the contact is found to 
be in a group, then the POI and PMI are retrieved to be used in 
the calculation.   

Time of Day Preferences  

Like both the Location and Contact Preferences, the Time 
of Day Preferences allows the user to create mult iple profiles. 
Each profile gets a start time, an end time, a POI, a PMI, and 
the day(s) of the week for which this preference is applicable. 
As the profiles are specified for each day, the user cannot span 
between one day and the next using the same profile. If this 
result is desired then the user must specify two profiles. All this 
information is stored in a SQLite database.  

To check whether or not the Time of Day context  is 
measurable, the POI Calculation service does a query of the 
database. It is looking for a return value where the current time 
is after the start time, but before the end time. The day of the 
week must also match the system’s day of the week. A returned 
result indicates a measurable Time of Day context, and the 
necessary values are retrieved. Otherwise, the context is 
considered non-measurable and the default value is used.  

Driving Preference 

The Google Play Services update introduced the Activity 
Recognition API. Through this API it is possible to request the 
user’s current activity. As it takes several seconds to request an 
activity update and get a response, it is not feasible to do this 
upon the call/text coming in. Instead, this service runs in the 
background and receives location updates every 30 seconds. 
The last 5 activity updates are kept on record, and if driving 
was one of the last five activities, a shared Boolean value is 
saved as true. While this may not be the most accurate method, 
the application is trying to balance accuracy with battery usage. 

When the POI Calculation is run it  determines whether or 
not the user is driving from the saved Boolean value. The POI 
for driv ing, as well as the PMI, can be set from the Driving 
Preferences UI. If the driving context is evaluated as non-
measurable a default POI is used. As the user may not always 
desire the phone to continuously track their activity and use 
battery resources, it is possible stop the activity recognition. 
Stopping the updates from activity recognition means the 
driving context will always get the default value.  

Evaluation 

Currently the application’s footprint is 2.30 MB, with the 
source code being 147KB. The application is constantly 
running, and generally uses 7MB-9MB of RAM. For CPU 
usage, it does not have an impact when running in  the 
background. Upon init ially being launched for the user to enter 
values, the application uses 2-3% of the CPU. When doing 
calculations the application uses 1-2% of the CPU.  

For the location services, the constant connection to the 
Google Play Serv ices to retrieve location and activity updates 
places a drain on the battery, as expected. However, if a 
different application were already using constant location and 
activities updates, then our application would cause no 
additional overhead for battery usage. 

VI. CONCLUSIONS 
In this research, we have implemented an interruption 

management application that utilizes a probabilistic approach. 
The system uses an adjustable weighted average of 
probabilities of interruption for each of the five contexts, 
namely, schedule, time of day, location, caller relat ionship, and 
driving. With this model we then succeeded in designing and 
implementing the application, such that when a call comes in it 
uses the model to determine a cell phone’s appropriate 
interruption profile. 

The production of this application has provided steps, 
measurable contexts, a system flow, and an application that 
future interruption management research can use, modify, or be 
compared to. In addition, the production of this application has 
provided insight into its limitations. Most apparent is requiring 
the user to provide all the values needed for each context. 
Future research should look to implement applications that can 
acquire contextual values for the user without relying solely on 
user input. The limitations of modern day technology, such as 
inaccurate measurements and battery constraints, should also 
be considered when designing an interruption management 
application.  

While much work still needs to be done on the application, 
upon completion and publication it will then be possible to 
receive user feedback. This feedback could prove to be 
extremely valuable to the topic of interruption management as 
it will provide insight and effectiveness from its target 
audience. As no widely available application has been released, 
this information has not been recorded. Also, the proposed 
implementation’s computation module can be easily replaced 
with other models, such as the Dempster-Shafer model, and 
then subsequent comparisons can be carried out. 

Finally, with this application it is easy to see the possible 
future work that can be done in the topic of interruption 
management. By being able to determine probabilities of 
interruption for each context without relying on user input, the 
application would be more reliable and user friendly. Currently, 
the complexities of the application could prevent users from 
actually using it. One possible way of obtaining these values 
could be through machine learning and data mining techniques. 
In addition, the steps, model, and system flow for this 
Smartphone application may be able to be used on other 
context aware devices, such as laptops and tablets. By 



expanding beyond Smartphones we increase the ability to 
prevent unwanted interruptions. 
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