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Understanding Changes in Mental Workload
during Execution of Goal-Directed Tasks and
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Notifications can have reduced interruption cost if delivered at moments of lower mental workload

during task execution. Cognitive theorists have speculated that these moments occur at subtask

boundaries. In this article, we empirically test this speculation by examining how workload changes

during execution of goal-directed tasks, focusing on regions between adjacent chunks within the

tasks, that is, the subtask boundaries. In a controlled experiment, users performed several inter-

active tasks while their pupil dilation, a reliable measure of workload, was continuously measured

using an eye tracking system. The workload data was extracted from the pupil data, precisely

aligned to the corresponding task models, and analyzed. Our principal findings include (i) workload

changes throughout the execution of goal-directed tasks; (ii) workload exhibits transient decreases

at subtask boundaries relative to the preceding subtasks; (iii) the amount of decrease tends to be

greater at boundaries corresponding to the completion of larger chunks of the task; and (iv) dif-

ferent types of subtasks induce different amounts of workload. We situate these findings within

resource theories of attention and discuss important implications for interruption management

systems.
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1. INTRODUCTION

An increasing number of systems are seeking to proactively deliver informa-
tion to end users through the use of notifications [McCrickard et al. 2003].
This trend is occurring in many multi-tasking environments [McFarlane
and Latorella 2002] such as the desktop computing environment [Bailey and
Konstan 2006; Czerwinski et al. 2000b; Jackson et al. 2001], command and
control rooms [Stanton 1994], and aviation and automobile cockpits [Dismukes
et al. 1998; Latorella 1996; Lee et al. 2004].

On the one hand, users often desire or need the information delivered through
the use of notifications, for example, to facilitate near instant communication
[Czerwinski et al. 2000a; Dabbish and Kraut 2004; Latorella 1996], to main-
tain awareness of peripheral information [Maglio and Campbell 2003], or to
be reminded of upcoming activities [Dey and Abowd 2000]. On the other hand,
delivering notifications in a proactive manner runs the serious risk of interrupt-
ing the user’s ongoing task. For example, studies have shown that interrupting
a user’s task at random moments can cause decreased performance on the
main task [Bailey and Konstan 2006; Czerwinski et al. 2000a; Kreifeldt and
McCarthy 1981; Latorella 1996; Rubinstein et al. 2001] as well as increased
feelings of frustration and anxiety [Adamczyk and Bailey 2004; Bailey and
Konstan 2006; Zijlstra et al. 1999].

An emerging body of empirical research is now beginning to probe how ma-
nipulating the time at which a notification is delivered relative to the execution
of the ongoing task impacts costs of interruption, for example, see Bailey and
Konstan [2006], Czerwinski et al. [2000b], and Monk et al. [2002]. A central goal
of this corpus of empirical work is to identify effective strategies that can mean-
ingfully reduce costs of interruption and that can be practically implemented
within interruption management systems.

A common theoretical foundation for much of this empirical research has
been Miyata and Norman’s [1986] influential article arguing that notifications
would have lower interruption cost if delivered at moments of lower mental
workload. It was further argued that these moments occur at the regions be-
tween adjacent chunks within the structure of the task’s execution, that is, at
subtask boundaries. At these moments, for example, the executive system may
have just released attentional resources allocated for the previous subtask, but
not yet acquired resources for the next [Wickens 2002]. This presumed lull in
resource allocation may be commensurate with a temporary decrease in mental
effort.

Though the arguments are certainly reasonable, whether a user’s mental
workload is indeed lower at subtask boundaries has never been explicitly
tested, and assuming the veracity of these arguments for interruption man-
agement could thus be premature. Furthermore, since interactive tasks can
typically be decomposed into recursive patterns of goal formulation and exe-
cution, there are many boundaries at many levels within a task’s hierarchical
structure [Card et al. 1983]. In this article, we refer to this hierarchical struc-
ture as the task model. It is thus unclear whether workload would decrease
at all, some, or none of the boundaries within a task model, or whether the
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workload patterns exhibited within the structure of one task would hold across
others.

In this work, we seek to empirically examine how a user’s mental workload
changes during the execution of goal-directed tasks, focusing on subtask bound-
aries and their level (depth) within the corresponding task model. In a carefully
controlled experiment, users performed several interactive tasks; route plan-
ning, document editing, and e-mail classification. The tasks were necessarily
simple, but exhibited a relatively complex execution structure given the type of
analysis to be performed. While the tasks were performed, users’ pupil dilation
was continuously measured using a head-mounted eye tracking system. Re-
search has shown that pupil dilation is a reliable and valid indicator of mental
workload [Beatty 1982; Just et al. 2003; Pomplun and Sunkara 2003; Verney
et al. 2004]. The workload data was extracted from the raw pupil data using
known techniques (see Section 3.5). To analyze the resulting workload data, we
first developed and validated models describing the execution structure of each
task. We then precisely aligned each user’s workload data to the correspond-
ing task model, aggregated the aligned models across users for each task, and
analyzed the workload at various regions of the model.

Our principal results from this analysis include (i) workload changes
throughout the execution of goal-directed tasks; (ii) workload exhibits tran-
sitory decreases at subtask boundaries relative to the preceding subtask; (iii)
the amount of this decrease is greater for boundaries higher in the task model,
that is, those that correspond to the completion of larger chunks of the task;
and (iv) different types of subtasks induce different amounts of workload. We
discuss these results from the perspective of resource theories of attention and
discuss important implications of these results for interruption management
systems.

Though parts of this work have been previously reported in Iqbal et al. [2005]
and Iqbal and Bailey [2005], this article provides results from a revised analysis
of the data (explained in Section 3.6); results from the analysis of an additional
experimental task not previously reported, giving further confidence in our find-
ings; and a much more thorough discussion of the implications of our findings
for interruption management.

2. RELATED WORK

In this section, we discuss costs of interruption, how our work contributes to
strategies for mitigating those costs as well as systems that reason about when
to interrupt, and our rationale for using pupil dilation as the measure of mental
workload in this research.

2.1 Costs of Interruption

Controlled studies have clearly demonstrated that interrupting users engaged
in tasks has considerable negative impact on task completion time [Cutrell et al.
2001; Czerwinski et al. 2000a, 2000b; Kreifeldt and McCarthy 1981; McFarlane
1999; Monk et al. 2002], error rate [Latorella 1998], decision making [Speier
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et al. 1999], and affective state [Adamczyk and Bailey 2004; Bailey and Konstan
2006; Zijlstra et al. 1999]. For example, when peripheral tasks are delivered at
random moments during primary tasks, users can take up to 30% longer to
complete the tasks, commit up to twice the errors, and experience up to twice
the increase in negative affect compared to when those same peripheral tasks
are scheduled at task or subtask boundaries [Adamczyk and Bailey 2004; Bailey
and Konstan 2006]. A leading explanation for why this particular strategy has
shown positive effects is because users are experiencing transient reductions
in workload as they cross through boundaries during the task sequence. The
experiment reported in this article seeks to test the veracity of this argument
and produce further guidelines for understanding when notifications can be
delivered such that the costs of the ensuing interruption are mitigated.

It is also important to note that interruption costs can have significant con-
sequences. For example, in safety-critical domains, a short response delay or
error committed due to an ill-timed notification could cause loss of life or catas-
trophic damage [McFarlane and Latorella 2002]. In office settings, unnecessary
increases in frustration caused by poorly timed notifications could seriously de-
grade the user experience [Shneiderman 1997].

2.2 Leveraging Workload as a Means for Reducing Costs of Interruption

Researchers have theorized that notifications would have reduced interruption
cost if they were delivered at moments of lower workload during execution of the
ongoing task, and that these moments occur at (sub)task boundaries [Miyata
and Norman 1986]. While empirical studies show that scheduling interrup-
tions at certain boundaries or other moments can mitigate interruption cost
[Adamczyk and Bailey 2004; Bailey and Konstan 2006; Cutrell et al. 2001;
Czerwinski et al. 2000a, 2000b], researchers can only assume why as the work-
load experienced at those moments was never empirically measured. Without a
tested theoretical basis for understanding why certain moments exhibit lower
cost, it is difficult to distill these empirical findings into more general principles
for identifying lower cost moments within a task for delivering notifications.

In addition, interactive tasks can be decomposed into recursive patterns
of goal formulation and execution, creating many boundaries at many levels
within the task’s hierarchical model [Card et al. 1983]. It is thus unclear as
to which of these boundaries would have the lowest workload (and thus cost)
for interruption. By analyzing workload during task execution, our work seeks
to contribute further understanding of just where moments of lower workload
occur within the structure of goal-directed tasks.

2.3 Systems that Reason about Interruption

Systems are being developed that computationally reason about appropriate
moments for interrupting users engaged in tasks (e.g., Bailey et al. [2006],
Fogarty et al. [2005], Horvitz and Apacible [2003], and Hudson et al. [2003]).
The general approach is to weigh the value of delivering information against the
cost of interrupting the user’s ongoing task within a decision-theoretic frame-
work [Horvitz et al. 1999]. Given the complexity of creating and applying such
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frameworks, the focus of research to date has been on understanding how to
compute accurate costs of interruption. Systems typically compute cost values
using non task-specific cues such as mouse and keyboard activity, visual and
acoustical analysis of the task environment, and scheduled activities of the
user.

An important source of information that is missing from current systems
is knowledge about the current workload of a user, as workload is directly
related to interruption cost [Kreifeldt and McCarthy 1981]. One method for
acquiring this information is to connect a physiological measure of workload
directly to a reasoning engine [Chen and Vertegaal 2004]. However, in situ-
ations where using such a measure is not practical or desirable, which is ar-
guably the more common case, it would be useful to be able to approximate
workload given knowledge about the ongoing task such as it its hierarchical
structure.

Results from our work provide useful heuristics for assigning costs of in-
terruption at subtask boundaries and other moments within the structure of
goal-directed tasks based on understanding patterns of workload exhibited dur-
ing their execution. Considering this information will allow systems to make
finer-grained decisions about when to interrupt.

2.4 Use of Pupil Size as a Measure of Workload

The methodology used in our experiment required the use of a measure of men-
tal workload. Any measure could have been used as long as it was continuous,
immediate, low latency, and valid. After a review of the literature, combined
with local availability of needed equipment, we selected pupil dilation as our
measure for this work.

Under conditions of controlled illumination, research shows that pupil di-
lation is a valid and reliable indicator of mental workload [Beatty 1982; Hess
and Polt 1964; Hoecks and Levelt 1993; Juris and Velden 1977; Kahneman
1967; Marshall 2002; Nakayama and Takahashi 2002; Takahashi et al. 2000].
Though some experiments have not detected a relationship between task diffi-
culty and pupil dilation (e.g., see Lin et al. [2003]), the relationship does seem
to hold in the general case. For example, Beatty [1982] reviewed a large corpus
of experimental data and concluded that pupil dilation is a reliable indicator of
mental workload, that relative increases in pupil size correlate with increases
in workload, and that this holds true across tasks and individuals.

Researchers have also pursued many other measures of workload, including
event-related brain potential [Donchin et al. 1986; Kok 1997; Kramer et al.
1986], electro-encephalographic activity [Gale and Edwards 1983; Gevins and
Schaffer 1980; Phelps and Mazziotta 1985], eye movement and blink rate
[Takahashi et al. 2000], heart rate variance [Rowe et al. 1998], performance
measures [O’Donnell and Eggemeier 1986], and subjective ratings [Hart and
Staveland 1988].

Relative to these measures, the use of pupil dilation offers many advantages
[Kramer 1991]. For example, this measure is continuous meaning that it pro-
vides a steady stream of workload data; it measures allocation of attentional
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resources in a holistic manner rather than specific pools; it has low latency,
usually responding to a change in workload in 300–500 ms; and it is immedi-
ate, a few recent data samples indicates workload, which simplifies analysis
of the data. However, careful experimental control must be maintained with
pupil dilation, as it can be considerably affected by environmental factors such
as changes in ambient illumination or screen luminance.

A caveat of using pupil dilation as an indicator of mental workload is that it
has rarely been used in interactive computing environments. We explored this
issue in prior work [Iqbal et al. 2004] and our results showed that pupil dila-
tion does correlate with the workload induced by interactive tasks, assuming
appropriate environmental controls.

Building on this prior work, our current experiment seeks to better under-
stand how workload changes within the structure of goal-directed tasks, pay-
ing particular attention to subtask boundaries. Note that we are using pupil
dilation as a means for studying how workload changes in relation to a task’s
hierarchical structure, and distilling the empirical results into guidelines for
interruption management. We are not necessarily advocating the use of pupil
dilation or any other physiological measure as a real-time component of an
interruption management system.

3. UNDERSTANDING WORKLOAD CHANGES DURING TASK EXECUTION

The purpose of our experiment is to develop further understanding of the re-
lationship between mental processing effort (i.e., workload) and the structural
characteristics of goal-directed tasks. As a starting point, our focus is on ex-
amining how workload changes at subtask boundaries within the hierarchical
structure of a task’s execution, how much this change differs at different levels
within the task hierarchy, and how much workload changes among different
types of subtasks. Answers to these questions will advance understanding of
how to compute accurate costs of interruption during interactive tasks.

3.1 Experimental Tasks

For the experiment, three interactive tasks were developed:

—Route Planning. An interactive map was provided that showed two separate
routes between two cities marked with start and end symbols (see Figure 1).
For each route, there were three segments from the source to the destination.
A distance and fare were associated with each segment, and were available
through a tooltip that appeared when the user moved the cursor over a seg-
ment. To perform the task, the user moved the cursor over the first segment
in the map corresponding to the first route, committed the distance and fare
information shown in the tooltip to memory (the tooltip disappeared when
the cursor was moved away), and entered the data into the corresponding
row in the table. A user completed each row in the table for the first route,
mentally added the distance and fare columns, and entered the results into
the last row. The user then repeated this process for the second table and
route. Distance and fare values were manipulated (number of digits) to af-
fect the difficulty of storing and recalling their values from memory as well
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Fig. 1. The interactive route planning task. A user retrieves distance and fare information from

the map, enters the data into the tables, adds the distances and fares, and selects the shorter and

the cheaper of the two routes.

Fig. 2. The document editing task. A user edited the document based on each of three annotations.

Once edited, the document was saved to a specified directory and file name.

as computing their sum. After completing both tables, the user selected the
shorter and the cheaper of the two routes from drop down lists.

—Document Editing. A user was given a document with three annotations
(see Figure 2). The content of the document was about the social hierar-
chy of a common pet (cats), selected because we felt it would be familiar
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Fig. 3. The email classification task. Users reasoned about the classification of each email (starting

from the top) using its subject descriptor, and then dragged the e-mail into the corresponding folder

below. These actions were repeated for each of the emails in the list.

and understandable to most users. A user edited the document according to
each annotation, which appeared as a tooltip when the cursor was moved
over the corresponding highlight. After reading an annotation, the user lo-
cated the corresponding text, made the desired edit, and repeated two more
times. The document was saved to a specified directory and file, given a pri-
ori. The edits were manipulated to have varying difficulty, for example, the
easiest edit was to correct one misspelled word, the medium edit was to locate
and correct two misspelled words, and the most difficult was to rephrase a
sentence so that it was grammatically correct.

—E-mail Classification. For this task (see Figure 3), a user was asked to clas-
sify a set of ten email messages into a set of supplied categories; for example,
coursework, vehicles and travel, announcements, and fun and humor. The
user would review the subject descriptor of a message, reason about which
category it belonged to, and drag the message into the corresponding folder.
The user then repeated this sequence for the remaining messages. The con-
tent of the subject descriptors was manipulated to affect the difficulty of the
classification subtask, for example, some descriptors had the name of the
destination category within it while others were more ambiguous.

These tasks were carefully designed to have meaningful subtasks of vary-
ing difficulty, well-defined boundaries between subtasks, a representative sam-
ple of interaction, and a prescribed execution sequence. A prescribed sequence
was necessary to be able to align each user’s workload data to the correspond-
ing model of task execution. The lower-level cognitive subtasks, for example,
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memory store and recall, comprehension, and reasoning are representative of
those within many other tasks. Though the tasks are relatively simple, it is im-
portant to note that they are more complex and of longer duration than tasks
used in many prior experiments involving pupillary response, for example, see
tasks used in Bradshaw [1967], Hytintk et al. [1995], Juris and Velden [1977],
Kahneman [1967], and Takahashi et al. [2000].

3.2 Users and Equipment

A total of 24 users (7 female) participated in the experiment, with ages ranging
from 19 to 50 (M = 25.4). All users had normal or corrected-to-normal vision.
As users performed tasks, their pupil data was recorded using a head-mounted
eye tracking system (Eyelink II). The eye-tracker sampled the pupil at a high
temporal frequency of 250 Hz with spatial accuracy to about 1/100th of a mil-
limeter using corneal reflection. Lighting and noise levels of the task environ-
ment were well controlled. Twelve users performed both the route planning
and document editing tasks while the remaining twelve performed the email
classification task. This reduced the time that any one user had to wear the eye
tracking equipment, but did not impact the results as each task was analyzed
separately.

3.3 Procedure

Upon arrival at the lab, we went through an informed consent process with
the user and provided general instructions for the tasks. After questions were
answered, we set up the eye-tracker and calibrated the system. At the start
of the session, the user was given specific instructions and performed practice
tasks. Just before each experimental task, we collected baseline pupil size by
having the user fixate on a blank task screen for a few seconds. The user was
asked to perform the tasks as quickly and accurately as possible. Time-stamped
samples of pupil data were logged to a file while the user’s screen interaction
was recorded with eye gaze overlaid. Because the videos and pupil data received
time stamps from the same clock, we could precisely align the two data sets.
The entire experimental session lasted about 30 minutes.

3.4 Task Models and Validation

Figures 4, 5, and 6 show the task models for the Route Planning, Document
Editing, and Email Classification tasks, respectively, reusing repetitive parts
for brevity. Subtask refers to any node in the model, and subtask boundary
refers to the period between adjacent subtasks. Level of boundary between two
adjacent subtasks is 1 + the depth of their shared ancestor in the model. For
example, in Figure 4, consider the “Locate segment” and “Store data” subtasks
at the left of level 4. When a user completes the “Locate segment” subtask
and moves to “Store data”, this defines a level 4 boundary, since the depth of
their shared ancestor “Retrieve segment” is (1 +) 3. When a user completes
the “Store data” subtask and moves to “Recall”, this defines a level 3 boundary,
since the depth of their shared ancestor “Enter data for segment 1” is (1 +) 2.
Finally, subtask type refers to whether the subtask represents a memory store,
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memory recall, reasoning, language comprehension, language generation, or
motor operator.

The task models were developed in an iterative manner. For each task, we
developed an initial model through our own analysis of the task’s execution.
The initial models were refined based on screen interaction videos of four users
performing the tasks prior to and independent from the reported experiment.
The interaction sequences predicted by the leaves in our task models were
compared to the sequences observed in the interaction videos, and our models
were refined until a high degree of agreement was reached.

We measured the accuracy of our final task models by comparing the opera-
tors in the models to the observable events (keyboard, mouse, and eye gaze) in
the interaction videos recorded during the experiment. An error step was de-
fined to be a deviation from the prescribed sequence. If the user committed an
error, each action after that step would count as an error until the user again
performed a step in the prescribed sequence, from which point the analysis
continued as discussed in Card et al. [1983].

The final task model for Route Planning has 4 levels and 81 nodes. The
average error rate was 2.81% with no detectable pattern to the errors. Repeating
this same process for Document Editing, the resulting model had 4 levels and 38
nodes with an average error rate of 2.3%. The model for E-mail Classification
had 2 levels and 25 nodes and matched users’ execution of the task without
error.

3.5 Measurements

Following prior work [Hess 1972], workload was calculated as the percent
change in pupil size (PCPS) for each sample of data relative to the baseline.
Eye blinks, which were identified by the eye tracking system, were accounted
for by linearly interpolating the missing values [Verney et al. 2001]. For each
subtask and boundary, we also computed the average PCPS (APCPS) for that
region of data. The duration of subtasks ranged from about 25 ms for the lowest-
level subtasks, to about 1 min for the higher level subtasks, to about 5 min for
the root node (the entire task). The duration of boundaries ranged from about
8 ms to 6 seconds (M = 487 ms, SD = 574 ms), with higher level boundaries
generally being of longer duration. A more detailed analysis of the durations of
the boundaries within each task will be provided within the Results section.

3.6 Alignment and Revised Analysis

As the models accurately reflected a user’s execution sequences in the tasks,
we were able to precisely align a user’s pupillary response to the task models.
Since each user performed the tasks at different speeds, our approach was to
align the pupil data to the subtasks in the model, not to time, starting from the
leaf operators and working upwards.

For each leaf subtask, we identified the beginning and end time stamp from
the screen interaction video and used these timestamps to index the pupillary
response file. The corresponding PCPS data was then extracted and associ-
ated with that subtask. APCPS for higher-level subtasks was calculated by
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averaging the PCPS values associated with their child subtasks, and this pro-
cess was repeated until the root node was reached. For boundaries, we extracted
the PCPS data from the end timestamp of the preceding subtask to the begin
timestamp of the subsequent subtask and computed APCPS values as before.

Overall, analysis of the data was consistent with our prior work [Iqbal et al.
2005], but several improvements were included. First, to account for latency in
the response of the pupil to the onset of a stimulus, we temporally shifted the
pupil data by a small amount (500 ms) prior to aligning it with the task model
[Kramer 1991].

Second, to compute decrease in workload at a boundary, we now compare
the APCPS of the boundary to the APCPS of its preceding subtask. In prior
work [Iqbal et al. 2005], the decrease was computed as the difference between
the minimum value within the boundary (taken as the average of multiple
surrounding points) and the APCPS of the preceding subtask. Our current
analysis was revised to ensure that we are offering a fair comparison between
these two regions of data.

Finally, when a non-leaf subtask precedes a boundary, we compare the
APCPS of the boundary to the APCPS of the last leaf operator of that subtask.
For example, in Figure 4, the decrease at boundary B1 is computed as the dif-
ference in APCPS between B1 and the operator Store Data (the last operator of
Retrieve segment). This was done to ensure that earlier parts of longer subtasks
were not unfairly affecting the comparison.

4. RESULTS

To provide further confidence in our measure of workload, we first check that
regions within the execution structure of the tasks that were expected to induce
lower/higher workload did indeed correspond to lower/higher values of PCPS.
Then, for each task, we report results of how the different types of subtasks
affected workload, how the level within a task model affected workload at the
subtask boundaries, and how much workload differed between a boundary and
its preceding subtask.

The reader should keep in mind that small changes in pupillary response
can represent meaningful changes in workload, but that there is also an upper
bound on how much a user’s pupil size will increase due solely to increases in
mental processing effort.

4.1 Validation of Workload Measure

To validate our workload measure, we compared pupillary response between
different regions of the tasks that would presumably require different amounts
of mental processing effort. For Route Planning, we performed an ANOVA with
Load (fewest, middle, and most digits) as the factor on the APCPS of Recall
subtasks.

Results showed that Load had a main effect on APCPS (F(2, 46) = 6.24,
p < 0.01), where Recall subtasks that required more digits to be retrieved
from memory had higher APCPS. For Email Classification, an ANOVA with
Classification Difficulty (easier, more difficult) as the factor showed that the
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Fig. 7. APCPS of the leaf subtasks and all boundaries within the model for Route Planning.

Vertical lines within the subtask labels demarcate Level 1 and 2 boundaries.

more difficult classification (where more mental effort was required to select
the target folder for the e-mail message) had higher APCPS than for the easier
classification (F(1, 7) = 9.81, p < 0.05). For Document Editing, Difficulty (sim-
ple, medium, and difficult edit) did not have a main effect, though the trends
were in the expected direction. We attribute this lack of significance to the three
types of edits being closer in terms of the mental effort required relative to the
subtasks being compared for the other two tasks. Overall, these results confirm
that users’ pupil size was changing in response to the changing difficulty of the
subtasks.

4.2 Route Planning

Figure 7 shows the average (across users) APCPS for each leaf (operator) sub-
task and all boundaries within the model for Route Planning. In the graph,
note how workload rises quickly at the onset of the task and then rises and
falls throughout execution. Inspection of the graph clearly shows transitory
decreases in workload at the two level 1 boundaries.

4.2.1 Workload During Subtasks. To test whether performing subtasks in-
duced workload over the baseline value, we performed a t-test on the APCPS
values of the subtasks. Our analysis included only those subtasks that re-
quired cognitive effort such as storing, recalling, or reasoning about distance
and fare information, rather than motor subtasks, as the relationship between
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cognitive effort and pupillary response is the one best established [Beatty 1982].
Results showed that APCPS was greater than 0 across subtasks (M = 11.98,
SD = 7.6, t(263) = 25.75, p < 0.001). This represents about a 12% increase over
the baseline value and shows that the subtasks did impose increased workload
on a user.

An ANOVA with Subtask (Store, Recall, and Reasoning) as the factor showed
a main effect on APCPS (F(2,261) = 4.87, p < 0.01). Post hoc tests showed that
Reasoning induced more workload than Store (difference was 4.3 percentage
points, p < 0.01) and Recall (difference was 3.2 percentage points, p < 0.05),
while there was no difference found between Store and Recall subtasks.

4.2.2 Workload at Subtask Boundaries. A t-test showed that APCPS at
boundaries was greater than 0 (M = 11.68, SD = 7.62, t(611) = 37.91, p <

0.001) and that Level had a main effect on the APCPS of boundaries (F(3,608)
= 2.61, p < 0.05). Post hoc tests showed that the APCPS of boundaries at Level
3 (M = 10.78) was less than the APCPS of boundaries at Level 4 (M = 12.59,
p < 0.05). Other pairs were not significant, though the means were in the
expected direction (M = 11.64 for Level 1 and M = 12.37 for Level 2). Among
all boundaries in the task model, the Level 2 boundary between Retrieve route
1 total and Retrieve route 2 total had the lowest APCPS (9.57) while the Level
3 boundary between Add distances and Add fares had the highest (13.99). This
indicates that the workload carried through a boundary depends not just on the
level in a model, but also on the mental demands of the surrounding subtasks.

The overall average duration of the boundaries was 590 ms. Level had a
main effect on boundary duration (F(3,593) = 11.26, p < 0.001). Post hoc tests
showed that level 1 boundaries (M = 887 ms) were of longer duration than level
3 (M = 456 ms, p < 0.001) and level 4 (M = 483 ms, p < 0.01) boundaries, and
that level 2 boundaries (M = 691 ms) were of longer duration than level 3 (p <

0.001) and level 4 (p < 0.001) boundaries.

4.2.3 Decrease of Workload at Subtask Boundaries. Boundary Decrease is
computed as the difference between APCPS at the boundary and the preceding
subtask, as discussed in Section 3.6. With values for all boundaries included, a
t-test showed that Boundary Decrease was slightly greater than 0, but did not
reach a level of significance (M = 0.029, SD = 3.91, t(612) = 0.18, p = 0.85).
This indicates that not all boundaries exhibit a detectable decrease in workload,
likely because the numerous lower level boundaries were closely related and
had a high degree of mental carryover.

However, when the lowest level boundaries (Level 4) are excluded, the same
analysis now shows Boundary Decrease to be greater than 0 (M = 0.7905,
SD = 3.8, t(397) = 4.15, p < 0.001). This effect continues to become stronger
as lower-level boundaries are successively excluded from the analysis. This
result indicates that workload temporarily decreases as a user crosses through
a boundary during execution of a task, but the result only holds for boundaries
that are above a certain level (depth) within the task model.

Exploring this pattern further, we found that Level had a main effect on
Boundary Decrease (F(3,608) = 18.42, p < 0.001). Post hoc tests showed that
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Fig. 8. APCPS of leaf subtasks and all boundaries within the model for Document Editing. Vertical

lines within the subtask labels differentiate Level 1 and 2 boundaries.

decreases at level 1 were greater than at level 2 (1.95 percentage points), level 3
(2.38 percentage points, p < 0.05) and level 4 (4.3 percentage points, p < 0.001).
Level 2 decreases were greater than level 3 (0.43 percentage points) and level
4 (2.34 percentage points, p < 0.001), and Level 3 decreases were greater than
level 4 (1.91 percentage points, p < 0.001).

Overall, this pattern shows that workload tends to decrease more at bound-
aries higher in the task model than at boundaries lower in the model. We also
found that workload changed within the same level in a task model. For exam-
ple, APCPS between the two level 1 boundaries was different (F(1,22) = 5.31,
p < 0.05) with an absolute difference of 2.96 percentage points.

4.3 Document Editing

Figure 8 shows the average APCPS for each leaf subtask and all boundaries
within the model for the Document Editing task. As in the Route Planning
task, workload rises at the onset of the task, rises and falls throughout task
execution, and temporarily decreases at salient boundaries within the task,
that is, after completing each of the three edits.

4.3.1 Workload During Subtasks. Including only cognitive subtasks (lan-
guage comprehension and generation, and recall), a t-test showed that APCPS
for subtasks was greater than 0 (M = 8.62, SD = 7.35, t(111) = 12.41, p <
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0.001). This shows an 8.62% increase over the baseline, meaning that the sub-
tasks did induce increased workload, but not as much as in the route planning
task.

An ANOVA with Subtask (Comprehension, Generation, and Recall) as the
factor showed a main effect on APCPS (F(2,109) = 4.19, p < 0.05). Recall induced
more workload than Comprehension (difference was 5.9 percentage points,
p < 0.05) and Generation (difference was 3.04), and Generation induced higher
workload than Comprehension (difference was 2.86). These results are con-
sistent with Route Planning where different types of subtasks also induced
different amounts of workload.

4.3.2 Workload at Subtask Boundaries. A t-test showed that the APCPS of
boundaries was greater than 0 (M = 9.02, SD = 8.4, t(233) = 16.43, p < 0.001).
Level did not have a main effect, but the trends were in the expected direction
(M = 7.82 for Level 1, M = 8.22 for Level 2, M = 9.40 for Level 3, and M =
9.26 for Level 4). Among all boundaries, the Level 2 boundary between Edit
second comment and Edit third comment had the lowest APCPS (4.42), while
the highest APCPS was at the Level 3 boundary between Select file menu and
Select save (14.99).

The overall average duration of boundaries was 528 ms. Level had a main
effect on the duration of a boundary (F(3,241) = 5.31, p < 0.001). Post hoc tests
showed that boundaries at level 1 (M = 1.1s) were of longer duration than
boundaries at levels 3 (M = 461 ms, p < 0.05) and 4 (M = 401 ms, p < 0.01),
and boundaries at level 2 (M = 746 ms) were of longer duration than those at
level 4 (p < 0.05).

4.3.3 Decrease of Workload at Subtask Boundaries. With all boundaries
included, a t-test did not show Boundary Decrease to be greater than 0. As with
the Route Planning task, excluding the lowest level boundaries (Level 4) and
re-running the t-test now showed Boundary Decrease to be greater than 0 (M
= 1.34, SD = 4.01, t(133) = 3.87, p < 0.001). An ANOVA with Level as the
factor showed a main effect on the APCPS of boundaries (F(3, 234) = 16.81, p
< 0.001). Boundary Decrease at Level 1 was similar to Level 2, but larger than
level 4 (3.99 percentage points, p < 0.01). Level 1 also had quantitatively higher
decrease than level 3 (2.61 percentage points), but the difference did not reach a
level of significance. Boundaries at level 2 were found to have a larger decrease
than at level 3 (2.94 percentage points, p < 0.001) and level 4 (4.32 percentage
points, p < 0.001). Boundaries at level 3 tended to have a larger decrease than
at level 4 (1.39 percentage points), but did not reach significance. Overall, this
pattern of results shows that workload tends to decrease more when a boundary
higher in the model is reached during an interaction sequence, consistent with
results from Route Planning.

4.4 Email Classification

Figure 9 shows the average APCPS for subtasks and all boundaries within the
model for Email Classification. Analogous with the other tasks, the graph shows
a temporary decrease in workload at the top-level boundary corresponding to
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Fig. 9. APCPS of leaf subtasks and all boundaries within the model for Email Classification.

Vertical lines within the labels demarcate Level 1 and 2 boundaries.

the completion of the classification of each mail message. Also, note that the
structure of this task is simpler than the previous tasks, as there were only
two levels in the task model and only one type of cognitive subtask—reasoning
about the destination folder.

4.4.1 Workload During Subtasks and at Boundaries. For the cognitive sub-
tasks (reasoning), a t-test showed that APCPS was greater than 0 (M = 9.48,
SD = 5.6, t(71) = 14.45, p < 0.001). This represents a 9.48% increase over the
baseline and shows that the subtasks did induce increased workload, as with
the previous two tasks. In addition, a t-test showed that the APCPS of bound-
aries was greater than 0 (M = 8.93, SD = 6.05, t(142) = 17.65, p < 0.001), with
Level 1 boundaries having lower APCPS (M = 7.93) than the Level 2 bound-
aries (M = 9.92). Boundaries at level 1 (M = 484 ms) were of longer duration
than those at level 2 (M = 320 ms; F(1, 167) = 7.41, p < 0.01), and the overall
average duration for a boundary was 405 ms.

4.4.2 Decrease of Workload at Subtask Boundaries. A t-test showed that
Boundary Decrease was greater than 0 (M = 0.6816, SD = 3.73, t(142) = 2.19, p
< 0.05). An ANOVA showed that Level had a main effect on Boundary Decrease
(F(1,141) = 14.41, p < 0.001), with the decrease at Level 1 boundaries (M =
1.82, S.D. = 2.94) being larger than at Level 2 boundaries (M = −0.44, S.D.
= 4.08). These results show that workload decreased at boundaries and that
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Fig. 10. Decrease in the APCPS of boundaries, shown as a function of level and task. Higher level

boundaries (1 and 2) show larger decreases in workload than lower level boundaries (3 and 4),

which exhibited little or no decrease.

it decreased more at boundaries higher in the task model, which is consistent
with results from the other two tasks.

5. DISCUSSION

The purpose of our experiment was to better understand how workload changes
during execution of goal-directed tasks. Here, we summarize our primary find-
ings, situate these findings within resource theories of human attention, and
discuss implications of these findings for systems that reason about when to
interrupt users engaged in tasks.

First, our results provide further evidence showing that a user’s mental work-
load changes throughout execution of goal-directed tasks. From the perspective
of resource theories of attention [Kahneman 1973; Wickens 1980, 1991, 2002],
this result indicates that the executive system does not statically allocate at-
tentional resources at the onset of a task stimulus, but dynamically allocates
and releases resources throughout its execution.

For interruption management, this implies that the moment at which a noti-
fication is delivered relative to a user’s ongoing task will affect interruption cost.
Indeed, several studies have shown that the moment that a task is interrupted
does affect interruption cost (e.g., see Bailey and Konstan [2006], Czerwinski
et al. [2000b], Iqbal and Bailey [2006], and Monk et al. [2002]). In these studies,
cost was measured in terms of the time needed to resume the primary task. Our
results strongly suggest that the interruptions resulting in lower cost likely oc-
curred at moments of lower workload, when more attentional resources were
available for the interrupting task and fewer resources were needed to resume
the previously suspended task [Rubinstein et al. 2001].

Second, we found that transitory decreases in workload are experienced as
subtask boundaries are reached during task execution. This result is summa-
rized in Figure 10. A plausible explanation is that the executive system releases
attentional resources allocated for the just completed subtask, but has not yet
acquired resources for the subsequent subtask. An important implication of this
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result is that it establishes the principle of using defer-to-boundary policies for
reducing costs of interruption caused by notifications. For example, if notifica-
tions could be deferred until a boundary is reached, the executive system would
have more resources available for performing the interrupting task [Rubinstein
et al. 2001]. Such policies would also be beneficial because boundaries typically
represent moments between explicit interactions with a system. For example,
this would prevent notifications from being delivered during text entry or other
motor subtasks.

Third, our results showed that the transitory decrease in workload tended
to be larger when boundaries higher in a model were reached during task exe-
cution. In addition, higher-level boundaries were found to be of longer duration
than lower-level boundaries. These results indicate that more resources are
released when more salient breakpoints are reached during a task. Whereas,
when lower-level boundaries are reached, the amount of resources released is
apparently small, possibly due to cognitive chunking of repetitive or skilled
actions [Newell and Rosenbloom 1981] or to large carryover of information
being actively maintained in short-term memory. The implication of this find-
ing is that interruption management systems should favor boundaries that
represent more salient breakpoints during a user’s ongoing interaction, as
these should result in lower costs of interruption. In addition, systems need
not consider boundaries that are lower in the task model (roughly beyond
the third level) as these appear to provide little benefit over non-boundary
moments.

Finally, the level of a boundary in a task model cannot always predict whether
there would be a larger decrease or lower absolute value of workload at a bound-
ary. For example, in the document editing task, the boundary with the lowest
workload was between the second and the third edits, which was not a top level
boundary. Similarly, for route planning, the lowest workload boundary was be-
tween selecting the shorter and the cheaper of the routes, which also was not
a top-level boundary. A plausible explanation is that the executive system may
be maintaining information in short-term memory or prospectively allocating
resources in anticipation of a subsequent subtask across some boundaries, but
not others [Trafton et al. 2003]. The implication is that using knowledge re-
lated to the hierarchical decomposition of a task within an interruption man-
agement system can offer only a rough approximation of interruption cost at
various boundaries. A more precise determination of cost would require align-
ing a measure of workload to the model of task execution and rank ordering the
boundaries based on their workload, similar to the methodology demonstrated
in this work.

5.1 Linking Workload and Interruption Cost

Results from our experiment suggest that interrupting ongoing tasks at mo-
ments of lower workload should result in lower costs of interruption. As a first
step towards testing this claim, we conducted a follow-up experiment where
users were interrupted at different moments—better, worse, and random—
while performing the same tasks presented in this work. As details of that
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experiment can be found in Iqbal and Bailey [2005], here we briefly summarize
our methodology and findings.

Given the workload-aligned task models (Figures 4–6), better moments were
selected as boundaries with lower workload, worse moments were selected as
boundaries with higher workload, and random moments were any moments
during execution of the tasks. As users (N = 12) performed the primary tasks,
they were interrupted with a peripheral task at each of these moments, chosen
randomly. Measures included time to resume the primary task, annoyance due
to interruption, and level of respect attributed to the interrupting system.

Results showed that interrupting at the better moments had lower cost of in-
terruption across tasks. Users resumed primary tasks 69% faster, experienced
18% less annoyance, and attributed 63% more respect to the interrupting sys-
tem relative to being interrupted at worse moments. Similar differences were
found between the better and random moments. However, interrupting at worse
vs. random moments showed no difference, indicating that not all boundaries
result in lower interruption cost relative to non-boundary moments. This may
be particularly true for finer-grained boundaries that are deeper in a task model
where there is little to no measurable decrease in workload. Overall, our re-
sults provided an important first step towards showing that workload can be
used to predict which boundaries within a task model have higher/lower costs
of interruption. As only boundaries with larger differences in workload were
tested, future work is needed to assess the amount of change in workload that
is required before a meaningful change in interruption cost could be detected
at a boundary or other moment in a task.

5.2 Enabling Systems to Consider Workload for Reasoning about Interruption

Though our follow-up experiment showed that the cost of interruption could be
reduced by deferring delivery of notifications until lower workload boundaries,
methods are needed that would allow systems to consider similar information
in practice. Here we discuss three such methods that would allow interruption
management systems to directly or indirectly consider workload when reason-
ing about when to interrupt.

One approach follows directly from the methodology used in this paper. For
example, workload-aligned task models would be developed by aligning a con-
tinuous measure of workload to the corresponding models of task execution.
From these workload-aligned task models, the boundaries and subtasks would
be rank ordered based on their workload and then mapped to a cost value.
The model of the task and associated cost information would then be formally
described using a task specification language such as that presented in Bailey
et al. [2006]. As a user performs tasks, a monitoring system would match the on-
going interaction to the specifications, allowing the monitor to identify when a
specific boundary or other moment was reached. The associated cost value could
then be extracted from the specification and directly used to determine whether
to interrupt, or passed to a broader reasoning framework [Horvitz et al. 2004].
This approach would be most appropriate for safety critical or other domains
where tasks have fairly prescribed sequences and the range of possible tasks
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is somewhat constrained, but the cost of poorly timed interruption could cause
loss of life or catastrophic damage. Example situations might include work-
ing through aviation checklists [Degani and Wiener 1993] or entering target
information in a command/control interface [Guerlain and Willis 2001].

In other situations where high precision is not necessary, an alternative is to
utilize a set of workload-based heuristics to assigns costs within static specifica-
tions of tasks. For example, lower costs could be assigned to higher-level bound-
aries and successively higher costs could be assigned to lower-level boundaries.
Similar heuristics could be developed for different types of subtasks such as
memory store and recall, language comprehension and generation, and reason-
ing. Though applying heuristics could only offer approximations, they could be
expediently applied to many tasks, the values would still allow systems to bet-
ter reason about when to interrupt, and the use of heuristics would eliminate
the need to develop workload-aligned task models (a very large effort).

A third approach would be to detect boundaries directly from a user’s task
execution data, bypassing the need to construct any specifications of the tasks.
Newly generated notifications would then be deferred, for example, until the
next boundary was detected. This approach is feasible, as researchers have re-
cently demonstrated the feasibility of building statistical models that are able
to detect and differentiate boundaries within task execution data [Iqbal and
Bailey 2007; Nair et al. 2005]. The main advantage of this approach is that
formal specifications of user tasks are not needed to detect perceptually mean-
ingful boundaries. The disadvantages are that only a subset of the boundaries
that would otherwise be available from the hierarchical model of a task could
be detected and different types of subtasks could not be easily considered. This
approach may be most appropriate in situations where users perform a range
of diverse tasks that have highly variable execution sequences, for example, as
exemplified in office computing environments.

The last approach would be to link a real-time measure of workload directly
into a system’s reasoning framework [Chen and Vertegaal 2004]. Input could
be provided, for example, by eye tracking systems embedded within a desktop
monitor [Tobii-Systems] or by inexpensive heart rate sensors embedded within
office chairs [Anttonen and Surakka 2005]. Though immediate knowledge of a
user’s changing workload could help systems better manage delivery of notifica-
tions, using such a measure may not be possible or desirable in many situations
due to the expense or intrusiveness of the hardware or the lack of necessary
controls within the task environment. In addition, systems that consider only
the current workload being induced would still run the risk of interrupting a
user’s ongoing action, for example, entering text into a control, as opposed to
interrupting at a moment between such actions.

5.3 Limitations

One limitation of our work involves the accuracy of the subgoal structure of the
models of task execution. When developing the models, the sequential ordering
of the leaf (operator) subtasks could be objectively compared to the actual ex-
ecution sequences, and the models could be revised until high agreement was
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reached. Unfortunately, there is no known technique for measuring the accu-
racy of the subgoal structure of a model. Though we followed best practices, it is
possible to have models that express the same operator sequence, but that have
different subgoal structures. For example, in the model for document editing,
if the level 1 subtask “Edit document” was collapsed, then each of the three
edit subtasks and their corresponding boundaries would be shifted up to level
1. As a result, the findings in this paper on how workload changes in rela-
tion to the subgoal structure of a model should be considered only as general
guidelines.

A second limitation is whether the observed changes in workload would re-
main if our experimental tasks were embedded within broader interactive activ-
ities, for example, when additional task goals or data must be carried through
part or all of the tasks. This would almost certainly have an effect, but we
suspect that this effect would be manifested as a shift in absolute workload,
whereas the relative changes in workload would remain similar. For example,
workload would still decrease at boundaries even though the absolute values
at those points and the surrounding subtasks might be different. Further em-
pirical studies are needed to verify these claims.

Third, the presence or location of boundaries may change as a user’s knowl-
edge of performing a task transitions from novel to skilled behavior. As a task
becomes skilled, mental representations of the task may become coarser [Newell
and Rosenbloom 1981], eliminating some of the perceived boundaries. Indeed,
studies of event perception have shown that increased familiarity with a task
causes users to generate a similar, but less detailed description of its hierar-
chical structure [Zacks et al. 2001]. This suggests that mental representations
of tasks remain fairly stable, but are performed in larger chunks as skill level
increases. In these cases, it is plausible that larger transitory decreases in
workload would occur at the boundaries separating these larger chunks of the
task.

6. CONCLUSION AND FUTURE WORK

A recent thrust in the HCI research community has been to understand when
notifications could be delivered to users such that costs of the ensuing inter-
ruption would be mitigated. Researchers have argued that interrupting tasks
during moments of lower mental workload would have lower interruption cost,
but it has been unclear as to just where these moments occur during task
execution. Theorists have speculated that workload should be lower at sub-
task boundaries, but this speculation has never been empirically tested. Our
work has made several contributions towards understanding how workload
changes in relation to the structure of goal-directed tasks and how this knowl-
edge can be leveraged to improve the design of systems that manage delivery of
notifications.

First, we showed that a user’s mental workload changes throughout execu-
tion of a goal-directed task. This indicates that the moment at which notifica-
tions are delivered relative to the ongoing task will impact the cost of interrup-
tion. Second, we showed that transitory decreases in workload are experienced
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as a user moves through a boundary during task execution. We further showed
that the decreases in workload tend to be larger at boundaries higher in the
task model, as these boundaries correspond to the completion of larger chunks
of the task. This indicates that interruption management systems should dif-
ferentiate among the many boundaries within a task model and favor those
representing more salient breaks in the task. Finally, we situated our empiri-
cal results within resource theories of attention and described several methods
that would enable systems to consider workload as a central part of a broader
reasoning framework.

For future work, we plan to analyze workload patterns within additional
tasks in order to develop further theoretical understanding of workload changes
and produce additional heuristics for assigning costs of interruption to various
moments within a task. Also, we will be continuing our implementation of a
system that reasons about when to deliver notifications given an explicit speci-
fication of the hierarchical structure of a task, the cost of interrupting at various
boundaries and other moments within it, and the urgency and relevance of a
notification.
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