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ABSTRACT 
Interest has been growing in opportunities to build and deploy 
statistical models that can infer a computer user’s current 
interruptability from computer activity and relevant contextual 
information. We describe a system that intermittently asks users to 
assess their perceived interruptability during a training phase and 
that builds decision-theoretic models with the ability to predict the 
cost of interrupting the user.  The models are used at run-time to 
compute the expected cost of interruptions, providing a mediator 
for incoming notifications, based on a consideration of a user’s 
current and recent history of computer activity, meeting status, 
location, time of day, and whether a conversation is detected. 

Categories and Subject Descriptors 
H1.2. Models and principles: User/Machine Systems 

General Terms 
Cost of interruption, notification systems, models of attention 

1. INTRODUCTION 
Efforts over the last several years have demonstrated that 
relatively accurate models can be constructed for predicting the 
interruptability of users from sensed activity [3,5,6].  Such models 
promise to put in the hands of people tools for building personal 
agents that have the ability to mediate if, when, and how 
notifications and real-time communications should be relayed to 
them. For example, in prior work on the Notification Platform 
project, models of the expected cost of interruption, trained by 
users in an offline setting, are coupled with models that assign 
measures of urgency to communications, and fielded within a 
Web-service architecture [7]. The system deliberates about the 
cost of transmitting alerts to users in different ways, based on a 
sensing of desktop activity, calendar appointment data, head pose, 
and nearby conversation.  In that work, models were trained with 
a system called the Interruption Workbench [6], which 
synchronizes videotaped sessions of users at work with a recorded 
event stream, and provides users with a tool that allows the users 

to tag different points of time in the captured sessions as being 
associated with costs of interruption. Bayesian network models 
are then generated from the case library of tagged data. The 
models provide at run time a probability distribution over the cost 
of interruption based on sensed events. This probability 
distribution is then combined with a decision-theoretic policy to 
generate an expected cost of interruption. Studies of models 
constructed with the Interruption Workbench explored the relative 
value and substitutability of sensors in model ablation studies. In 
work related to the Information Workbench, efforts were made on 
the Coordinate project to build models of the cost of interruption 
associated with meetings, based on a collection of training data 
from users and multiple properties from online calendar data [5]. 
In recent work related to the Interruption Workbench and to the 
research reported in this paper, users were prompted while 
working to record their current interruptability via audio 
annotation [3].  Data was logged about several desktop features, 
conversation status, and the configuration of user’s office doors.  
Models were constructed offline to predict user’s 
interruptabilities, based on the sensed data.  

In this paper, we present a software component that provides an 
integrated, onboard supervised learning and inference system, 
named BusyBody. BusyBody is an evolution of heavier-weight 
offline training systems packaged into a self-contained system. 
During a training phase, BusyBody intermittently engages users 
via a pop-up busy palette, heralded with an audio chime. The 
palette allows users to assess their current cost of interruption 
efficiently. In the background, a rich stream of desktop events is 
logged continuously. These events, along with information drawn 
from the user’s calendar, wireless signals, and an onboard 
conversation detector, are combined with the self-assessments to 
build a case library. BusyBody trains and periodically re-trains 
Bayesian network models that provide real-time inferences about 
the cost of notification. The models are linked to programming 
interfaces that allow other components, such as notification 
systems to access the expected cost of interruption. BusyBody can 
be instructed to execute either entirely on a user’s personal 
computer, or to alternatively package the information locally and 
to communicate its logs to a server when network connections 
become available. The use of a central server enables the 
construction of models that consider activity on multiple 
machines that the user may use at the same or different locations.  

In the rest of the paper, we shall review background on the cost of 
interruption, describe the sensing and learning infrastructure, and 
report studies of four users who participated in a study. 
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2. COST OF INTERRUPTION 
We have worked to endow computing systems with an 
understanding of a user’s workload, and overall sense of 
interruptability. Efforts to build machinery for assessing 
interruptability have included user studies, the formulation of 
models of attention and cognitive load, the construction of real-
time sensing and reasoning platforms, and the development of 
applications such as agents for mediating communications and 
messaging, the focus the work reported here. Beyond research on 
building models to predict the interruptability of users, 
researchers have carried out user studies to elucidate the costs of 
interrupting users in different ways while they are performing 
different tasks in office settings [2,4,8].   

In fielding machinery for deliberating about the mediation of 
communications, based on inferences about a user’s 
interruptability, we have taken a decision-analytic approach. 
Before moving ahead to details about BusyBody, we shall provide 
brief background on this approach, highlighting the semantics of 
the expected cost of interruption.  

We seek to infer the cost C assigned by users of being interrupted 
by different types of disruptions D conditioned on being in 
particular states S, C(Di,Sj).  In a messaging setting, such costs can 
be assessed using decision-analytic assessment techniques such as 
the willingness to pay in dollars to avoid the disruptive 
component of notifications. Predictive models of user states 
constructed with training data generate probability distributions 
over states of interruptability. Thus, we invoke the principles of 
expected utility decision making to compute the expected cost of 
disruptions under uncertainty in taking mediation actions.   

In our prior work, we assessed the costs of disruption as the 
willingness to pay to avoid the negative aspects of a disruption in 
dollars for alerts of different kinds disrupting the users in different 
contexts [6]. Willingness to pay to avoid the negative aspect of 
outcomes has been used as an assessment tool for several decades 
in decision analyses as applied to such fields as medical decision 
making. Given a set of dollar values that users assess that they are 
willing to pay to avoid different kinds of disruptions, and a 
probability distribution inferred over the state of a user, we 
compute the expected cost of interruption (ECI) by summing over 
the costs, weighted by the likelihood of each state, given sensor 
observations.  That is, the ECI is, 

                                                                                                   (1) 

where p(Sj|E) is the probability of the state, conditioned on 
observational evidence E.  

In the general case, we can consider states S as representing a 
variety of user situations and perform detailed assessments of 
costs associated with these states, and consider a set of specific 
kinds of disruptions. In related work, we considered a range of 
user situations such as focused creative activity, browsing 
lightweight activity, conversation with a colleague, 
private/personal time, etc. [7].  However, as our research 
progressed to deploying systems that users may wish to 
personalize with ease, we have found we could ease the 
assessment task by defining a state of interruptability, I, and to 
build models that directly infer this state. With this approach, we 
ask users to directly assess the cost of being interrupted when they 
are in different states of interruptability, spanning a spectrum that 

they define.  Users assess the costs for each type of disruption for 
each of a potentially small number of interruptability states. We 
can further simplify Equation 1 by fixing D to be a standard 
disruption, such as that associated with receiving an instant 
message or email alert. With this assumption, we simply ask users 
to assign a scalar value of cost to receiving alerts for messages 
when they are in different states of interruptability. Given 
uncertain inferences about the state of interruptability, we 
compute the expected cost as,   

                                                                                                 (2) 

The formulation can be further simplified by asking users to asses 
a small number of states of interruptability, such as whether they 
are in a state of low or high cost of interruption, and to allow them 
to define these variables and then map the states to costs.  

An expected cost of interruption enables developers to build 
mediation systems that perform simple cost-benefit analysis, for 
example, providing a simple slider control for setting a threshold 
on a computed expected cost of interruption at which messages 
will lead to desktop alerts versus to a journaling of the 
information for later review. The behavior of such a system can be 
inspected and tuned by users via moving the slider up and down.  

3. EVENTS, FEEDBACK, AND LEARNING 
We now turn to the challenges of collecting training data and 
constructing of predictive models in BusyBody. BusyBody’s 
event-monitoring infrastructure borrows software components 
from our earlier projects on cost of interruption and availability 
forecasting. Specifically, we integrated into BusyBody event-
sensing and logging components from those used in the 
Notification Platform and Coordinate systems.  
Event-monitoring methods developed for Notification Platform 
provide a rich infrastructure for detecting and logging desktop 
activities, including both low- and high-level events. Low-level 
events include states such as whether the user is typing, moving or 
clicking with the mouse, and the current focus and recent history 
of activity users have with applications and window titles 
(capturing activity within specific subwindows of applications, in 
addition to file names and urls).  Higher-level events include the 
timing and pattern of switching among applications and window 
titles (e.g., how many times the user has switched applications or 
window titles within different time horizons, and how many 
unique windows or applications have been visited).  We also 
record the total time that a user has been inactive or active within 
an activity-time tolerance that allows for brief pauses in activity.   

Beyond computing events, we record several classes of contextual 
variables capturing states beyond the computer. We note that the 
time of day and day of week.  We also consider, via the Microsoft 
Outlook application, whether a meeting exists, and was marked as 
tentative or accepted as confirmed by the user.  BusyBody 
includes a conversation detection system, with a module 
developed at our laboratory that detects acoustical energy in the 
audio spectrum in the human-voice range. The detector logs 
whether a user is speaking or last spoke at the time of assessment. 
If the user is speaking, the system notes in the log how long the 
user had been speaking (beyond a small silence duration 
tolerance). The system also logs, via wireless signals detected 
during sessions, either known (previously registered) or unknown 
locations. Finally the log includes the name of the computer being 
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used or that was last used if there is inactivity up until the probe, 
when it is operating with a server that consider a user’s different 
computers. 

When users activate BusyBody’s training mode, they grant the 
system permission to interrupt them intermittently to ask about 
their current cost of interruption.  Users can set experience-
sampling parameters in BusyBody’s control panel that is 
accessible in the system tray of the Windows shell. Users can set 
their preferences about the number of tolerated assessments per 
hour.  Users can also swiftly put the assessment function “to 
sleep” for an hour, a day, or until the system is reactivated.  
BusyBody attempts to sample smoothly across time, but 
randomizes the exact time it will appear, while maintaining its 
obligation to sample the specified number of times each hour. 
Beyond waiting for the probes, users can manually invoke the 
palette to instruct the system about the cost of interruption 
associated with a particular setting. 

We have experimented with assessment palettes of varying 
complexity. An early version of BusyBody employed a three-state 
assessment, asking users if they were in a situation, associated 
with low, medium, or high cost of interruption. For the studies 
reported in this paper, we employed a two-state assessment palette 
that users participating in our studies reported was easier to 
assess.  Beyond simplicity, recent related work has provided 
support for segmenting interruptability into highly 
noninterruptible versus other situations [3].   

Figure 1 shows the two-state busy palette. The notification 
appears in a location on the display set by the user with a short-
lived, audio herald of a harp being strummed gently. Users can 
immediately dismiss the assessment tool by clicking on the Not 
Busy or Busy buttons, colored green and red, respectively.  Users 
also can tell the system that they have been in a low or high cost 
of interruption for extended periods of time by clicking on the 
smaller “For this long…” buttons beneath the main targets, 
accessing a drop down box containing a list of durations.  If a user 
does not click on the assessment within 60 seconds, the palette 
disappears, and the case is recorded as unanswered.  

Rather than serving as an end-to-end application like its ancestor 
Notification Platform, BusyBody was initially designed as a piece 
of core infrastructure for building notification-throttling 
applications. If the ultimate mediation system built on top of 
BusyBody is one that provides users with an adjustable slider to 
specify thresholds on the cost of interruption at which different 
classes of real-time notifications will be suppressed, there is no 
reason to require that users assess specific costs, but rather to 
simply use a simple, linear cost function assumed by default. 
However, the system also provides a utility-assessment 
component that allows users to assign specific values to the cost 
of being interrupted in different states, enabling more 

sophisticated cost-benefit analysis of message types given that 
users are in different states of interruptability. Thus, BusyBody 
can support a spectrum of end-application sophistication. 

Given the assessments and logs of a stream of high-level and low 
level computational events and contextual evidence mentioned 
earlier, the system builds a library of cases, and then employs a 
Bayesian learning procedure, employing graph structure search 
[2]. This process generates a personalized Bayesian network 
model for the cost of interruption which can be used for making 
real-time predictions.  

4. STUDY AND RESULTS 
We initially fielded the application to several participants at our 
organization. Although we generally wished users to come up 
with their own definitions of “busy” versus “not busy” in 
assessing the two-state model, we provided general guidance; 
users were asked to tag their situation as busy when they believed 
that would prefer to temporarily suppress the receipt of messages 
that might be of importance to them.  Probes that were not 
answered while the user was using either using the computer or 
engaged in conversation were marked as busy states. 
We will now review the predictive accuracies of models 
constructed by the BusyBody systems of four participants after 
several weeks of running BusyBody. Participant P1 is a program 
manager who performs a great deal of communication daily and 
manages multiple projects, involving several teams of people.  P2 
is a software developer team lead. P3 and P4 are software 
developers who are typically tightly focused on specific 
programming tasks. Table 1 shows the number of assessed states 
and the classification accuracies of models constructed from the 
cases for each participant. The classification accuracies were 
computed by dividing the case libraries into training and test sets 
with an 80/20 split, constructed by randomly drawing the subset 
of training cases from participants’ case libraries.   
Beyond studies of the predictive accuracy of the models, the 
learned Bayesian networks were inspected, in pursuit of insights 
about key variables influencing the participants’ reported busy 
states. A portion of the learned Bayesian network for participant 
P1, highlighting key discriminatory variables, is displayed in 
Figure 2.  For this participant, key influencing variables, in order 
of their probabilistic influence on the user’s assessment of being 
busy versus not busy, include the number of window titles that 
had been visited in the last 5 minutes, whether the user was active 
on a computer, whether the user was engaged in conversation, the 
day of week, the titles of the windows currently and previously in 

     
Figure 2. Portion of Bayesian network built by BusyBody for 

participant P1 highlighting key influencing variables. 

          
Figure 1. Busy palette, showing selection of optional drop 

down list for assessing duration of current busy state. 
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focus, the application being used, the duration of the current 
session on the computer up to the assessment time, the time of 
day, the user’s location, as determined by wireless signals, and 
meeting status. Table 2 shows the top ten discriminating variables 
for each of the participants, sorted by a measure of probabilistic 
influence generated by the model construction procedure. We note 
that participant P3 did not have the conversation-detection 
component turned on. A number of variables and variable classes 
show strong influence across the participants, including durations 
of current and previous applications or window titles, and rates of 
shifting among applications or windows at different time horizons 
in advance of the assessment.  
In interviews following the training period, participants reported 
that they found the intermittent probes of BusyBody’s assessment 
palette somewhat annoying but they appeared to maintain a 
friendly attitude toward the inquisitive system that had been 
curiously nosing its way onto their desktops during training. 

At run time, the models learned by BusyBody are used to reason 
from the events and states sensed by the system to provide a 
probability distribution over states of interruptability. The system 
computes an expected cost of interruption, using the probability 
distribution and assessed costs of interruption for the high and 
low states of cost of interruption. Figure 3 shows a view of the 
inferred expected cost of interruption for a participant provided by 
BusyBody instrumentation for the two-state model.  In this case, 
the user has assigned a one-dollar cost to being interrupted when 
busy and no cost to being interrupted when free. 

5. DIRECTIONS 
We found the experience and results with preliminary trials with 
BusyBody to be promising.  We are planning to field BusyBody 
to a significantly larger group of participants and look forward to 
analyzing the results from the wider-scale study. We are studying 
several practical issues with fielding the system, including the 
immediate use of the system without training, or with training that 
occurs over time. For the former challenge, we have been 
pursuing an understanding of the predictive power of models built 

from data from one user or from groups of users to predict the 
interruptability of others. For the latter issue, we have 
implemented a model-averaging methodology that combines the 
results of a seed model and a personalized model, with a 
weighting that shifts toward the personalized model as the model 
becomes more competent as it is populated with increasing 
numbers of cases.  Finally, we are working to better understand 
how the interfaces to learned BusyBody models might be 
extended and enriched to enable application developers to harness 
real-time inferences about a user’s interruptability. 
We believe that the BusyBody approach represents a step forward 
in the vision of deploying systems that are aware of users’ 
workloads.  To date, systems that reason about a user’s workload 
have largely remained inside the walls of research laboratories. 
We believe that a descendant of BusyBody will break into the real 
world to provide value to users.  
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Table 1. Classification accuracies.        

Participant Training Cases Accuracy  
Participant 1   2365 0.87 
Participant 2     789 0.70 

   Participant 3   1449 0.85 
   Participant 4     470 0.71 

                
Figure 3. Real-time inference with BusyBody models 
showing probability distribution and expected cost of 

interruption for a user. 

Table 2. Key influencing variables for participants.         

Participant 1 Participant 2 Participant 3 Participant 4 
Title shifts 5min App. focus App.  focus App. focus 

Active on machine Day of week Title focus Day of week 

Conversation Previous title App. shifts 5min Duration app. focus 

Day of week Title shifts 5min Title shifts 10min Title shifts 1min 

Title focus Duration of silence Day of week Title focus 

Prev. title focus Title shifts 1min Duration title focus Duration of session 

App. focus App. shifts 10min Title shifts 5min Active on machine 

Duration of session Time of day Time of day App. shifts 5min 

Time of day Previous app. App. shifts 1min Time of day 

Location Duration of session Duration app. focus App. shifts 1min 
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