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Two Simple Examples

A vase appears to be a Ming. Let Ω= {w1,w2} represent the
space of possibilities that it is genuine (w1) or fake (w2).

A State of Ignorance

Let bel : 2Ω→ [0,1] be the function given by

; {w1} {w2} Ω
bel 0 0 0 1

An expert then attests that it is probably fake:

A Simple Support Function

; {w1} {w2} Ω
belE 0 0 s 1 s> 0
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Representing Ignorance

Shafer (1976: p. 22) advertises belief functions as representing
ignorance better than probability functions.
É The problem with probability functions is well known.

É Ignorance is represented by uniform distributions.
É But refining the space of possibilities yields inconsistency.

É Belief functions avoid this problem.
É Ignorance is represented by vacuous belief functions.
É Refining the space preserves previous assignments.

Refined Ignorance

Suppose we think to distinguish early Ming (w1
1) from late Ming

(w2
1). Then Ω= {w1

1,w2
1,w2} and ignorance is represented:

; {w(j)i } {w(j)i ,w(l)k } Ω
bel 0 0 0 1
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The Problem of Priors

As a sort of corollary, the problem of priors is easily answered
in Dempster-Shafer Theory.
É Your initial degrees of belief should be vacuous: 0

everywhere but the tautology.
É At any later time, your degrees of belief should be the

result of combining the vacuous belief function with your
total evidence.
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Symmetry Between Prior Belief & Evidence

Shafer (1976: p. 25) advertises DST as treating evidence and
prior opinion symmetrically.
É Belief-states and evidence are represented by the same sorts

of mathematical objects, belief functions.
É Updating is done by combining your priors (bel) and your

new evidence (belE) via a commutative operation, ⊕.

bel′ = bel⊕ belE = belE⊕ bel

É Corollaries:
É Old and new evidence are treated the same.

É belE is incorporated the same way as the old evidence that
generated bel.

É Updating is commutative, or order-invariant.
É Compare the classic complaint about Jeffrey’s Rule.
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Representing Evidence

Shafer’s theory is about degrees of belief based on evidence. As
such, it has at least three selling points:

1 Representing one’s evidential basis: in a sense, degrees of
belief are nothing more than the sum of one’s evidence.
É As we’ll see, combining the vacuous belief function (bel0)

with any other is always neutral: bel0⊕ bel= bel. So

bel′ = bel0⊕ belE1
⊕ . . .⊕ belEn

= belE1
⊕ . . .⊕ belEn

É In fact, one can often decompose a belief function into the
evidence upon which it is based.

É There are limitations, of course; more on that when we
discuss Shafer’s Theorem 5.2.
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Representing Evidence

2 Weights of evidence: the theory lends itself to a natural way
of measuring the weight of evidence for A.
É Suppose we have two pieces of evidence for A, belE1

and
belE2

.
É Assume that the weights of evidence underlying these two

pieces of evidence combines additively: w3 =w1+w2.
É Then we can derive (with some “innocuous” assumptions):

bel(A) = 1− e−w(A)

É This relation has some intuitively nice features, and
supports some interesting theorems/conjectures in DST.



DST

Weisberg

Motivations

Statics

Dynamics

Taxonomy

Decisions

References

Representing Evidence

3 DST allows us to represent uncertain evidence, and simply.
É The belief function

bel(A) =







0 if E 6⊆A
s if E⊆A but A 6=Ω
1 if A=Ω

represents evidence that supports degree of belief s in E.
É Compare the classic complaints about conditioning:

É Evidence must be certain.
É Evidence must have a pre-existing degree of belief.

É What about Jeffrey’s rule? It “. . . still treats the old and new
evidence asymmetrically”.
É Is this a complaint about commutativity?
É If so, I’d say (Lange, 2000; Wagner, 2002) resolve that worry.
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The Horse’s Mouth

“For what reasons are degrees of belief required to satisfy the
conditions imposed? [. . . ] I do not deny the possibility of a theory
superior to the theory of belief functions. I believe, though, that the
superiority of one theory of probability judgment to another can be
demonstrated only by a preponderance of examples where the best
analysis using the other.” (Shafer 1981a: 15)
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Belief Functions

Definition: Belief Function

A function bel : 2Ω→ [0,1] is a belief function iff
(B1) bel(;) = 0
(B2) bel(Ω) = 1
(B3) For all A1, . . . ,An ⊆Ω,

bel(A1 ∪ . . .∪An)≥
∑

I⊆{1,...,n}
(−1)|I |+1bel







⋂

i∈I

Ai







É (B1) and (B2) are the same as in probability theory.
É So what’s the deal with (B3)?
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Inclusion-Exclusion

Recall the inclusion-exclusion rule from probability theory:

p(A∪B) = p(A)+ p(B)
−p(A∩B)

p(A∪B∪C) = p(A)+ p(B)+ p(C)
−p(A∩B)− p(A∩C)− p(B∩C)
+p(A∩B∩C)

...

p(A1 ∪ . . .∪An) =
∑

I⊆{1,...,n}
(−1)|I |+1p







⋂

i∈I

Ai






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= vs. ≥

So (B3) is DST’s analogue of the inclusion-exclusion rule:

p(A1 ∪ . . .∪An) =
∑

I⊆{1,...,n}
(−1)|I |+1p







⋂

i∈I

Ai







vs.

bel(A1 ∪ . . .∪An) ≥
∑

I⊆{1,...,n}
(−1)|I |+1bel







⋂

i∈I

Ai







É Recall that the inclusion-exclusion principle can replace the
additivity axiom of probability theory.

É So the difference between DST and probability theory
comes down to replacing a single = with a ≥!
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But Oh, What a Difference. . .

A striking (and annoying) novelty of DST is that the values of
the atoms do not determine the whole distribution.
É If Ω= {w1,w2,w3}, the following is a belief function:

; {wi} {wi,wj} Ω
bel 0 1/4 3/4 1

i 6= j

É So is the vacuous function:
A Ω

bel 0 1 A 6=Ω

É Another handy trick you’ll miss:

p(A) = 1− p(A)

In general, we say that belief functions are superadditive:

bel(A∪B)≥ bel(A)+ bel(B), A∩B= ;
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How Annoying!

As a result, visual representation is messier:
É We can’t visualize belief distributions as “muddy” venn

diagrams, in the manner of (van Fraassen, 1989).
É We can use lattices instead:

{w1} {w2} {w3}

{w1,w2} {w1,w3} {w2,w3}

Ω

.1 .1 .1

.3 .3 .3

1.0
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Mass Functions

Definition: Mass Function
A function m : 2Ω→ [0,1] is a mass function iff

(M1) m(;) = 0
(M2)

∑

A⊆Ωm(A) = 1

Representation Theorem

Given a mass function m,

belm(A) =
∑

B⊆A
m(B)

is a belief function.
If Ω is finite and bel is a belief function, there is a unique mass

function m,
bel(A) =

∑

B⊆A
m(B)
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Understanding Mass Functions

É Pictorially, mass functions are like probability distributions
over the lattice:

{w1} {w2} {w3}

{w1,w2} {w1,w3} {w2,w3}

Ω

.1 .1 .1

.2 .2 .2

.1

É Intuitively, mass is the amount of “belief that one commits
exactly to A, not the total belief that one commits to A.”
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Commonality Functions

Definition: Commonality Function

If m is a mass function, then its commonality function is

Q(A) =
∑

A⊆B,B⊆Ω
m(B)

Representation Theorem

Given bel and its corresponding Q,

bel(A) =
∑

B⊆A

(−1)|B|Q(B)

Q(A) =
∑

B⊆A
(−1)|B|bel(B)
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Plausibility Functions

Definition: Plausibility Function

If bel is a belief function, its plausibility function is

plaus(A) = 1− bel(A)

It’s the “plausibility” of A in that it’s the degree to which the
evidence fails to support its negation.

Partial Representation Theorem (Dempster, 1967)

Every belief function bel is a lower probability function, with
plaus its corresponding upper probability function.

É Some lower probability functions are not belief functions.
É Lower probabilities don’t always satisfy (B3)
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Shafer’s Taxonomy of Belief Functions

Belief Functions

Support Functions Quasi Support Functions

Separable Not Separable Bayesian
(Nontrivial)

Non-Bayesian

Simple Not Simple
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Dempster’s Rule

Definition: Dempster Combination

If m1 and m2 are mass functions, their combination is denoted
m1⊕m2 and is defined

(m1⊕m2)(A) = c
∑

B,C:B∩C=A
m1(B)m2(C)

where c is a normalizing constant.

The normalizing constant is necessary to account for “leaks”:
É Sometimes B∩C = ; but m1(B)m2(C)> 0.
É Because of (M1), this mass must be thrown out.
É So we have

c =






1−

∑

B,C:B∩C=;
m1(B)m2(C)







−1
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Visualizing Dempster’s Rule

Dempster’s rule is hard to grasp intuitively, but Shafer provides
a helpful visualization:

m2

m1

0

1

1A1 A2 . . . An

B1

B2

...

Bm

m1(An)m2(Bm):
An ∩Bm

m1(A1)m2(B2):

A1 ∩B2
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Some Basics

É m1⊕m2 is undefined when c’s denominator is 0.
É m1⊕m2 is always a mass function.
É We write bel1⊕ bel2 for m1⊕m2’s belief function.
É Combination is associative and commutative:

bel1⊕ (bel2⊕ bel3) = (bel1⊕ bel2)⊕ bel3

bel1⊕ bel2 = bel2⊕ bel1

É Vacuous combination has no effect:

bel⊕ bel0 = bel

É If bel= bel1⊕ bel2 with corresponding commonality
functions Q,Q1,Q2, then

Q(A) = c Q1(A)Q2(A)



DST

Weisberg

Motivations

Statics

Dynamics

Taxonomy

Decisions

References

Dempster Conditioning

Definition: Dempster Conditioning

Let belE be the belief function corresponding to the mass
function assigning m(E) = 1. Then

bel(A|E) =df bel⊕ belE

Theorem

bel(A|E) =
bel(A∪E)− bel(E)

1− bel(E)

plaus(A|B) =
plaus(A∩E)

plaus(E)
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Simple Support

A quick definition:

Definition: Simple Support Function

A belief function is a simple support function iff

bel(A) =







0 if S 6⊆A
s if S⊆A but A 6=Ω
1 if A=Ω

We say that bel is focused on S.
É Clearly, the corresponding mass function is

m(A) =







s if A= S
1− s if A=Ω
0 otherwise
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Special Case: Homogeneous Support

Consider two simple support functions both focused on A, with
support degrees s1 and s2:

A Ω
A A∩A=A A∩Ω=A
Ω Ω∩A=A Ω∩Ω=Ω

m2(A) = s2 m2(Ω) = 1− s2
m1(A) = s1 s1s2 s1(1− s2)

m1(Ω) = 1− s1 s2(1− s1) (1− s1)(1− s2)

(m1⊕m2)(A) = s1+ s2− s1s2
(m1⊕m2)(Ω) = 1− (m1⊕m2)(A)

É Notice that (m1⊕m2)(A)> s1, s2
É Notice that c= 1.
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Special Case: Heterogeneous Support

Two simple support functions focused on distinct A and B when
A∩B 6= ;:

B Ω
A A∩B A
Ω B Ω

m2(B) = s2 m2(Ω) = 1− s2
m1(A) = s1 s1s2 s1(1− s2)

m1(Ω) = 1− s1 s2(1− s1) (1− s1)(1− s2)

(m1⊕m2)(A) = s1(1− s2)
(m1⊕m2)(B) = s2(1− s1)

(m1⊕m2)(A∩B) = s1s2
(m1⊕m2)(Ω) = (1− s1)(1− s2)

É Again, c= 1.
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Special Case: Conflicting Support

Two simple support functions focused on distinct A and B when
A∩B= ;. Now c= (1− s1s2).

B Ω
A ; A
Ω B Ω

m2(B) = s2 m2(Ω) = 1− s2
m1(A) = s1 s1s2 s1(1− s2)

m1(Ω) = 1− s1 s2(1− s1) (1− s1)(1− s2)

(m1⊕m2)(A) = s1(1− s2)/(1− s1s2)
(m1⊕m2)(B) = s2(1− s1)/(1− s1s2)
(m1⊕m2)(Ω) = (1− s1)(1− s2)/(1− s1s2)

É Notice that (m1⊕m2)(A)<m1(A), and similarly for B.
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Separable Support Functions

Definition: Separable Support Function

A belief function is separable iff it can be obtained by
combining one or more simple support functions.

Separability Theorem (Shafer 1976: 90)

If bel is a non-vacuous, separable support function, there exists a
unique collection of non-vacuous, simple support functions
bel1, . . . ,beln such that

(1) bel= bel1⊕ . . .⊕ beln

(2) The focus of each beli, Si, is such that bel(Si)> 0
(3) beli and belj have different foci when i 6= j.

É Note: separability does not assure us that bel’s actual
history can be recovered; witness condition (3).
É Recall the results of homogeneous combination.
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Dempster Meets Jeffrey

Partial Representation Theorem (Shafer, 1981a)

Every Jeffrey update can be represented as a Dempster update.
Whenever two probability functions are related by

q(·) =
∑

i
p(·|Ei)q(Ei)

for a partition {Ei}, there is a belief function bel such that
q= p⊕ bel.
É bel will not be unique, generally speaking.
É bel’s focal elements will be unions of the Ei.
É Shafer (1981b) argues that the Dempster representation has

the advantage of representing the evidence on its own,
before prior belief is factored in. (Cf. (Field, 1978; Garber,
1980; Christensen, 1992; Lange, 2000; Wagner, 2002).)
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Reminder: Taxonomy of Belief Functions

Belief Functions

Support Functions Quasi Support Functions

Separable Not Separable Bayesian
(Nontrivial)

Non-Bayesian

Simple Not Simple
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Refinements

We’ve characterized the simple and separable support functions.
What about the remaining support functions?
É Here we need the notion of a refinement; the division of a

space’s atoms into sub-possibilities.

Definition: Refinement

A map r : 2Ω→ 2Θ is a refinement iff
(1) r({w}) 6= ; for all w ∈Ω
(2) r({w})∩ r({w′}) = ; if w 6=w′

(3)
⋃

w∈Ω r({w}) = Θ
(4) r(A) =

⋃

w∈A r({w})

Intuitively, r takes Ω’s atoms to a nontrivial partition (1–3), and
any larger set to the union of the sets corresponding to its atoms
(4).
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Restrictions

We can now characterize the restriction of a belief function over
a refined space to the space from which it was refined.

Definition: Restriction
Let r : 2Ω→ 2Θ be a refinement, and bel a belief function defined
over Θ. The restriction of bel to Ω is written bel|2Ω, and is
defined

bel|2Ω(A) = bel(r(A))

Theorem (Shafer, 1976: 126)

The restriction of a belief function is always a belief function.
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Support Functions

Definition: Support Function

A belief function bel over Ω is a support function iff there is a
refinement of Ω into Θ and a separable support function on 2Θ,
bel′, such that bel|2Ω = bel′.

É Clearly, separable support functions are support functions.
É But some (even basic) support functions aren’t separable.

Example: A Non-Separable Support Function

Suppose Ω= {w1,w2,w3} and

m({w1,w2}) = ({w2,w3}) =m(Ω) = 1/3

Then belm is a support function, but is not separable.

Theorems 7.1 and 7.2 of Shafer (1976: 143) verify this.
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Weighing Evidence

Given three natural assumptions, we can construct a nice
measure of evidential weight.

1 Existence: the value of a simple support function focused
on A is determined by a weight of evidence for A, w.
É There is some function such that g(w) = s.

2 Scale: weights of evidence vary from 0 to∞.
É g : [0,∞]→ [0,1].

3 Additivity: given two simple support functions focused on
A, their combination is determined by the sum of their
respective weights.
É g(w1+w2) = (bel1⊕ bel2)(A).
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Weighing Evidence

Theorem (Shafer 1976: 77-8)

If g satisfies the following:
g : [0,∞]→ [0,1]
If g(w1) = s2, g(w2) = s2, then g(w1+w2) = s1+ s2− s1s2

then g(w) = 1− ecw for any constant c.

Choosing c= 1 for convenience, we measure weight by

g(w) = 1− e−w
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Weighing Conflict

Two simple support functions conflict to the extent that they
assign mass to incompatible propositions.
É The more mass thrown away

c =
∑

B,C:B∩C=;
m1(B)m2(C)

the greater the weight of conflict.

Definition: Weight of Conflict

Con(bel1,bel2) = log
� 1

1−c

�
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The Weight-of-Conflict Conjecture

Definition: Weight of Internal Conflict

If bel is a separable support function, it’s weight of internal
conflict, Wbel, is Con(bel1, . . . ,beln), where bel1⊕ · · ·⊕ beln is
bel’s canonical decomposition into simple support functions.

Conjecture (Shafer 1976: 96)

Let bel1 and bel2 be separable support functions with
commonality functions Q1,Q2, and weights of internal conflict
W1,W2. Then, if Q1(A)≤Q2(A) for all A, W1 ≥W2.
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Limits of Sequences of Belief Functions

Recall how to take the limit of a sequence of functions:

Definition: Limit of a Sequence of Functions

Suppose f1, f2, . . . is an infinite sequence of functions. Then its
limit is f iff

lim
i→∞

fi(A) = f (A)

for all A in the domain.

Then we have the following theorem about belief functions:

Theorem (Shafer 1976: 200)

If a sequence of belief functions has a limit, the limit is a belief
function.
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Quasi Support Functions

We’re finally in a position to characterize the remaining belief
functions, the quasi support functions:
É They are the limits of sequences of separable support

functions over a more refined space.

Theorem (Shafer 1976: 200)

If bel is not a support function, it is the restriction of a limit of a
sequence of separable support functions.

That is, there is a refinement of Ω into Θ and a sequence of
separable support functions bel1,bel2, . . . on Θ such that

bel =
�

lim
i→∞

beli

�

|2Ω
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Two Notes for Later

Two things to note for use in a moment:
1 Given that the beli are separable,

�

lim
i→∞

beli

�

|2Ω = lim
i→∞
(beli|2

Ω)

2 Each beli|2Ω is a support function.
So we can also say that the above bel is the limit of a sequence of
support functions.
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Some Examples

As it turns out, all non-trivial probability functions are quasi
support functions.

Theorem (Shafer 1976: 201)

If bel is a belief function with at least one A⊆Ω such that
bel(A)> 0 and bel(A)+ bel(A) = 1, then bel is a quasi support
function.

But other examples abound, even very elementary ones.

Example: A Non-probabilistic Quasi Support Function

Let Ω= {w1,w2,w3} and m({w1,w2}) =m({w2,w3}) = 1/2.
Then belm is not a support function, i.e. it is a quasi support
function.

É Follows from Shafer’s Theorem 7.1; again, I’m not sure
whether there is a more direct way to see this.
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Weights of Impinging Evidence

Definition: Impingement Function

If bel is a separable support function with w its corresponding
weight-of-evidence function, its impingement function is defined

V (A) =
∑

B:A6⊆B

w(B)

V is the weight of evidence for propositions compatible with A.
É Weights of evidence are additive, by assumption.

Intuitively, V (A) is the weight of evidence impinging on A.
É Each w(B) “impugns” part of A, since A 6⊆ B.
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Infinite, Contradictory Evidence

Theorem (Shafer 1976: 220 –1)

If bel1,bel2, . . . is a sequence of separable support functions
whose limit is not a separable support function, and V1,V2, . . .
are the corresponding impingement functions, then

lim
i→∞

Vi({w}) = ∞

for every w ∈Ω.

“Because of the dubious nature of such infinite
contradictory weights of evidence, it is natural to call a
belief function a quasi support function whenever it is not
a support function but is the limit of a sequence of
separable support functions or the restriction of such a
limit.” (Shafer 1976: 201)
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Two Worries

Is this interpretation of the results too quick? Two reasons I’m
suspicious:

1 We haven’t shown that quasi support functions are the
limits of sequences of separable support functions, only
that they are the restrictions of such limits.
É Some quasi support functions are limits of sequences of

separable support functions, not merely restrictions of such
limits.

É But some are only “indirectly” so, i.e. restrictions of such
limits.
É (Or, using our earlier two notes, limits of sequences of

support functions, though not necessarily separable ones.)

How does the theorem tell us that quasi support functions
obtainable only as restrictions represent “infinite
contradictory weights of evidence”?
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Two Worries (continued)

Is this interpretation of the results too quick? Two reasons I’m
suspicious:

2 But suppose we focus just on those quasi support functions
that are directly limits of separable support functions.

That the weights supporting contradictory propositions
tend to infinity does not obviously entail that the function
at the limit itself represents such evidence.
É For one thing, these are the limits of infinite sequences, not

infinite combinations.
É For another, they are limits at infinity, and the finite-

transfinite gap is notoriously tricky.
É Examples: Adam & Eve, Infinity Bank™
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Infinite Evidence & Statistics

Barring these concerns, the result is quite striking:
É Bayesian rationality demands that we believe as if we had

infinite evidence for contradictory propositions!
How can this be?

“Those who are accustomed to thinking of partial beliefs
based on chances as paradigmatic may be startled to see
them relegated to a peripheral role and classified among
those partial beliefs that cannot arise from actual, finite
evidence. But students of statistical inference are quite
familiar with the conclusion that a chance cannot be
evaluated with less than infinite evidence.” (Shafer 1976:
201)
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Yea Ok, But Contradictory?!

What about the fact that such hypothetical evidence is not just
infinite, but supporting of contradictory propositions?

“To establish a value between zero and one as the chance
for a given outcome of an aleatory process, one must
obtain the results of an infinite sequence of independent
trials of the process [. . . ] One could ask for no better
example of infinite, precisely balanced and unobtainable
evidence.” (Shafer 1976: 201-2)

In other words: if we had had enough evidence to determine the
true chances for the next flip of a coin, we would have evidence
of infinite weight that the next flip will be heads.
É Notice a corollary: it is possible to have evidence of infinite

weight supporting no confidence.
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Decisions
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Three Approaches

There are at least two broad approaches to constructing a
decision rule for DST:

1 Fall back on the theory of upper and lower probabilities.
2 Collapse the belief function into a probability function.
3 Make assumptions justified by specifics of the application.
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Upper & Lower Expectations

Belief functions can be seen as inducing expectation intervals:
É For every belief function bel, there is a canonical set of

probability functions P such that bel= P∗ and plaus= P∗:

P= {p : p(A)≥ bel(A) for all A}

É So we can define Ebel = E
P

and Eplaus = EP.

É We can then fall back on rules like Total Domination.
An important caveat:
É Generally, several Ps can be associated with a given bel.
É Some decision rules, like Levi’s, depend not only on the

interval [P∗,P∗], but on the particular contents of P.
É For such decision rules, which P we associate with bel

matters, so a canonical translation is required.
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Cutting Out the Middle Man

Can we avoid the detour through upper/lower probabilities?
É Shafer and many others explicitly reject the upper/lower

probability interpretation of belief functions.
É It’d be computationally easier to cut out the middle man.

Answer: yes!
É Recall that probabilistic expectation can be re-expressed

Ep(X) =
n
∑

i
p(X = xi)xi

= x1+
n−1
∑

i=1
p(X > xi)(xi+1− xi)
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Cutting Out the Middle Man (continued)

We can defined DST’s expected values in the same way:

Definition: Ebel and Eplaus

Ebel(X) = x1+
n−1
∑

i=1
bel(X > xi)(xi+1− xi)

Eplaus(X) = x1+
n−1
∑

i=1
plaus(X > xi)(xi+1− xi)

Theorem (Schmeidler 1986)

If P is the canonical set of probability functions associated with
bel, then Ebel = E

P
and Eplaus = EP.
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The Transferable Belief Model

Smets and Kennes (1994) proposed the TBM, which
distinguishes two levels of degree of belief:
É Credal: obeys rules of of DST.
É Pignistic: obeys rules of probability.

When a decision must be made, we “flatten” the mass function
into a probability function, and use good ol’ expected utility.

Definition: Pignistic Probability (TBM)

Given a mass function m, the pignistic probability function
corresponding to m, pm, is defined:

pm({w}) =
∑

A:w∈A

m(A)
|A|

for all w ∈Ω, where |A| is the cardinality of A.
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Worries About TBM

Two worries about the TBM:
1 Frame Dependence: the pignistic probabilities obtained

from a given mass function depend heavily on the
granularity of Ω.
É Mass is distributed according to the size of A.
É So a finer division of A means a higher pm(A).
É So the problems with the principle of indifference

effectivey return in the decision theoretic context.
2 Dutch Books: pignistic probabilities are dynamically

Dutch bookable.
É The dynamics of pignistic probabilities do not obey

conditionalization.
É Smets (1994) insists that dynamic Dutch books don’t arise

because of the distinction between “hypothetical” facts and
“factual” facts. (?!?)

É See Snow (1998) for a rebuttal.
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Making Assumptions

Strat (1994) proposes associating a parameter ρ with an
“uncommitted” mass assignment.
É ρ varies from 1 to 0 according as we think nature will

resolve the “unknown” probability “favourably”.
É Simplest case: m assigns all its values to atoms but one.

Eρ(X) = Ebel(X)+ρ[Eplaus(X)−Ebel(X)]

É ρ is reminiscent of, and inspired by, Hurwicz’s (1952)
optimism index.

É Lesh (1986) makes a similar proposal; Strat views Lesh’s as
differring in two respects:
É Lesh’s parameter reflects empirical commitments.
É Lesh’s parameter is used for a linear interpolation of the

range of possible probabilities; Strat’s for the range of
expected values.
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Other Topics: Independence

Defining independence in DST is trickier than for probability
theory.
É The usual definition, bel(A|B) = bel(A), doesn’t work.
É Several other definitions have been proposed.
É Question: how do they interact with updating?

É Probabilistic independence on the evidence is preserved by
conditioning rules.

É I think this is deeply problematic for Bayesianism.
(Weisberg 2009, manuscript)

É Does something analogous hold of Dempster’s rule? See
(Ben Yaghlane, Smets and Mellouli 2000, 2002) for some
discussion.
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Other Topics: Interpretation

How should we understand ‘degree of belief’ in DST?
É Bayesians provide many heuristics and operationalizations

to help us get a grip on the notion of credence.
É Shafer (1981a,b) and Shafer and Tversky (1983, 1985) offer a

heuristic where chancy translation is the canonical scale.
É Pearl (1988) argues for an interpretation in terms of

probability of provability.
É See (Smets 1994) for a survey of some standard

interpretations.
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