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ABSTRACT 
As the number of alerts generated by collaborative applications 
grows, users receive more unwanted alerts. FeedMe is a general 
alert management system based on XML feed protocols such as 
RSS and ATOM. In addition to traditional rule-based alert 
filtering, FeedMe uses techniques from machine-learning to infer 
alert preferences based on user feedback. In this paper, we present 
and evaluate a new collaborative naïve Bayes filtering algorithm. 
Using FeedMe, we collected alert ratings from 33 users over 29 
days. We used the data to design and verify the accuracy of the 
filtering algorithm and provide insights into alert prediction. 

Categories and Subject Descriptors 
H.5.3 [Group and Organization Interfaces]: Collaborative 
computing, Computer-supported cooperative work, 
Evaluation/methodology. G.3 [Probability and Statistics]: 
Experimental design, Probabilistic algorithms 

General Terms 
Algorithms, Experimentation, Human Factors. 

Keywords 
Alert filtering, collaborative filtering, attention management, 
interruption management, Bayesian, Activity Explorer 

1. INTRODUCTION 
In a recent survey of 1000 senior executives, Basex estimated that 
unnecessary interruptions consume about 28% of knowledge 
worker’s day and cost U.S. companies $588 billion per year [36]. 
Other studies of interruption-frequency provide similar results 
(e.g. [8], [10], [22], or [35]). Through direct observation, Mark et 
al. [22] calculated that 57.1% of task segments (“working 

spheres,” in their words) were interrupted.  In addition, 22.8% of 
tasks were not returned to within the same work day. Speier et al. 
[35] showed that interruptions degrade performance on more 
complex tasks. 

Taken together, these studies show that the increased use of 
technologies in the workplace introduces interruptions that impact 
productivity. In the past, interruptions were generally limited to 
phone calls and office coworkers. Desktop computers generate 
email alerts, instant messaging windows, alert bubbles in the 
system tray, reminder dialogs, blinking icons, automated system 
updates and so forth [14]. The likelihood of completing a task 
without being interrupted is low.  

In particular, collaborative desktop applications add to the flood 
of alerts by notifying users when other people interact with shared 
artifacts. Although this kind of awareness may be beneficial (it 
may reduce a user’s latency in responding to a request), too many 
alerts has been shown to be undesirable to users [29]. Interruption 
management research aims to solve this problem by filtering 
“good” alerts from “bad” alerts. Determining whether to show an 
alert, and how and when to show it, depends on many factors such 
as relative urgency and importance, end user’s interest, and user 
activity and context. 

Drawing on early work on semi-structured messages in 
Information Lens [21], many applications provide simple 
preference settings or rules to manage alerts. However, setting up 
explicit rules is often a time-consuming task that needs to be 
repeated for each individual application. Alternatively, machine 
learning techniques can potentially be used to automatically filter 
alerts with relatively little human effort. In this paper, we explore 
using collaborative filtering, which leverages relationships among 
users, to differentiate desirable alerts from undesirable alerts. We 
present a series of naïve Bayes algorithms, including a new 
collaborative naïve Bayes algorithm that yields 73% filtering 
accuracy. 

In order to test our system’s effectiveness, we displayed 16351 
alerts to 33 users and asked them to rate the alerts. The users 
provided a total of 6385 ratings or rating-interpretable responses. 
The alerts were collected using FeedMe, a novel alert 
management infrastructure based on alert feeds such as RSS or 
ATOM. We used Activity Explorer [29] as a test application. In 
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Activity Explorer, users collaborate around shared activities. 
Activities provide a rich context and structure for a managing a 
task or project. 

Our alert filtering task bears similarity to spam filtering in email 
(e.g., [1], [18]). However, the problem of spam filtering differs 
from alert filtering in several ways: the alert classification task is 
more difficult, we explore algorithms that are collaborative in 
nature, and we explore the use of contextual attributes related to 
past alerts such as contextual burden. We discuss these 
differences and other related work on interruption and attention 
management in Section 2. In Section 3 we describe design 
decisions and architecture of the FeedMe alert management 
system. Section 4 presents three filtering approaches, including 
our collaborative approach. In Section 5 we present results from 
the data we collected.  In Section 6 we discuss limitations and 
implications of our results. 

2. RELATED WORK 
A wealth of research is available related to notification systems.  
In research related to notification system architectures, 
Rosenblum et al. [31] develop a design framework enumerating 
seven design dimensions of large-scale notification systems.  
Cabrera et al. [3] present a distributed notification architecture 
demonstrating global internet scalability. Carzaniga et al. [6] 
evaluate a series of architectures for large-scale notification 
systems, including hierarchical and peer-to-peer designs. The 
Elvin notification system introduced a distributed subscription 
system that allowed for fine-grained quenching of upstream 
subscriptions through pattern matching [32].  Although FeedMe 
supports subscriptions to multiple alert channels, the focus of our 
work is on filtering alerts rather than efficiently transporting 
publish / subscribe data. 

From an HCI perspective, McFarlane [25] evaluates four 
strategies of interruption: immediate, negotiated, mediated, and 
scheduled. McFarlane found negotiated strategies, where the user 
postponed interruptions for a particular amount of time, to be 
most effective and well-liked.  McFarlane et al. [26] also present 
broad background and motivation for the field of interruptions 
research.  While McFarlane’s efforts evaluate delivery strategies, 
we focus on the relative user interest level of different alerts. 

Of course, not all interruptions are undesirable ([8], [15], [22], 
[37]).  A useful interruption management system should prevent 
unwanted interruptions while passing through desired 
interruptions. McCrickard et al. [23] suggest that the notification 
task can be framed as a cost benefit analysis: a system must 
determine if the information benefit conveyed in an alert is 
greater than the cost of interrupting the user. Many researchers 
have investigated automated techniques for predicting the cost of 
interruption.  Horvitz et al. [15] built Bayesian network models 
for predicting the cost of interruption based on factors such as the 
time of day, the current application, and desktop activity.  Our 
work focuses on inferring the benefit side of the equation, an area 
with far less existing research. 

In an approach similar to ours, Horivtz et al. consider methods for 
classifying the criticality of email messages as a component of 
their Priorities system [16].  Our work differs in several respects.  
First, we incorporate direct ratings feedback from users, while the 
Priorities system is trained on data created by domain experts.  

Second, whereas the Priorities system is based on a single global 
classification model, we explore predictive models which analyze 
relationships among users. 

Email spam classification techniques provide a mature approach 
to similar issues (although other HCI applications have also 
benefited from machine-learning classification approaches [34]). 
Cranor et al. [7] give an excellent overview of the spam-filtering 
task, including techniques such as naïve Bayes classification, 
support-vector machines, and boosting.  Our classification efforts 
differ from traditional spam detection in several important 
characteristics. First, the majority of email messages considered 
spam are unsolicited messages sent by anonymous senders. The 
majority of alerts today are sent because the user explicitly or 
implicitly subscribed to an alert. This makes it more difficult to 
differentiate between a desirable and an undesirable alert.  
Secondly, we explore collaborative algorithms that explicitly 
model relationships between users to improve classification.  
Third, the same alert may be classified as useful, or not useful to 
the same user under different contextual circumstances. For 
example, if a user has recently received a very similar alert, they 
may not be interested in receiving the information again. Fourth, 
filtering alerts is more time-sensitive, since alerts have a real-time 
character, i.e. algorithms need to scale appropriately. Fifth, spam 
filtering generally works by treating the words in the contents of 
the message as a long vector of detectable “features” [18] such as 
in advertisements, whereas alerts typically have relatively few 
words of content but (unlike spam) relatively trustworthy 
metadata.  

Several researchers have investigated user interface designs for 
displaying time-sensitive alerts. Bartram et al. [2] evaluate the use 
of moticons (icons with motion) in communicating peripheral 
information. McCrickard et al. [24] analyze notification systems 
with respect to cost of interruption, reaction time, and information 
comprehension and suggest that awareness interfaces should 
match the needs of the notification.  While we did evaluate user 
interface designs for alerts when building our system, this paper 
focuses on predicting the benefit of an alert’s informational 
content. 

Several studies have been conducted using Activity Explorer, our 
test application (e.g. [12], [27], [29]). Muller et al. [29] studied 
user behavior in Activity Explorer and discovered that users can 
be overwhelmed with alerts in Activity Explorer. In notification 
research closely related to Activity Explorer, Carroll et al. [5] 
examined awareness interfaces for activity-based systems, finding 
that maintaining awareness of activities requires transmitting far 
more contextual information than traditional action awareness. 

3. ALERT MANAGEMENT SYSTEM 
3.1 Design Considerations 
The FeedMe system primarily serves as the platform for testing 
the collaborative alert filtering described in this paper. However, 
the design of the system was also driven by the goal of providing 
a generalized alert management solution that integrates alerts 
from various sources including desktop applications such as 
Activity Explorer [29]. We built a centralized system with an 
alert management server that acts as an alert aggregator. 
Centrally managing alerts has several advantages for us: (1) alert 
filtering algorithms can be collaborative, i.e. alert feedback from 
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other users can be taken into account, (2) users can access their 
alert history from any device, and (3) a user’s alert preferences 
(and filtering) remain the same between different devices unless 
they are device specific. In order to allow for a flexible 
integration of alert sources from a wide array of applications, we 
decided to not only support standard formats such as RSS and 
ATOM but also provide a way for legacy desktop applications to 
publish their alerts to an alert desktop monitor. The desktop 
monitor funnels alerts back to the alert management server for 
filtering purposes, and it also displays alert bubbles on the 
desktop. 

3.2 System Description 
Figure 3 shows how the alert management server works in 
conjunction with the client desktop monitor.  
Our server manages a list of alert provider subscriptions for each 
user. Users can subscribe to new alerts feeds through the web-
based management user interface shown in Figure 2. Each alert 
feed constitutes a “channel” of incoming alerts for a user. 
 
Applications can publish alerts by: 

• Providing a public ATOM / RSS URL (e.g. external web 
applications not shown in the figure),  

• Notifying the alert server directly via its Web Services API, 
or 

• Publishing the alert to the desktop monitor who forwards the 
alert to the alert server. 

All incoming alert feeds are first filtered based on explicit user-
defined rules, (i.e. if a rule applies to a particular alert, the rule 
fires). If no rule applies, we use collaborative filtering (as 
described in Section 4). Remaining alerts are forwarded to the 
desktop monitor who in turn shows the alert to the end user by 
displaying an alert bubble1 (see Figure 1). 
The alert server also stores end users’ ratings of alerts as input for 
the collaborative filtering algorithm. Users may rate alerts in alert 
bubbles shown on their desktop by clicking the “thumbs-up” or 
“thumbs-down” buttons depicted in Figure 1 [28]. A single user 
action (a click on the buttons) both (a) closes the alert bubble and 
(b) records the user’s rating of the alert. In addition to explicitly 
rating an alert, we also implicitly create ratings when they select 
the hyperlink (“Test Activity,” in Figure 1) inside the alert 
navigating to the source of the alert (coded as “thumbs-up”). 
Clicks on the “x” close box are not interpreted as either “thumbs-
up” or “thumbs-down”. The desktop monitor stores the alert 
ratings on the server using the Web Services API. 

                                                                 
1 This general approach (rules first, statistical filtering second) is 

similar to some spam-filtration approaches (e.g.,[33]). However, 
as noted above, our statistical filtering involves historical / 
contextual information that is not part of conventional spam 
approaches. 
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Figure 3. FeedMe System Architecture 

 
Figure 1. FeedMe Alert bubble.

Figure 2. FeedMe Alert subscription web UI. 

 
Figure 4. Web UI showing alert history. 
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A secondary way of rating alerts is through the web-based user 
interface of the alert management server (see Figure 4). The 
server stores a history of all incoming, unfiltered alerts and the 
web UI can be used to view the history and rate alerts. Since 
desktop alert bubbles are ephemeral, providing an alert history 
also allows users to view missed alerts. 
The Web UI of FeedMe also allows users to explicitly set up 
filtering rules such as “Always Show Alerts Containing Some 
String”. Alternatively, applications can use the Web Services API 
to programmatically create rules on the FeedMe server. Since the 
focus of this paper is collaborative alert filtering, we do not 
describe rule management in greater detail here. 

3.3 Implementation 
FeedMe is implemented using a wide array of technologies. The 
desktop monitor is implemented in Java. The alert management 
server runs as a Java web application on an application server 
(e.g. Websphere [17]). We used XPath as a representation 
language for explicit rules, Hibernate for persistency, XML-RPC 
as a web services interface, JSP, JSLT, and Struts for the web UI. 

4. FILTERING ALGORITHM 
In this section, we present our collaborative alert filtering 
algorithm. The algorithm builds on and enhances standard and 
personalized Naïve Bayes filtering.  We selected the NB 
algorithm due to its rich history as a classification method [19].  
We begin by describing the alert filtering task and then describe 
the application of the Naïve Bayes algorithms to our alert filtering 
task. 

4.1 Alert Filtering Task 
An alert management system receives a series of alerts.  Each 
alert is directed to a set of target recipient users.  The alert 
filtering task determines whether the alert should be displayed or 
suppressed to each of the alert’s recipients.  

A learning system chooses to display or suppress each alert based 
on that alert’s attributes. Alert attributes fall into three classes: 

1. Intrinsic alert attributes that describe the alert itself, such as 
the alert’s author, and the subject of the alert. 

2. Contextual alert attributes that relate the current alert to 
alerts previously received by the user, such as time since last 
alert and number of alerts in the last minute. 

3. Environmental alert attributes that relate to a user’s current 
application context, such as the user’s current application 
focus or the time of day [15]. 

The results in this paper concern the first two classes, namely 
intrinsic alert attributes and contextual alert attributes. The third 
category, environmental alert attributes, requires more work to 
sense the user’s current applications and tasks and has previously 
been explored by Horovitz et. al [15].  

Although intrinsic attributes are independent of the recipient user, 
contextual and environmental attributes are user specific. Thus, 
the same alert may have different attributes for different users. 

Users indicate their satisfaction in receiving an alert by rating the 
alert. Users may also review and rate suppressed alerts. We chose 
to focus on binary rating schemes (e.g., thumbs up or down) 

although systems may select other rating schemes, such as unary 
and real-valued ratings schemes.  

We now formalize the alert filtering task. A system receives alerts 
A = {a1,…,an} in chronological order. Users U = {u1,…,um} 
receive alerts through the alert system.  An alert ai is subscribed 
to by a set of target users: U⊆= }',...,'{)target( 1 ki uua . A target 
user ui may assign alert aj a rating value of }1,1{, −+∈jir . The set 
of ratings is represented using the rating matrix R where rows are 
users, and columns are alerts.  The matrix R is generally sparse, 
i.e. most users have rated a small fraction of the alerts. The set of 
all alert feature attributes (e.g., alert author, alert subject) is 
denoted by F. The features of a particular alert ai depend on the 
recipient user uj and are denoted by F⊆= },...,{),( 1 zji ffuaattr . 

Framed from a machine learning perspective, alert prediction can 
be viewed as an online learning classification task.  Online 
indicates that our models must dynamically adapt to user 
feedback in real-time. Classification indicates that we are trying 
to differentiate between two result classes (positive and negative 
ratings). 

4.2 Basic Naïve Bayes Alert Prediction 
We begin by decribing the naïve Bayes (NB) prediction algorithm 
for alerts. We choose to display or suppress a new alert ai for a 
target user uj based on the probability that the user rates the alert a 
value of +1: p(ri,j=+1). Henceforth we shall abbreviate this 
probability as p(r+

i,j). We condition this probability on the 
features of the alert: 

)),(|()( ,, jijiji uaattrrprp ++ =  

Using Bayes rule [13], and an assumption of independence of 
attributes, we get: 

Eq 1: ∏
∈

+
++ =

),(
,

)(
)|()(ˆ)(

jik auattrf k

k
ji

fp
rfprprp  

Where )( +rp)  is the background prior probability of a positive 
rating (e.g., the fraction of total ratings that have the value +1), 
and fk are alert attributes.  Intuitively, Eq 1 multiplies the 
background probability of a positive rating by the relative 
likelihood of a positive alert generating the feature, compared to 
any alert generating the feature. 

We similarly calculate the probability of a negative rating: 

∏
∈

−
−− =

),(
,

)(
)|()(ˆ)(

jik auattrf k

k
ji

fp
rfprprp  

We are only interested in relative probabilities for the two classes 
(+1 and -1).  Since the denominator is identical between the two 
class probabilities, we ignore the denominator.  Intuitively, the 
formula compares the prior probabilities of positive (or negative) 
ratings multiplied by the fraction of positive (or negative) ratings 
that contained each of the alert attributes. 

We could simply calculate p(fk | r+) , the fraction of positive 
ratings that contain feature fk, by measuring the frequency of the 
feature in positively rated alerts.  Unfortunately, the attribute 
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space is sparse and data from rare attributes can be noisy.  We 
counteract ratings sparsity by treating the probability as a random 
Bernoulli variable, which naturally models a two-outcome event.  
We further suppose that the Bernoulli variable parameter is drawn 
from a Beta distribution, which is the Bernoulli variable’s 
conjugate prior and leads to tractable, closed-form, equations.  
We incorporate a Bayesian prior estimate of p(fk | r+) using a beta 
distribution with parameters α, β.  The parameters α, β resemble 
the relative likelihood of observing or not observing any chosen 
feature in a positive rating, and can be estimated from the data. 

Eq 2: 
{ }

{ } βα

α

++

+∈
=

+

+
+

r

auattrfr
rfp pik

k

),(|
)|(  

We include a derivation of this equation in the appendix.  
Qualitatively, this equation smoothes feature probabilities based 
on the overall average feature probability. 

Note that even though real world application attributes do not 
generally meet naïve Bayes’ independence assumption, the naïve 
Bayes algorithm often performs very well [1]. 

4.3 Personalized Naïve Bayes 
While the basic NB algorithm constructs a single global classifier, 
the personalized Naïve Bayes (PNB) algorithm constructs a 
different NB classifier for every user. Unfortunately, moving 
from a single global model to a model for each user dramatically 
decreases the number of ratings per attribute. To overcome this 
sparsity, we alter the beta prior in the simple model in Eq 2 by 
encoding the global user preference for the attribute into the prior 
parameters α and β.  In essence, PNB smoothes the user-specific 
probability for a feature towards the overall community 
probability for the feature. 

Our choice of prior depends only on the attribute; not the target 
user.  Given a feature fk with n+ positive ratings and n- negative 
ratings by all users, we construct the beta prior parameters αk and 
βk as follows: 

zk =β  

Eq 3: )|( +⋅= rfpz kkα  

The probability p(fk | r+) in Eq 3 is calculated directly from the 
simple naïve Bayes model presented (Eq 2). The parameter z 
effectively controls the “weight” of the prior distribution. We fix z 
so the sum of the personal beta prior (

KK βα + ) is equal to the sum 
of the global prior ( βα + ) estimated in Eq 2. Finally, we calculate 
the probability of user ui rating alert aj positively. 

Eq 4: { }
)(}{

))(|(),(|
)|('

,

, βα

βα

++

++∈
=+

+

++

i

kpikpi

jik r

rfpauattrfr
rfp  

Note that while in Eq 2 the numerator and denominator counted 
the number of ratings across all users, Eq 4 only counts ratings for 
the target user ui.  The values of, p(fk | r+), α and β are all defined 
using Eq 2. Qualitatively, the personalized model smoothly adapts 
from the basic model to a more personalized model as the user 
provides more ratings for an attribute. 
We calculate the final predicted rating by inserting the component 
probabilities of Eq 4 into Eq 1. 

Table 1. An alert ratings matrix for four users. 
(alert attributes are in parentheses) 

4.4 Collaborative Naïve Bayes 
PNB builds upon NB by incorporating information specific to a 
user. The collaborative naïve Bayes (CNB) model takes 
personalization one step further by looking for similarities in 
attribute ratings across users. 
In Table 1 we give a short example demonstrating the usefulness 
of collaborative algorithms. Assume that Bill receives a new alert 
(alert 4) with a single attribute z. Furthermore, assume that Bill 
has not rated any alerts with attribute z. Jim and Martha, who 
historically rate similarly to Bill, have rated attribute z, and 
generally rate it negatively. It seems reasonable to infer that Bill 
will also dislike alert 4, whose sole attribute is z. As this example 
shows, collaborative algorithms can help overcome ratings 
sparsity. 
The CNB algorithm begins by building PNB classifiers for each 
user as described in section 4.3. Next, for every target user, we 
construct a higher-level classifier that combines the predictions of 
every user’s personal model.  We use support vector machines 
(SVM) as our second-level classifier [18], and train each user’s 
SVM on the user’s history of alert ratings. Input variables for 
each training instance consist of the output predictions from each 
user’s personal naïve Bayes model.  We experimented with a 
variety of SVM kernels, and selected a polynomial kernel of 
degree three based on its empirical performance. 
Since both a target user’s ratings, and other user’s predictions 
change dynamically, we would ideally reconstruct each user’s 
SVM model before every prediction. Unfortunately, this is 
prohibitively expensive.  Instead, we chose to reconstruct a user’s 
collaborative model at exponential rating thresholds (for example, 
when the user has rated 2, 4, 8, 16, 32, etc. alerts).  We found no 
significant loss in accuracy due to the exponential rebuilding. 

5. EXPERIMENTAL RESULTS 
5.1 Data Collection 
In the summer of 2005, we deployed FeedMe together with 
Activity Explorer [29] as a test application for alert filtering. 
Activity Explorer is a collaborative application that supports the 
notion of shared activities as a way of managing and organizing 
the context of a project or task. Activities are represented as 
hierarchically structured collections of shared resources called 
activity threads. Activity threads are created as users collaborate 
in an activity by posting new shared resources. Users have six 
different types of activity resources at their disposal to collaborate 
around and share with other users: message, file, chat, screen 
snapshot (can be annotated in real-time), folder, and task. A more 
detailed description of Activity Explorer can be found in [12], 
[27], and [29]. Activity Explorer provides rich awareness of user  
 

 Alert 1 (w) Alert 2 (x,y) Alert 3 (z) Alert 4 (z) 

Bill -1 +1 ? ? 
Jim -1 +1 -1 ? 
Martha -1 +1 -1 ? 
Fran +1 -1 +1 ? 
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Table 2: Attributes of alerts. 

 

actions through four types of time-sensitive alerts. Users are 
alerted when 

• New activity resources are created, 

• Existing activity resources are modified, 

• Users are added to or removed from an activity resource, or 

• Users are looking at or editing an activity resource. 

Note that these kinds of alerts are only triggered for the members 
of an activity, i.e. alerts are not public but limited to the member 
list of an individual activity.  

During our study, we disabled all rule-based and predictive 
filtering in order to collect user feedback about all alerts.  This 
ensured that we could accurately measure the effectiveness of all 
predictive algorithms during our offline analyses.  As a result, the 
community was flooded with the full spectrum of Activity 
Explorer alerts (a mean of 481 alerts per user for the participants 
in this study). 

We used the FeedMe Desktop Monitor to tunnel alerts back to the 
FeedMe server, i.e. when an alert arrives at Activity Explorer, 
instead of being shown immediately, it is published to the 
Desktop Monitor, which then sends it to the FeedMe server for 
processing, from which it is sent to the user. In addition to the 
standardized RSS attributes, we added custom alert attributes such 
as activity id, resource id, resource members, and resource type.  
Note that the FeedMe system has an extension mechanism for 
alert data sources. This mechanism allows adding custom 
attributes to the set of attributes that are considered as input for 
the collaborative filtering algorithm. 

5.2 Description of the Data 
In order to design and verify the collaborative alert filtering 
algorithm presented in the previous section, we displayed and 
collected 16351 alerts during 29 days in a community of 34 users 
consisting of summer interns, designers, software engineers, and 
researchers from different parts of IBM. Of these, 6385 alerts 
received ratings from 33 of the users2,3 (one user chose not to 
participate in the rating activity). Overall, the amount of rating 
activity varied erratically over time, but seemed to track overall 
application usage.  To reduce analysis noise, we removed any 
                                                                 
2 Our observed rate of alert feedback is probably higher than can 

be expected from real-world applications due to our users’ 
knowledge of, and support for, our data-collection effort. 

3 The other 9966 non-rated alerts fell into several categories.  453 
alerts were closed by the user without any other action:  We do 
not know how to interpret the “close” response, so we treated 
those alerts as non-rated.  9445 alerts timed out and were 
removed by the system; we do not know whether the user 
ignored these alerts, or was away from her/his computer.  
Because we do not know why the user took no action, we 
treated these alerts as non-rated.  An additional 68 alerts 
received a response to turn off further alerts; to be conservative, 
we did not interpret this response as a rating. Not included in 
this analysis were an additional 2558 alerts which could not be 
displayed to the user because too many alerts were already on 
the screen.  These alerts were never seen by the user, and so of 
course we did not include these in our analysis. 

Description of Attribute Predictive 
Strength 

 
Intrinsic Attributes of Alerts Themselves 

 
Resource ID – The unique identifier of 
the object that generated the alert 

0.646 

Resource Type – The type of object 
(chat, document, folder, message, shared 
screen, task) 

0.293 

Activity ID – The unique identifier of the 
activity thread (structured collection of 
objects) that contained the Resource that 
generated the alert 

0.648 

Action – The type of user action applied 
that generated the alert (view resource, 
modify resource, add resource, add user) 

0.431 

Author ID – The person whose action on 
the Resource generated the alert 

0.335 

NumberOfMembers – Number of 
people with access to the Resource that 
generated the alert 

0.173 

NamesOfMembers – A list of the names 
of the people with access to the 
Resource (decomposed such that each 
member became a separate predictor) 

0.321 

Contextual Attributes of the User’s Experience 
Preceding the Alert 

(with the exception of LastSimilar, all Contextual Attributes 
are counts of the relevant events, compared with the 

current alert, in the 60 seconds preceding the current alert) 
LastSimilar – Number of seconds since 
the most recent alert for the same 
Resource 

0.180 

LastMinute – Summary count of 
number of alerts in the preceding minute 

0.105 

ResourceConsistency – Count of alerts 
from the same Resource that generated 
the current alert 

0.138 

ResourceDiversity – Count of alerts 
from different Resources 

0.119 

ActivityConsistency – Count of alerts 
from the same Activity whose Resource 
generated the current alert 

0.116 

ActivityDiversity – Count of alerts from 
different Activities 

0.119 

SocialConsistency – Count of alerts 
generated by actions of the same Author 
as the current alert 

0.087 

SocialDiversity  – Count of alerts 
generated by actions of different 
Authors 

0.144 
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user who had rated fewer than 20 alerts, or viewed less than 50 
alerts.  The 20/50 cutoff was chosen to balance the desire to retain 
ratings against the need to remove users with few ratings that may 
skew our results.  We were left with 6302 alerts from 20 users. 
We coded the ratings as follows: 

Rating = +1, if the user clicked the “thumbs-up” icon or the 
user clicked on the link to the object that had generated the 
alert (3205 alerts across the 20 users) 
Rating = -1, if the user clicked the “thumbs-down” icon (3097 
alerts across the 20 users) 

Our analyses focused on these rated alerts; however, we used the 
9966 unrated alerts to generate the user-specific alert attributes in 
the categories of contextual alert attributes, as noted above. 

5.3 Capturing and Calculating the Attributes 
of the Alerts 
Each alert was characterized by a set of attributes. Table 2 
presents the definition of those attributes, in the two broad 
categories of intrinsic attributes and contextual attributes. 
The intrinsic attributes were defined at the moment of creation 
of the alert, and were the same for all recipients of the alert.  
These attributes included, for example, the resource that 
generated the alert, the activity thread (structured collection of 
resources) that contained the resource, the user whose action 
generated the alert, the type of action that the user took, and so 
on. See Table 2 for a complete list. 
The contextual attributes were defined at the moment of receipt 
of the alert, and were different for each recipient of the alert. 
These attributes included aspects of the user’s experience during 
the 60 seconds preceding the display of the alert, such as the 
number of alerts with one or more attributes that were the same as 
the current alert (“consistency” attributes) and the number of 
alerts with one or more attributes that were different from one 
another (“diversity” attributes).  For example, 
ResourceConsistency was a measure of the number of alerts in the 
preceding 60 seconds that were generated from the same resource 
as the current alert.  By contrast, ResourceDiversity was a 
measure of the number of alerts in the preceding 60 seconds that 
were generated from different resources.  See Table 2 for a 
complete list. 

5.4 Filtering Accuracy 
We evaluated the performance of the three alert filtering 
algorithms using the ratings collected with FeedMe and Activity 
Explorer as a test application (see Figures 1 - 4). All filtering 
algorithms used the attributes described in Table 2. 
We begin our accuracy evaluation by separating our data into test 
and training sets. Since we performed ten-fold cross validation, 
each test set contained 1/10 of the data and the training set 
contained the remaining 9/10. 
Next, we step through all alerts. If the alert belongs to the test set, 
we predict the rating value using the predictive model and store 
the result. We then incorporate the alert into the predictive model, 

regardless of whether it belongs to the test or training set4.  Note 
that we took caution to make the accuracy evaluation as realistic 
as possible.  In particular, when predicting the classification of a 
target alert, we only build the model using alerts that occurred 
before the target alert. 
Based on the results of a seven-fold cross validation repeated ten 
times, we create confusion matrices comparing the counts of 
actual and predicted positive and negative ratings (see Tables 3 – 
5).  These matrices allow us to assess the overall accuracy of each 
method of predicting users’ ratings.  As an example, the upper left 
corner of Table 3 indicates that 28.3% of all alerts were predicted 
as useful and rated as useful (true positives), while 22.7% of all 
alerts were predicted as not useful but rated as useful (false 
negatives).  The overall accuracy is the sum of the percentages in 
cells along the Northwest diagonal. 
Simple Naïve Bayes Classifier: The simplest of the filtering 
approaches, using the same set of predictors for all users’ ratings, 
has an overall predictive accuracy of 64% (Table 3, χ2(1) = 531, 
p<.0000001). This result is similar to results achieved with simple 
spam filters (e.g. [1], [20]).  However, we note that our prediction 
is based only on alert meta data and the user’s recent alert history, 
15 predictors in total. By contrast, spam filters are based primarily 
on the content of each email, which are modeled as a potentially 
infinite vector of word features as predictors. Our finding of 64% 
accuracy indicates that simple, scalable, alert classification 
algorithms can do significantly better than a random baseline. 
Personalized Naïve Bayes Classifier: When we enhance the  NB 
model with the ability to personalize each user’s predictive 
model, the overall accuracy increases to 71.8%. (Table 4, χ2(1) = 
1225, p<.0000001). The difference between the simple classifier 
and the personalized classifier is significant, based on a 
comparison of the correct ratings of each solution (i.e. the major 
diagonals of Tables  

 

                                                                 
4 Note that the predictive process occurs over time, and the 

prediction of the rating of each alert can only be based on the 
alerts that have preceded it. Therefore, an alert in the test set 
should be considered to be part of the history preceding other 
alerts. Therefore, we do not include a test-set alert in the 
creation of the model itself, but we do include a test-set alert in 
the stream of alerts that is used to calculate the history of the 
ensuing alert. 

Table 3: Confusion matrix for simple Naïve-Bayes 
classifier. 

Overall accuracy: 64.0.% Predicted Ratings 

  +1 -1 
Actual +1 28.3% 22.7% 

Ratings -1 13.35% 35.67% 

Table 4: Confusion matrix for personal Naïve-Bayes 
classifier. 

Overall accuracy: 71.8% Predicted Ratings 

  +1 -1 
Actual +1 38.2% 12.7% 

Ratings -1 15.4% 33.6% 
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3 and 4, χ2(1) = 69.05, p<.001). The additional work of 
calculating an individual model for each user appears to provide 
significantly better prediction. 
Collaborative Naïve Bayes Classifier: When we combine the 
personalized models of Table 4 with a weighting of other users’ 
models, the overall accuracy increases a bit further to 73.4% 
(Table 5, χ2(1) = 1379, p<.0000001).  Thus, at a first level of 
interpretation, we conclude (a) that our modeling can successfully 
predict users’ preferences about alerts, and (b) that an interruption 
management system with a machine-learning algorithm based on 
any of these models should help users to reduce the likelihood of 
undesirable alerts while maintaining likelihood of desirable alerts.  
We discuss further implications of our accuracy results in Section 
6.   

5.5 Predictive Strength of Alert Attributes 
We now analyze the contributions of particular alert features to 
overall predictive accuracy.  As a point of principle, naïve 
Bayesian analysis typically does not provide the kind of summary 
statistical significance that is expected in most social sciences 
papers: “Bayesian hypothesis testing is often less formal than the 
non-Bayesian variation. By far, the most common procedure for 
summarizing results in social sciences research is to simply 
describe the posterior distribution rather than to apply a rigid 
decision process.” [13] (see also [30]). Indeed, most predictive 
modeling research in this tradition (e.g., [1], [4], [7], [11], [18]) is 
directed at the pragmatic task of simply predicting outcomes, and 
not at the theoretical task of understanding how those outcomes 
came to be. As a result, these studies usually report a statement of 
omnibus predictive accuracy (as we did above, in Section 5.4), 
without interpretation of which components provided the 
predictive power.  
We wanted to provide greater interpretive analysis than the 
conventional Bayesian approaches. In order to get a rough 
estimate of the relative predictive strength of different attributes, 
we calculated the mean user rating for alerts containing each of 
the attribute values (for example, resource type = ‘chat’).  We 
then averaged the absolute value of the mean ratings across the 
field’s values (‘chat’, ‘document’, ‘folder’, etc). Intuitively, if 
objects have large predictive strengths, values for the field 
generally have mean ratings that are far from zero. Table 2 
includes the mean ratings as an index of predictive strength for all 
attribute fields. 
In brief, the intrinsic alert attributes (Table 2) provided greater 
predictive strength than the contextual alert attributes (significant 
at p<.002 by the Mann-Whitney test). For our data, it appears that 
the users’ experience preceding an alert is relatively unimportant 
to the desirability of the alert: Users’ ratings appear to depend 
primarily on the alerts themselves, and not on users’ recent 
history. If this finding is corroborated in other studies, then (a) we 
can construct a model of user preference that is primarily data-

driven rather than experience-driven; and (b) we can focus 
interruption-management systems on data objects rather than on 
monitoring users’ recent activities. These results can help us 
evaluate the interruption-management strategies proposed or 
implied in, e.g., [8], [9], [15], [22], [23], [24], or [25]. 
Because the distribution of the predictive strength measure is 
unknown, we are not yet in a position to make statistical 
comparisons of individual predictive strengths. It appears that the 
strongest predictors are the collaborative objects themselves 
(strength = .646) and/or the structured collections in which those 
objects occur (strength = .648), followed by the type of user 
action that triggered the alert (strength = .431). Interestingly, this 
data supports some earlier hypothesis in Activity Explorer [29] 
that actions such creating or adding member to resources are more 
important event types than modifying or viewing resources. It 
appears that the type of object (e.g., file vs. chat vs. message) is 
less important, and that the author of the event is also less 
important. However, until we improve our ability to make direct 
comparisons among predictive-strength indicators, we cannot 
make claims of statistical significance for these predictor-by-
predictor contrasts. We hope to refine these statistical analyses 
and their interpretations in a future paper. 

6. DISCUSSION 
Accuracy rates of 73% are probably not good enough for real-
world applications.  In particular, our users said that they would 
be unhappy with missing one out of four truly useful alerts. Even 
though predictive alert filtering might not provide a stand-alone 
solution to alert management, it should prove useful when paired 
with rules-based filtering techniques.  As mentioned earlier, we 
designed FeedMe as a hybrid rule based and predictive alert 
filtering system.  Due to time constraints, we were not able to 
compare rules based, predictive, and hybrid filtering techniques.  
We hope to perform this analysis in the future5.   
Although we implemented FeedMe as a general purpose alert 
management system, we only tested its effectiveness in filtering 
alerts for Activity Explorer due to time constraints.  As future 
work, a cross-application analysis of alert filtering may give some 
insight into whether we can derive benefits from cross-domain 
alert feedback.  For example, do ratings from Activity Explorer 
alerts may help in filtering internet news feeds? 
As we mentioned in section 5.4, the collaborative naïve Bayes 
classifier demonstrated only a small (1.6%) improvement in 
accuracy over the personalized naïve Bayes classifier.  Given that 
CNB requires a more complex system infrastructure and greater 
computational effort than PNB, it may not seem that CNB is 
worth the added effort.  However, collaborative methods may 
prove worthwhile in many real-world applications for several 
reasons.  First, our dataset is relative small compared to most real-
world datasets.  It is likely that, with 10 or 100 times more data, 
we could detect more subtle patterns and achieve higher filtering 
accuracy.  Second, more sophisticated machine-learning 
techniques may lead to increased accuracy and reduced 
computational complexity.  Third, Activity Explorer alerts 
represent a particularly narrow domain.  Users already “share” the 
                                                                 
5 The few users that continued using FeedMe after our survey 
mostly created inclusionary rules for specific users and resources 
(e.g. “Always show me alerts from Marty”). 

Table 5: Confusion matrix for collaborative Naïve-Bayes 
classifier. 

Overall accuracy: 73.4% Predicted Ratings 

  +1 -1 
Actual +1 38.3% 12.6% 

Ratings -1 14.0% 35.1% 
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resource generating the alert, and generally have a high level of 
interest in the shared objects.  Many applications, such as internet 
news feeds, represent a larger, more diverse set of resources that 
generate more frequent and varied alerts.  Predictive filtering is 
more likely to prove useful in these complex domains. 

7. CONCLUSION 
Collaborative filtering has been successfully applied in 
recommender systems to suggest books, movies, and other 
products to consumers. In this paper, we have evaluated how this 
learning-based approach can also be used to reduce the noise 
caused by unwanted interruptions for knowledge workers. We 
have further shown that the performance of the simple Bayesian 
model may be enhanced through both user-specific 
personalization of the predictions, and through collaborative 
weighting of the individual predictions. Our approach differs from 
existing interruption management work in that we predict the 
usefulness of an alert based on the benefit of the alert content, i.e. 
we are mostly considering intrinsic alert attributes (plus 
contextual attributes). With this small set of attributes, we were 
able to predict the usefulness of an alert with an overall accuracy 
of up to 73.4%. 
We believe that this research represents a first step towards 
predictive alert filtering.  A number of factors may improve 
overall accuracy such as including environmental attributes, 
collecting more ratings data.  We also believe that ultimately only 
a combination of rule-based and automated filtering will yield the 
desired level of end user satisfaction. We hope to explore these 
issues in future research based on FeedMe. At the same time we 
are currently conducting a deeper analysis of the alert data to 
disclose more behavioral aspects of interruption management. We 
expect that this line of research will provide useful insights that 
help us further improve our collaborative filtering approach by, 
for example, selecting the most significant alert predictors. 
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APPENDIX 
A.1 Derivation of Bayesian Estimate of Naïve 
Bayes Parameters 
In Naïve Bayes models, the probability of an alert aj having a 
feature fk  given that the alert was rated positively is traditionally 
calculated by using the observed frequencies, and adding one: 
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The attribute space for alerts in applications that we studied is 
often very sparse, and this ad-hoc heuristic does not scale-down 
well.  Instead, we choose a more principled Bayesian approach to 
parameter estimation. Although the use of conjugate priors has 
been commonplace in many fields, it is not often used in naïve 
Bayes algorithms.  Thus, we include a brief derivation. 
First, we model the conditional probability as a Bernoulli variable 
with parameter θ.  If we know the actual value of the parameter θ, 
the conditional probably would simply be θ. 

θθ ==+ ))(()|( Bernoulliprfp k  
Assume that we don’t know θ with certainty, but instead have a 
probability distribution describing our beliefs about the parameter 
θ. We can calculate the conditional probability as the expectation 
of the value of θ:  
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We choose a beta distribution with parameters α, β to model the 
probability distribution on θ.  If B(α, β) is the beta function with 
parameters α, β, the probability of a particular choice θ̂ of θ is: 
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We can now use Bayes rule to calculate the probability of a 
particular choice of θ given n+, the number of positive ratings for 
attribute fk,and n-, the number of negative ratings for fk. 
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The numerator is the product of 
• The likelihood of the observed ratings given the choice of θ 

(a Bernoulli random variable with parameter θ) 
• The prior distribution on θ (a beta distribution). 
Simplifying, we get a beta distribution with parameters (n++α,n-

+β). 
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The expectation of the beta distribution is: 
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We have shown that a Bayesian estimation of p(fk|ri,j) is simply 
the observed frequency of the attribute fk combined with the 
parameters of the beta prior distribution. 
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