
FeedMe:
A Collaborative Alert Filtering System

Shilad Sen*, Werner Geyer**, Michael Muller**, Marty Moore***,
Beth Brownholtz**, Eric Wilcox**, David R Millen**

*University of Minnesota
200 Union Street SE

Minneapolis, MN 55455
+1-612-377-2127

**IBM T.J Watson Research
One Rogers Street

Cambridge, MA 02116
+1-617-693-4791

***IBM Software Group
Five Technology Park Drive

Westford, MA 01886
+1-978-399-6989

sens@cs.umn.edu, werner.geyer@us.ibm.com, michael_muller@us.ibm.com,
martmoor@us.ibm.com, beth_brownholtz@us.ibm.com, eric_wilcox@us.ibm.com,

david_r_millen@us.ibm.com

ABSTRACT
As the number of alerts generated by collaborative applications
grows, users receive more unwanted alerts. FeedMe is a general
alert management system based on XML feed protocols such as
RSS and ATOM. In addition to traditional rule-based alert
filtering, FeedMe uses techniques from machine-learning to infer
alert preferences based on user feedback. In this paper, we present
and evaluate a new collaborative naïve Bayes filtering algorithm.
Using FeedMe, we collected alert ratings from 33 users over 29
days. We used the data to design and verify the accuracy of the
filtering algorithm and provide insights into alert prediction.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Collaborative
computing, Computer-supported cooperative work,
Evaluation/methodology. G.3 [Probability and Statistics]:
Experimental design, Probabilistic algorithms

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Alert filtering, collaborative filtering, attention management,
interruption management, Bayesian, Activity Explorer

1. INTRODUCTION
In a recent survey of 1000 senior executives, Basex estimated that
unnecessary interruptions consume about 28% of knowledge
worker’s day and cost U.S. companies $588 billion per year [36].
Other studies of interruption-frequency provide similar results
(e.g. [8], [10], [22], or [35]). Through direct observation, Mark et
al. [22] calculated that 57.1% of task segments (“working

spheres,” in their words) were interrupted. In addition, 22.8% of
tasks were not returned to within the same work day. Speier et al.
[35] showed that interruptions degrade performance on more
complex tasks.

Taken together, these studies show that the increased use of
technologies in the workplace introduces interruptions that impact
productivity. In the past, interruptions were generally limited to
phone calls and office coworkers. Desktop computers generate
email alerts, instant messaging windows, alert bubbles in the
system tray, reminder dialogs, blinking icons, automated system
updates and so forth [14]. The likelihood of completing a task
without being interrupted is low.

In particular, collaborative desktop applications add to the flood
of alerts by notifying users when other people interact with shared
artifacts. Although this kind of awareness may be beneficial (it
may reduce a user’s latency in responding to a request), too many
alerts has been shown to be undesirable to users [29]. Interruption
management research aims to solve this problem by filtering
“good” alerts from “bad” alerts. Determining whether to show an
alert, and how and when to show it, depends on many factors such
as relative urgency and importance, end user’s interest, and user
activity and context.

Drawing on early work on semi-structured messages in
Information Lens [21], many applications provide simple
preference settings or rules to manage alerts. However, setting up
explicit rules is often a time-consuming task that needs to be
repeated for each individual application. Alternatively, machine
learning techniques can potentially be used to automatically filter
alerts with relatively little human effort. In this paper, we explore
using collaborative filtering, which leverages relationships among
users, to differentiate desirable alerts from undesirable alerts. We
present a series of naïve Bayes algorithms, including a new
collaborative naïve Bayes algorithm that yields 73% filtering
accuracy.

In order to test our system’s effectiveness, we displayed 16351
alerts to 33 users and asked them to rate the alerts. The users
provided a total of 6385 ratings or rating-interpretable responses.
The alerts were collected using FeedMe, a novel alert
management infrastructure based on alert feeds such as RSS or
ATOM. We used Activity Explorer [29] as a test application. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW'06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011...$5.00.

89

Activity Explorer, users collaborate around shared activities.
Activities provide a rich context and structure for a managing a
task or project.

Our alert filtering task bears similarity to spam filtering in email
(e.g., [1], [18]). However, the problem of spam filtering differs
from alert filtering in several ways: the alert classification task is
more difficult, we explore algorithms that are collaborative in
nature, and we explore the use of contextual attributes related to
past alerts such as contextual burden. We discuss these
differences and other related work on interruption and attention
management in Section 2. In Section 3 we describe design
decisions and architecture of the FeedMe alert management
system. Section 4 presents three filtering approaches, including
our collaborative approach. In Section 5 we present results from
the data we collected. In Section 6 we discuss limitations and
implications of our results.

2. RELATED WORK
A wealth of research is available related to notification systems.
In research related to notification system architectures,
Rosenblum et al. [31] develop a design framework enumerating
seven design dimensions of large-scale notification systems.
Cabrera et al. [3] present a distributed notification architecture
demonstrating global internet scalability. Carzaniga et al. [6]
evaluate a series of architectures for large-scale notification
systems, including hierarchical and peer-to-peer designs. The
Elvin notification system introduced a distributed subscription
system that allowed for fine-grained quenching of upstream
subscriptions through pattern matching [32]. Although FeedMe
supports subscriptions to multiple alert channels, the focus of our
work is on filtering alerts rather than efficiently transporting
publish / subscribe data.

From an HCI perspective, McFarlane [25] evaluates four
strategies of interruption: immediate, negotiated, mediated, and
scheduled. McFarlane found negotiated strategies, where the user
postponed interruptions for a particular amount of time, to be
most effective and well-liked. McFarlane et al. [26] also present
broad background and motivation for the field of interruptions
research. While McFarlane’s efforts evaluate delivery strategies,
we focus on the relative user interest level of different alerts.

Of course, not all interruptions are undesirable ([8], [15], [22],
[37]). A useful interruption management system should prevent
unwanted interruptions while passing through desired
interruptions. McCrickard et al. [23] suggest that the notification
task can be framed as a cost benefit analysis: a system must
determine if the information benefit conveyed in an alert is
greater than the cost of interrupting the user. Many researchers
have investigated automated techniques for predicting the cost of
interruption. Horvitz et al. [15] built Bayesian network models
for predicting the cost of interruption based on factors such as the
time of day, the current application, and desktop activity. Our
work focuses on inferring the benefit side of the equation, an area
with far less existing research.

In an approach similar to ours, Horivtz et al. consider methods for
classifying the criticality of email messages as a component of
their Priorities system [16]. Our work differs in several respects.
First, we incorporate direct ratings feedback from users, while the
Priorities system is trained on data created by domain experts.

Second, whereas the Priorities system is based on a single global
classification model, we explore predictive models which analyze
relationships among users.

Email spam classification techniques provide a mature approach
to similar issues (although other HCI applications have also
benefited from machine-learning classification approaches [34]).
Cranor et al. [7] give an excellent overview of the spam-filtering
task, including techniques such as naïve Bayes classification,
support-vector machines, and boosting. Our classification efforts
differ from traditional spam detection in several important
characteristics. First, the majority of email messages considered
spam are unsolicited messages sent by anonymous senders. The
majority of alerts today are sent because the user explicitly or
implicitly subscribed to an alert. This makes it more difficult to
differentiate between a desirable and an undesirable alert.
Secondly, we explore collaborative algorithms that explicitly
model relationships between users to improve classification.
Third, the same alert may be classified as useful, or not useful to
the same user under different contextual circumstances. For
example, if a user has recently received a very similar alert, they
may not be interested in receiving the information again. Fourth,
filtering alerts is more time-sensitive, since alerts have a real-time
character, i.e. algorithms need to scale appropriately. Fifth, spam
filtering generally works by treating the words in the contents of
the message as a long vector of detectable “features” [18] such as
in advertisements, whereas alerts typically have relatively few
words of content but (unlike spam) relatively trustworthy
metadata.

Several researchers have investigated user interface designs for
displaying time-sensitive alerts. Bartram et al. [2] evaluate the use
of moticons (icons with motion) in communicating peripheral
information. McCrickard et al. [24] analyze notification systems
with respect to cost of interruption, reaction time, and information
comprehension and suggest that awareness interfaces should
match the needs of the notification. While we did evaluate user
interface designs for alerts when building our system, this paper
focuses on predicting the benefit of an alert’s informational
content.

Several studies have been conducted using Activity Explorer, our
test application (e.g. [12], [27], [29]). Muller et al. [29] studied
user behavior in Activity Explorer and discovered that users can
be overwhelmed with alerts in Activity Explorer. In notification
research closely related to Activity Explorer, Carroll et al. [5]
examined awareness interfaces for activity-based systems, finding
that maintaining awareness of activities requires transmitting far
more contextual information than traditional action awareness.

3. ALERT MANAGEMENT SYSTEM
3.1 Design Considerations
The FeedMe system primarily serves as the platform for testing
the collaborative alert filtering described in this paper. However,
the design of the system was also driven by the goal of providing
a generalized alert management solution that integrates alerts
from various sources including desktop applications such as
Activity Explorer [29]. We built a centralized system with an
alert management server that acts as an alert aggregator.
Centrally managing alerts has several advantages for us: (1) alert
filtering algorithms can be collaborative, i.e. alert feedback from

90

other users can be taken into account, (2) users can access their
alert history from any device, and (3) a user’s alert preferences
(and filtering) remain the same between different devices unless
they are device specific. In order to allow for a flexible
integration of alert sources from a wide array of applications, we
decided to not only support standard formats such as RSS and
ATOM but also provide a way for legacy desktop applications to
publish their alerts to an alert desktop monitor. The desktop
monitor funnels alerts back to the alert management server for
filtering purposes, and it also displays alert bubbles on the
desktop.

3.2 System Description
Figure 3 shows how the alert management server works in
conjunction with the client desktop monitor.
Our server manages a list of alert provider subscriptions for each
user. Users can subscribe to new alerts feeds through the web-
based management user interface shown in Figure 2. Each alert
feed constitutes a “channel” of incoming alerts for a user.

Applications can publish alerts by:

• Providing a public ATOM / RSS URL (e.g. external web
applications not shown in the figure),

• Notifying the alert server directly via its Web Services API,
or

• Publishing the alert to the desktop monitor who forwards the
alert to the alert server.

All incoming alert feeds are first filtered based on explicit user-
defined rules, (i.e. if a rule applies to a particular alert, the rule
fires). If no rule applies, we use collaborative filtering (as
described in Section 4). Remaining alerts are forwarded to the
desktop monitor who in turn shows the alert to the end user by
displaying an alert bubble1 (see Figure 1).
The alert server also stores end users’ ratings of alerts as input for
the collaborative filtering algorithm. Users may rate alerts in alert
bubbles shown on their desktop by clicking the “thumbs-up” or
“thumbs-down” buttons depicted in Figure 1 [28]. A single user
action (a click on the buttons) both (a) closes the alert bubble and
(b) records the user’s rating of the alert. In addition to explicitly
rating an alert, we also implicitly create ratings when they select
the hyperlink (“Test Activity,” in Figure 1) inside the alert
navigating to the source of the alert (coded as “thumbs-up”).
Clicks on the “x” close box are not interpreted as either “thumbs-
up” or “thumbs-down”. The desktop monitor stores the alert
ratings on the server using the Web Services API.

1 This general approach (rules first, statistical filtering second) is

similar to some spam-filtration approaches (e.g.,[33]). However,
as noted above, our statistical filtering involves historical /
contextual information that is not part of conventional spam
approaches.

Desktop Monitor

Application Application Application

Client Computer

Web-based Alert Management Server

Web Services
API

Aggregated
and filtered

alerts

External feeds
(ATOM, RSS)

Desktop
alert feeds

Alert
History

and
Ratings

Rules Collab.
Filtering

Alert Filtering Logic
Alert

Subscription
Manager

Web-based
admin and
management

Figure 3. FeedMe System Architecture

Figure 1. FeedMe Alert bubble.

Figure 2. FeedMe Alert subscription web UI.

Figure 4. Web UI showing alert history.

91

A secondary way of rating alerts is through the web-based user
interface of the alert management server (see Figure 4). The
server stores a history of all incoming, unfiltered alerts and the
web UI can be used to view the history and rate alerts. Since
desktop alert bubbles are ephemeral, providing an alert history
also allows users to view missed alerts.
The Web UI of FeedMe also allows users to explicitly set up
filtering rules such as “Always Show Alerts Containing Some
String”. Alternatively, applications can use the Web Services API
to programmatically create rules on the FeedMe server. Since the
focus of this paper is collaborative alert filtering, we do not
describe rule management in greater detail here.

3.3 Implementation
FeedMe is implemented using a wide array of technologies. The
desktop monitor is implemented in Java. The alert management
server runs as a Java web application on an application server
(e.g. Websphere [17]). We used XPath as a representation
language for explicit rules, Hibernate for persistency, XML-RPC
as a web services interface, JSP, JSLT, and Struts for the web UI.

4. FILTERING ALGORITHM
In this section, we present our collaborative alert filtering
algorithm. The algorithm builds on and enhances standard and
personalized Naïve Bayes filtering. We selected the NB
algorithm due to its rich history as a classification method [19].
We begin by describing the alert filtering task and then describe
the application of the Naïve Bayes algorithms to our alert filtering
task.

4.1 Alert Filtering Task
An alert management system receives a series of alerts. Each
alert is directed to a set of target recipient users. The alert
filtering task determines whether the alert should be displayed or
suppressed to each of the alert’s recipients.

A learning system chooses to display or suppress each alert based
on that alert’s attributes. Alert attributes fall into three classes:

1. Intrinsic alert attributes that describe the alert itself, such as
the alert’s author, and the subject of the alert.

2. Contextual alert attributes that relate the current alert to
alerts previously received by the user, such as time since last
alert and number of alerts in the last minute.

3. Environmental alert attributes that relate to a user’s current
application context, such as the user’s current application
focus or the time of day [15].

The results in this paper concern the first two classes, namely
intrinsic alert attributes and contextual alert attributes. The third
category, environmental alert attributes, requires more work to
sense the user’s current applications and tasks and has previously
been explored by Horovitz et. al [15].

Although intrinsic attributes are independent of the recipient user,
contextual and environmental attributes are user specific. Thus,
the same alert may have different attributes for different users.

Users indicate their satisfaction in receiving an alert by rating the
alert. Users may also review and rate suppressed alerts. We chose
to focus on binary rating schemes (e.g., thumbs up or down)

although systems may select other rating schemes, such as unary
and real-valued ratings schemes.

We now formalize the alert filtering task. A system receives alerts
A = {a1,…,an} in chronological order. Users U = {u1,…,um}
receive alerts through the alert system. An alert ai is subscribed
to by a set of target users: U⊆= }',...,'{)target(1 ki uua . A target
user ui may assign alert aj a rating value of }1,1{, −+∈jir . The set
of ratings is represented using the rating matrix R where rows are
users, and columns are alerts. The matrix R is generally sparse,
i.e. most users have rated a small fraction of the alerts. The set of
all alert feature attributes (e.g., alert author, alert subject) is
denoted by F. The features of a particular alert ai depend on the
recipient user uj and are denoted by F⊆= },...,{),(1 zji ffuaattr .

Framed from a machine learning perspective, alert prediction can
be viewed as an online learning classification task. Online
indicates that our models must dynamically adapt to user
feedback in real-time. Classification indicates that we are trying
to differentiate between two result classes (positive and negative
ratings).

4.2 Basic Naïve Bayes Alert Prediction
We begin by decribing the naïve Bayes (NB) prediction algorithm
for alerts. We choose to display or suppress a new alert ai for a
target user uj based on the probability that the user rates the alert a
value of +1: p(ri,j=+1). Henceforth we shall abbreviate this
probability as p(r+

i,j). We condition this probability on the
features of the alert:

)),(|()(,, jijiji uaattrrprp ++ =

Using Bayes rule [13], and an assumption of independence of
attributes, we get:

Eq 1: ∏
∈

+
++ =

),(
,

)(
)|()(ˆ)(

jik auattrf k

k
ji

fp
rfprprp

Where)(+rp) is the background prior probability of a positive
rating (e.g., the fraction of total ratings that have the value +1),
and fk are alert attributes. Intuitively, Eq 1 multiplies the
background probability of a positive rating by the relative
likelihood of a positive alert generating the feature, compared to
any alert generating the feature.

We similarly calculate the probability of a negative rating:

∏
∈

−
−− =

),(
,

)(
)|()(ˆ)(

jik auattrf k

k
ji

fp
rfprprp

We are only interested in relative probabilities for the two classes
(+1 and -1). Since the denominator is identical between the two
class probabilities, we ignore the denominator. Intuitively, the
formula compares the prior probabilities of positive (or negative)
ratings multiplied by the fraction of positive (or negative) ratings
that contained each of the alert attributes.

We could simply calculate p(fk | r+) , the fraction of positive
ratings that contain feature fk, by measuring the frequency of the
feature in positively rated alerts. Unfortunately, the attribute

92

space is sparse and data from rare attributes can be noisy. We
counteract ratings sparsity by treating the probability as a random
Bernoulli variable, which naturally models a two-outcome event.
We further suppose that the Bernoulli variable parameter is drawn
from a Beta distribution, which is the Bernoulli variable’s
conjugate prior and leads to tractable, closed-form, equations.
We incorporate a Bayesian prior estimate of p(fk | r+) using a beta
distribution with parameters α, β. The parameters α, β resemble
the relative likelihood of observing or not observing any chosen
feature in a positive rating, and can be estimated from the data.

Eq 2:
{ }

{ } βα

α

++

+∈
=

+

+
+

r

auattrfr
rfp pik

k

),(|
)|(

We include a derivation of this equation in the appendix.
Qualitatively, this equation smoothes feature probabilities based
on the overall average feature probability.

Note that even though real world application attributes do not
generally meet naïve Bayes’ independence assumption, the naïve
Bayes algorithm often performs very well [1].

4.3 Personalized Naïve Bayes
While the basic NB algorithm constructs a single global classifier,
the personalized Naïve Bayes (PNB) algorithm constructs a
different NB classifier for every user. Unfortunately, moving
from a single global model to a model for each user dramatically
decreases the number of ratings per attribute. To overcome this
sparsity, we alter the beta prior in the simple model in Eq 2 by
encoding the global user preference for the attribute into the prior
parameters α and β. In essence, PNB smoothes the user-specific
probability for a feature towards the overall community
probability for the feature.

Our choice of prior depends only on the attribute; not the target
user. Given a feature fk with n+ positive ratings and n- negative
ratings by all users, we construct the beta prior parameters αk and
βk as follows:

zk =β

Eq 3:)|(+⋅= rfpz kkα

The probability p(fk | r+) in Eq 3 is calculated directly from the
simple naïve Bayes model presented (Eq 2). The parameter z
effectively controls the “weight” of the prior distribution. We fix z
so the sum of the personal beta prior (

KK βα +) is equal to the sum
of the global prior (βα +) estimated in Eq 2. Finally, we calculate
the probability of user ui rating alert aj positively.

Eq 4: { }
)(}{

))(|(),(|
)|('

,

, βα

βα

++

++∈
=+

+

++

i

kpikpi

jik r

rfpauattrfr
rfp

Note that while in Eq 2 the numerator and denominator counted
the number of ratings across all users, Eq 4 only counts ratings for
the target user ui. The values of, p(fk | r+), α and β are all defined
using Eq 2. Qualitatively, the personalized model smoothly adapts
from the basic model to a more personalized model as the user
provides more ratings for an attribute.
We calculate the final predicted rating by inserting the component
probabilities of Eq 4 into Eq 1.

Table 1. An alert ratings matrix for four users.
(alert attributes are in parentheses)

4.4 Collaborative Naïve Bayes
PNB builds upon NB by incorporating information specific to a
user. The collaborative naïve Bayes (CNB) model takes
personalization one step further by looking for similarities in
attribute ratings across users.
In Table 1 we give a short example demonstrating the usefulness
of collaborative algorithms. Assume that Bill receives a new alert
(alert 4) with a single attribute z. Furthermore, assume that Bill
has not rated any alerts with attribute z. Jim and Martha, who
historically rate similarly to Bill, have rated attribute z, and
generally rate it negatively. It seems reasonable to infer that Bill
will also dislike alert 4, whose sole attribute is z. As this example
shows, collaborative algorithms can help overcome ratings
sparsity.
The CNB algorithm begins by building PNB classifiers for each
user as described in section 4.3. Next, for every target user, we
construct a higher-level classifier that combines the predictions of
every user’s personal model. We use support vector machines
(SVM) as our second-level classifier [18], and train each user’s
SVM on the user’s history of alert ratings. Input variables for
each training instance consist of the output predictions from each
user’s personal naïve Bayes model. We experimented with a
variety of SVM kernels, and selected a polynomial kernel of
degree three based on its empirical performance.
Since both a target user’s ratings, and other user’s predictions
change dynamically, we would ideally reconstruct each user’s
SVM model before every prediction. Unfortunately, this is
prohibitively expensive. Instead, we chose to reconstruct a user’s
collaborative model at exponential rating thresholds (for example,
when the user has rated 2, 4, 8, 16, 32, etc. alerts). We found no
significant loss in accuracy due to the exponential rebuilding.

5. EXPERIMENTAL RESULTS
5.1 Data Collection
In the summer of 2005, we deployed FeedMe together with
Activity Explorer [29] as a test application for alert filtering.
Activity Explorer is a collaborative application that supports the
notion of shared activities as a way of managing and organizing
the context of a project or task. Activities are represented as
hierarchically structured collections of shared resources called
activity threads. Activity threads are created as users collaborate
in an activity by posting new shared resources. Users have six
different types of activity resources at their disposal to collaborate
around and share with other users: message, file, chat, screen
snapshot (can be annotated in real-time), folder, and task. A more
detailed description of Activity Explorer can be found in [12],
[27], and [29]. Activity Explorer provides rich awareness of user

 Alert 1 (w) Alert 2 (x,y) Alert 3 (z) Alert 4 (z)

Bill -1 +1 ? ?
Jim -1 +1 -1 ?
Martha -1 +1 -1 ?
Fran +1 -1 +1 ?

93

Table 2: Attributes of alerts.

actions through four types of time-sensitive alerts. Users are
alerted when

• New activity resources are created,

• Existing activity resources are modified,

• Users are added to or removed from an activity resource, or

• Users are looking at or editing an activity resource.

Note that these kinds of alerts are only triggered for the members
of an activity, i.e. alerts are not public but limited to the member
list of an individual activity.

During our study, we disabled all rule-based and predictive
filtering in order to collect user feedback about all alerts. This
ensured that we could accurately measure the effectiveness of all
predictive algorithms during our offline analyses. As a result, the
community was flooded with the full spectrum of Activity
Explorer alerts (a mean of 481 alerts per user for the participants
in this study).

We used the FeedMe Desktop Monitor to tunnel alerts back to the
FeedMe server, i.e. when an alert arrives at Activity Explorer,
instead of being shown immediately, it is published to the
Desktop Monitor, which then sends it to the FeedMe server for
processing, from which it is sent to the user. In addition to the
standardized RSS attributes, we added custom alert attributes such
as activity id, resource id, resource members, and resource type.
Note that the FeedMe system has an extension mechanism for
alert data sources. This mechanism allows adding custom
attributes to the set of attributes that are considered as input for
the collaborative filtering algorithm.

5.2 Description of the Data
In order to design and verify the collaborative alert filtering
algorithm presented in the previous section, we displayed and
collected 16351 alerts during 29 days in a community of 34 users
consisting of summer interns, designers, software engineers, and
researchers from different parts of IBM. Of these, 6385 alerts
received ratings from 33 of the users2,3 (one user chose not to
participate in the rating activity). Overall, the amount of rating
activity varied erratically over time, but seemed to track overall
application usage. To reduce analysis noise, we removed any

2 Our observed rate of alert feedback is probably higher than can

be expected from real-world applications due to our users’
knowledge of, and support for, our data-collection effort.

3 The other 9966 non-rated alerts fell into several categories. 453
alerts were closed by the user without any other action: We do
not know how to interpret the “close” response, so we treated
those alerts as non-rated. 9445 alerts timed out and were
removed by the system; we do not know whether the user
ignored these alerts, or was away from her/his computer.
Because we do not know why the user took no action, we
treated these alerts as non-rated. An additional 68 alerts
received a response to turn off further alerts; to be conservative,
we did not interpret this response as a rating. Not included in
this analysis were an additional 2558 alerts which could not be
displayed to the user because too many alerts were already on
the screen. These alerts were never seen by the user, and so of
course we did not include these in our analysis.

Description of Attribute Predictive
Strength

Intrinsic Attributes of Alerts Themselves

Resource ID – The unique identifier of
the object that generated the alert

0.646

Resource Type – The type of object
(chat, document, folder, message, shared
screen, task)

0.293

Activity ID – The unique identifier of the
activity thread (structured collection of
objects) that contained the Resource that
generated the alert

0.648

Action – The type of user action applied
that generated the alert (view resource,
modify resource, add resource, add user)

0.431

Author ID – The person whose action on
the Resource generated the alert

0.335

NumberOfMembers – Number of
people with access to the Resource that
generated the alert

0.173

NamesOfMembers – A list of the names
of the people with access to the
Resource (decomposed such that each
member became a separate predictor)

0.321

Contextual Attributes of the User’s Experience
Preceding the Alert

(with the exception of LastSimilar, all Contextual Attributes
are counts of the relevant events, compared with the

current alert, in the 60 seconds preceding the current alert)
LastSimilar – Number of seconds since
the most recent alert for the same
Resource

0.180

LastMinute – Summary count of
number of alerts in the preceding minute

0.105

ResourceConsistency – Count of alerts
from the same Resource that generated
the current alert

0.138

ResourceDiversity – Count of alerts
from different Resources

0.119

ActivityConsistency – Count of alerts
from the same Activity whose Resource
generated the current alert

0.116

ActivityDiversity – Count of alerts from
different Activities

0.119

SocialConsistency – Count of alerts
generated by actions of the same Author
as the current alert

0.087

SocialDiversity – Count of alerts
generated by actions of different
Authors

0.144

94

user who had rated fewer than 20 alerts, or viewed less than 50
alerts. The 20/50 cutoff was chosen to balance the desire to retain
ratings against the need to remove users with few ratings that may
skew our results. We were left with 6302 alerts from 20 users.
We coded the ratings as follows:

Rating = +1, if the user clicked the “thumbs-up” icon or the
user clicked on the link to the object that had generated the
alert (3205 alerts across the 20 users)
Rating = -1, if the user clicked the “thumbs-down” icon (3097
alerts across the 20 users)

Our analyses focused on these rated alerts; however, we used the
9966 unrated alerts to generate the user-specific alert attributes in
the categories of contextual alert attributes, as noted above.

5.3 Capturing and Calculating the Attributes
of the Alerts
Each alert was characterized by a set of attributes. Table 2
presents the definition of those attributes, in the two broad
categories of intrinsic attributes and contextual attributes.
The intrinsic attributes were defined at the moment of creation
of the alert, and were the same for all recipients of the alert.
These attributes included, for example, the resource that
generated the alert, the activity thread (structured collection of
resources) that contained the resource, the user whose action
generated the alert, the type of action that the user took, and so
on. See Table 2 for a complete list.
The contextual attributes were defined at the moment of receipt
of the alert, and were different for each recipient of the alert.
These attributes included aspects of the user’s experience during
the 60 seconds preceding the display of the alert, such as the
number of alerts with one or more attributes that were the same as
the current alert (“consistency” attributes) and the number of
alerts with one or more attributes that were different from one
another (“diversity” attributes). For example,
ResourceConsistency was a measure of the number of alerts in the
preceding 60 seconds that were generated from the same resource
as the current alert. By contrast, ResourceDiversity was a
measure of the number of alerts in the preceding 60 seconds that
were generated from different resources. See Table 2 for a
complete list.

5.4 Filtering Accuracy
We evaluated the performance of the three alert filtering
algorithms using the ratings collected with FeedMe and Activity
Explorer as a test application (see Figures 1 - 4). All filtering
algorithms used the attributes described in Table 2.
We begin our accuracy evaluation by separating our data into test
and training sets. Since we performed ten-fold cross validation,
each test set contained 1/10 of the data and the training set
contained the remaining 9/10.
Next, we step through all alerts. If the alert belongs to the test set,
we predict the rating value using the predictive model and store
the result. We then incorporate the alert into the predictive model,

regardless of whether it belongs to the test or training set4. Note
that we took caution to make the accuracy evaluation as realistic
as possible. In particular, when predicting the classification of a
target alert, we only build the model using alerts that occurred
before the target alert.
Based on the results of a seven-fold cross validation repeated ten
times, we create confusion matrices comparing the counts of
actual and predicted positive and negative ratings (see Tables 3 –
5). These matrices allow us to assess the overall accuracy of each
method of predicting users’ ratings. As an example, the upper left
corner of Table 3 indicates that 28.3% of all alerts were predicted
as useful and rated as useful (true positives), while 22.7% of all
alerts were predicted as not useful but rated as useful (false
negatives). The overall accuracy is the sum of the percentages in
cells along the Northwest diagonal.
Simple Naïve Bayes Classifier: The simplest of the filtering
approaches, using the same set of predictors for all users’ ratings,
has an overall predictive accuracy of 64% (Table 3, χ2(1) = 531,
p<.0000001). This result is similar to results achieved with simple
spam filters (e.g. [1], [20]). However, we note that our prediction
is based only on alert meta data and the user’s recent alert history,
15 predictors in total. By contrast, spam filters are based primarily
on the content of each email, which are modeled as a potentially
infinite vector of word features as predictors. Our finding of 64%
accuracy indicates that simple, scalable, alert classification
algorithms can do significantly better than a random baseline.
Personalized Naïve Bayes Classifier: When we enhance the NB
model with the ability to personalize each user’s predictive
model, the overall accuracy increases to 71.8%. (Table 4, χ2(1) =
1225, p<.0000001). The difference between the simple classifier
and the personalized classifier is significant, based on a
comparison of the correct ratings of each solution (i.e. the major
diagonals of Tables

4 Note that the predictive process occurs over time, and the

prediction of the rating of each alert can only be based on the
alerts that have preceded it. Therefore, an alert in the test set
should be considered to be part of the history preceding other
alerts. Therefore, we do not include a test-set alert in the
creation of the model itself, but we do include a test-set alert in
the stream of alerts that is used to calculate the history of the
ensuing alert.

Table 3: Confusion matrix for simple Naïve-Bayes
classifier.

Overall accuracy: 64.0.% Predicted Ratings

 +1 -1
Actual +1 28.3% 22.7%

Ratings -1 13.35% 35.67%

Table 4: Confusion matrix for personal Naïve-Bayes
classifier.

Overall accuracy: 71.8% Predicted Ratings

 +1 -1
Actual +1 38.2% 12.7%

Ratings -1 15.4% 33.6%

95

3 and 4, χ2(1) = 69.05, p<.001). The additional work of
calculating an individual model for each user appears to provide
significantly better prediction.
Collaborative Naïve Bayes Classifier: When we combine the
personalized models of Table 4 with a weighting of other users’
models, the overall accuracy increases a bit further to 73.4%
(Table 5, χ2(1) = 1379, p<.0000001). Thus, at a first level of
interpretation, we conclude (a) that our modeling can successfully
predict users’ preferences about alerts, and (b) that an interruption
management system with a machine-learning algorithm based on
any of these models should help users to reduce the likelihood of
undesirable alerts while maintaining likelihood of desirable alerts.
We discuss further implications of our accuracy results in Section
6.

5.5 Predictive Strength of Alert Attributes
We now analyze the contributions of particular alert features to
overall predictive accuracy. As a point of principle, naïve
Bayesian analysis typically does not provide the kind of summary
statistical significance that is expected in most social sciences
papers: “Bayesian hypothesis testing is often less formal than the
non-Bayesian variation. By far, the most common procedure for
summarizing results in social sciences research is to simply
describe the posterior distribution rather than to apply a rigid
decision process.” [13] (see also [30]). Indeed, most predictive
modeling research in this tradition (e.g., [1], [4], [7], [11], [18]) is
directed at the pragmatic task of simply predicting outcomes, and
not at the theoretical task of understanding how those outcomes
came to be. As a result, these studies usually report a statement of
omnibus predictive accuracy (as we did above, in Section 5.4),
without interpretation of which components provided the
predictive power.
We wanted to provide greater interpretive analysis than the
conventional Bayesian approaches. In order to get a rough
estimate of the relative predictive strength of different attributes,
we calculated the mean user rating for alerts containing each of
the attribute values (for example, resource type = ‘chat’). We
then averaged the absolute value of the mean ratings across the
field’s values (‘chat’, ‘document’, ‘folder’, etc). Intuitively, if
objects have large predictive strengths, values for the field
generally have mean ratings that are far from zero. Table 2
includes the mean ratings as an index of predictive strength for all
attribute fields.
In brief, the intrinsic alert attributes (Table 2) provided greater
predictive strength than the contextual alert attributes (significant
at p<.002 by the Mann-Whitney test). For our data, it appears that
the users’ experience preceding an alert is relatively unimportant
to the desirability of the alert: Users’ ratings appear to depend
primarily on the alerts themselves, and not on users’ recent
history. If this finding is corroborated in other studies, then (a) we
can construct a model of user preference that is primarily data-

driven rather than experience-driven; and (b) we can focus
interruption-management systems on data objects rather than on
monitoring users’ recent activities. These results can help us
evaluate the interruption-management strategies proposed or
implied in, e.g., [8], [9], [15], [22], [23], [24], or [25].
Because the distribution of the predictive strength measure is
unknown, we are not yet in a position to make statistical
comparisons of individual predictive strengths. It appears that the
strongest predictors are the collaborative objects themselves
(strength = .646) and/or the structured collections in which those
objects occur (strength = .648), followed by the type of user
action that triggered the alert (strength = .431). Interestingly, this
data supports some earlier hypothesis in Activity Explorer [29]
that actions such creating or adding member to resources are more
important event types than modifying or viewing resources. It
appears that the type of object (e.g., file vs. chat vs. message) is
less important, and that the author of the event is also less
important. However, until we improve our ability to make direct
comparisons among predictive-strength indicators, we cannot
make claims of statistical significance for these predictor-by-
predictor contrasts. We hope to refine these statistical analyses
and their interpretations in a future paper.

6. DISCUSSION
Accuracy rates of 73% are probably not good enough for real-
world applications. In particular, our users said that they would
be unhappy with missing one out of four truly useful alerts. Even
though predictive alert filtering might not provide a stand-alone
solution to alert management, it should prove useful when paired
with rules-based filtering techniques. As mentioned earlier, we
designed FeedMe as a hybrid rule based and predictive alert
filtering system. Due to time constraints, we were not able to
compare rules based, predictive, and hybrid filtering techniques.
We hope to perform this analysis in the future5.
Although we implemented FeedMe as a general purpose alert
management system, we only tested its effectiveness in filtering
alerts for Activity Explorer due to time constraints. As future
work, a cross-application analysis of alert filtering may give some
insight into whether we can derive benefits from cross-domain
alert feedback. For example, do ratings from Activity Explorer
alerts may help in filtering internet news feeds?
As we mentioned in section 5.4, the collaborative naïve Bayes
classifier demonstrated only a small (1.6%) improvement in
accuracy over the personalized naïve Bayes classifier. Given that
CNB requires a more complex system infrastructure and greater
computational effort than PNB, it may not seem that CNB is
worth the added effort. However, collaborative methods may
prove worthwhile in many real-world applications for several
reasons. First, our dataset is relative small compared to most real-
world datasets. It is likely that, with 10 or 100 times more data,
we could detect more subtle patterns and achieve higher filtering
accuracy. Second, more sophisticated machine-learning
techniques may lead to increased accuracy and reduced
computational complexity. Third, Activity Explorer alerts
represent a particularly narrow domain. Users already “share” the

5 The few users that continued using FeedMe after our survey
mostly created inclusionary rules for specific users and resources
(e.g. “Always show me alerts from Marty”).

Table 5: Confusion matrix for collaborative Naïve-Bayes
classifier.

Overall accuracy: 73.4% Predicted Ratings

 +1 -1
Actual +1 38.3% 12.6%

Ratings -1 14.0% 35.1%

96

resource generating the alert, and generally have a high level of
interest in the shared objects. Many applications, such as internet
news feeds, represent a larger, more diverse set of resources that
generate more frequent and varied alerts. Predictive filtering is
more likely to prove useful in these complex domains.

7. CONCLUSION
Collaborative filtering has been successfully applied in
recommender systems to suggest books, movies, and other
products to consumers. In this paper, we have evaluated how this
learning-based approach can also be used to reduce the noise
caused by unwanted interruptions for knowledge workers. We
have further shown that the performance of the simple Bayesian
model may be enhanced through both user-specific
personalization of the predictions, and through collaborative
weighting of the individual predictions. Our approach differs from
existing interruption management work in that we predict the
usefulness of an alert based on the benefit of the alert content, i.e.
we are mostly considering intrinsic alert attributes (plus
contextual attributes). With this small set of attributes, we were
able to predict the usefulness of an alert with an overall accuracy
of up to 73.4%.
We believe that this research represents a first step towards
predictive alert filtering. A number of factors may improve
overall accuracy such as including environmental attributes,
collecting more ratings data. We also believe that ultimately only
a combination of rule-based and automated filtering will yield the
desired level of end user satisfaction. We hope to explore these
issues in future research based on FeedMe. At the same time we
are currently conducting a deeper analysis of the alert data to
disclose more behavioral aspects of interruption management. We
expect that this line of research will provide useful insights that
help us further improve our collaborative filtering approach by,
for example, selecting the most significant alert predictors.

8. ACKNOWLEDGMENTS
We thank the 33 participants in our study, and the members of the
Collaborative User Experience Research group at IBM who
contributed their ideas to FeedMe.

9. REFERENCES
[1] Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., and

Spyropoulos, C.D, “An experimental comparison of naive
Bayesian and keyword-based anti-spam filtering with
personal e-mail messages,” Proc. of the 23rd Annual
international ACM SIGIR Conf. on Research and
Development in Information Retrieval, Athens, Greece, July
2000, ACM Press, New York, NY, 160-167.

[2] Bartram, L., Ware, C., Calvert, T., ”Moving icons, detection
and distraction,” in: M. Hirose (Ed.), Human-Computer
Interaction – INTERACT 2001 Conference Proceedings.

[3] Cabrera, L.F., Jones, M.B., Theimer, M., ”Herald: Achieving
a Global Event Notification Service,” hotos, p. 0087, Eighth
Workshop on Hot Topics in Operating Systems, 2001.

[4] Carreras, X Màrquez, L., “Boosting Trees for Anti-Spam
Email Filtering,” Conference on Recent Advances in NLP
(RANLP'01). Tzigov Chark, Bulgaria. 2001.

[5] Carroll J. M., Neale D. C., Isenhour P. L., Rosson M. B. &
McCrickard D. S. (2003) Notification and awareness:

Synchronizing task-oriented collaborative activity,
International Journal of Human-Computer Studies, 58 (5),
605-632

[6] Carzaniga, A., David S. Rosenblum, D.S, and Wolf, A.L.,
“Design and evaluation of a wide-area event notification
service,” ACM Transactions on Computer Systems,
19(3):332--383, August 2001.

[7] Cranor, L. F. and LaMacchia, B. A. 1998. Spam!. Commun.
ACM 41, 8 (Aug. 1998), 74-83.

[8] Cutrell, E., Czerwinski, M., & Horvitz, E., “Notification,
disruption, and memory: Effects of messaging interruptions
on memory and performance,” Proc INTERACT 2001.

[9] Czerwinski, M., Cutrell, E., Horvitz, E., “Instant messaging
and interruption: Influence of task type on performance,”
Proc OZCHI 2000.

[10] Czerwinski, M., Horvitz, E., & Wilhite, S., “A diary study of
task switching and interruptions,” in: Proc ACM CHI 2004.

[11] Drucker, H., Wu, D., Vapnik, V.N., “Support vector
machines for spam categorization”, in IEEE Trans on Neural
Networks, 1999.

[12] Geyer, W., Vogel, J., Cheng, L., Muller, M, “Supporting
Activity-Centric Collaboration through Peer-to-Peer Shared
Objects,” in: Proc. ACM Group 2003, Sanibel Island, FL,
USA, November 2003.

[13] Gill, J., Bayesian Methods: A Social and Behavioral
Sciences Approach, Chapman & Hall/CRC, 2002.

[14] González, V.M., Mark, G., “’Constant constant multitasking
craziness’: Managing multiple working spheres,” in: Proc.
ACM CHI 2004, ACM Press, 2004.

[15] Horvitz E. & Apacible J. (2003) Learning and reasoning
about interruption, in: Proceedings of the 5th International
Conference on Multimodal Interfaces (ICMI'03). New York:
ACM Press, 20-27.

[16] Horvitz, E. Jacobs, A., and Hovel, D. (1999). Attention-
Sensitive Alerting in: Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI 99) 305-313.

[17] IBM Websphere Software,
http://www.ibm.com/software/websphere/ (verified 17
March 2006).

[18] Joachims, T., Making large-Scale SVM Learning Practical.
Advances in Kernel Methods - Support Vector Learning, B.
Schölkopf and C. Burges and A. Smola (ed.), MIT-Press,
1999.

[19] Lewis, D. D. 1998. Naive (Bayes) at Forty: The
Independence Assumption in Information Retrieval. In
Proceedings of the 10th European Conference on Machine
Learning (April 21 - 23, 1998). Lecture Notes In Computer
Science, vol. 1398. Springer-Verlag, London, 4-15.

[20] Madigan, D., “Statistics and the war on spam,” in R. Peck,
G. Casella, G.W. Cobb, R. Hoerl, D. Nolan, R. Starbuck, &
H. Stern (eds.), Statistics – A guide to the unknown. Duxbury
Brooks/Cole, 2005, Available at
http://www.stat.rutgers.edu/~madigan/PAPERS/sagtu.pdf
(verified 13 March 2006).

[21] Malone, T.W., Grant, K.R., Lai, K., Rao, R., & Rosenblitt,
D., “Semi-structured messages are surprisingly useful for
computer-supported coordination,” ACM TOOIS 5, pp. 115-
131, 1987..

[22] Mark, G., González, V.M., & Harris, J., “No task left
behind? Examining the nature of fragmented work,” Proc
ACM CHI 2005.

97

[23] McCrickard D. S., Catrambone R., Chewar C. M. & Stasko
J. T. (2003) Establishing tradeoffs that leverage attention for
utility: Empirically evaluating information display in
notification systems, International Journal of Human-
Computer Studies, 58 (5), 547-582

[24] McCrickard D. S. & Chewar C. M. (2003) Attuning
notification design to user goals and attention costs,
Communications of ACM, 46 (3), 67-72

[25] McFarlane D. C. (2002) Comparison of four primary
methods for coordinating the interruption of people in
human-computer interaction, Human-Computer Interaction,
17 (1), 63-139

[26] McFarlane D. C. & Latorella K. A. (2002) The scope and
importance of human interruption in human-computer
interaction design, Human-Computer Interaction, 17 (1), 1-
61

[27] Millen, D. R, Muller, M. J., Geyer, W., Wilcox, E., and
Brownholtz ,B., “Patterns of Media Use in an Activity-
Centric Collaborative Environment,” in: Proc. ACM CHI
2005, Portland, OR, April 2005.

[28] Muller, M.J. (2003), ”Method and apparatus for single
selection evaluations in interactive systems,” United States
Patent and Trademark office application 20030085927.

[29] Muller, M.J., Geyer, W., Brownholtz, B., Wilcox, E., and
Millen, D.R., “One-hundred days in an activity-centric
collaboration environment based on shared objects,” in:
Proc. ACM CHI 2004.

[30] Nicholls, N. “The insignificance of significance testing,”
Bulletin of the American Meteorological Society 82, pp 981-
986 (2001).

[31] Rosenblum, D. S. and Wolf, A. L. 1997. A design
framework for Internet-scale event observation and
notification. In Proceedings of the 6th European Conference
Held Jointly with the 5th ACM SIGSOFT international
Symposium on Foundations of Software Engineering
(Zurich, Switzerland, September 22 - 25, 1997). M. Jazayeri
and H. Schauer, Eds. Foundations of Software Engineering.
Springer-Verlag New York, New York, NY, 344-360.

[32] Segall, B., and Arnold D., “Elvin has left the building: A
publish/subscribe notification service with quenching.” In
Proceedings AUUG97, pages 243--255, Canberra, Australia,
September 1997.

[33] Segal, R., Crawford, J., Kephart, J., Leiba, B., “SpamGuru:
An Enterprise Anti-Spam Filtering System,” In Proc. of the
First Conference on Email and Anti-Spam, July, 2004.

[34] Sebe, N., Cohen, I., Cozman, F.G., Gevers, T., & Huang,
T.S., “Learning probabilistic classifiers for human-computer
interaction applications,” Multimedia Systems 10 (6), pp.
484-498, 2005.

[35] Speier, C., Valacich, J.,S., & Vessey, I., “The effects of task
interruption and information presentation on individual
decision making,” Proc ICIS’97.

[36] Spira, J.B and Feintuch, J.B., “The Cost of Not Paying
Attention: How Interruptions Impact Knowledge Worker
Productivity,” Basex, 2005.

[37] SuwatanaPongched, P., “A more complex model of
relevancy in interruptions,” available at http://
www.spong.org/~pechluck/HCI/content-of-interruptions.pdf
(verified 6/24/04).

APPENDIX
A.1 Derivation of Bayesian Estimate of Naïve
Bayes Parameters
In Naïve Bayes models, the probability of an alert aj having a
feature fk given that the alert was rated positively is traditionally
calculated by using the observed frequencies, and adding one:

{ }
{ }+

+
+

+∈
=

r

auattrfr
rfp jikji

k

1),(|
)|(

,

The attribute space for alerts in applications that we studied is
often very sparse, and this ad-hoc heuristic does not scale-down
well. Instead, we choose a more principled Bayesian approach to
parameter estimation. Although the use of conjugate priors has
been commonplace in many fields, it is not often used in naïve
Bayes algorithms. Thus, we include a brief derivation.
First, we model the conditional probability as a Bernoulli variable
with parameter θ. If we know the actual value of the parameter θ,
the conditional probably would simply be θ.

θθ ==+))(()|(Bernoulliprfp k
Assume that we don’t know θ with certainty, but instead have a
probability distribution describing our beliefs about the parameter
θ. We can calculate the conditional probability as the expectation
of the value of θ:

θθθθ
θ

dpErfp k)()()|(∫==+

We choose a beta distribution with parameters α, β to model the
probability distribution on θ. If B(α, β) is the beta function with
parameters α, β, the probability of a particular choice θ̂ of θ is:

),(
)ˆ1(ˆ

)ˆ(
11

βα
θθθθ

βα

B
p

−− −
==

We can now use Bayes rule to calculate the probability of a
particular choice of θ given n+, the number of positive ratings for
attribute fk,and n-, the number of negative ratings for fk.

∫ −+

−+
−+ =

θ

θθθ
θθθ

dpnnp
pnnpnnp

)()|,(
)()|,(),|(

The numerator is the product of
• The likelihood of the observed ratings given the choice of θ

(a Bernoulli random variable with parameter θ)
• The prior distribution on θ (a beta distribution).
Simplifying, we get a beta distribution with parameters (n++α,n-

+β).

),(
)1(),|(

11

βα
θθθ

βα

++
−

= −+

−+++
−+

−+

nnB
nnp

nn

The expectation of the beta distribution is:

−+

+

+++
+

==
nn

nrfpE jik βα
αθ)|()(,

We have shown that a Bayesian estimation of p(fk|ri,j) is simply
the observed frequency of the attribute fk combined with the
parameters of the beta prior distribution.

98

