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Abstract

Recent years have witnessed a rapidly grow-
ing interest in query processing in sensor and
actuator networks. This is mainly due to the
increased awareness of query processing as the
most appropriate computational paradigm for
a wide range of sensor network applications,
such as environmental monitoring. In this pa-
per we propose a second database technology,
namely active rules, that provides a natural
computational paradigm for sensor network
applications which require reactive behavior,
such as security management and rapid for-
est fire response. Like query processing, effi-
cient and effective active rule execution mech-
anisms have to address several technical chal-
lenges including language design, data ag-
gregation, data verification, robustness un-
der topology changes, routing, power man-
agement and many more. Nonetheless, active
rules change the context and the requirements
of these issues and hence a new set of solutions
is appropriate. To this end, we outline the im-
plications of active rules for sensor networks
and contrast these against query processing.
We then proceed to discuss work in progress
carried out in project Asene that aims to ef-
fectively address these issues. Finally, we in-
troduce our architecture for a decentralized
event broker based on the publish/subscribe
paradigm and our early design of an ECA lan-
guage for sensor networks.

1 Introduction

Application development for sensor and actuator net-
works presents unique challenges since it has to address
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the complexities of distributed and often decentralized
operation, the highly resource constrained nature of
network nodes and the highly transient nature of net-
work topology [4]. Moreover, applications must oper-
ate unattended for prolonged periods of time and still
maintain their integrity and quality of service.

In recent years it has become clear that the in-
vestigation of higher level computational paradigms
is necessary so as to abstract the complexity of sys-
tems development and offer application developers
with a more amenable programming framework. To
this end, query processing has attracted considerable
interest and is rapidly becoming a popular computa-
tional paradigm for a plethora of sensor network ap-
plications. This approach has been seen to address
well the complex requirements of application develop-
ment in sensor networks in a variety of applications
including environmental monitoring, distributed map-
ping and vehicle tracking [5, 12]. Prototype sensor
network query processors have been implemented in
Tiny DB [11] and Cougar [17] systems.

In this paper we argue that another database tech-
nology that may provide an appropriate computational
model for a distinct set of sensor and actuator network
applications is event-condition-action (ECA) rules [15]
(also referred to as active rules). Indeed, sensor and
actuator network applications often operate in one of
either modes:

• in event-driven applications, for example detec-
tion of forest fires, security management or prod-
uct detection in ubiquitous retailing [9], the sys-
tem remains inactive until an event is generated
in one of the nodes; then the event propagates
through the system which subsequently initiates
appropriate actions in response to this event,

• in demand-driven applications, for example envi-
ronmental monitoring [5], activity is initiated in
response to external requests, usually in the form
of queries.

While query processing matches well the character-
istics of the later class of applications, an ECA rule-
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based approach offers a better fit for applications with
execution profile that corresponds to the first pattern
above. In such applications, the system needs to pro-
vide a timely response to events and although in princi-
ple this would still be possible using a sensor network
query processor, its deployment would unnecessarily
consume the limited resources by regularly checking
for events that may not have occurred.

In the following Section we discuss ECA rules as a
computational model for reactive systems with partic-
ular reference to sensor and actuator networks. We
then proceed to compare more traditional ECA tech-
nologies with the novel needs of sensor networks. In
Section 4, we discuss the requirements of ECA rules in
this context and highlight the differences to the more
well established sensor network query processors. Fi-
nally, we introduce the architecture of the Asene sys-
tem for Active SEnsor NEtworks. We conclude with
a discussion of work in progress and major challenges
ahead.

2 Active Rules as a Model for Compu-
tation in Sensor Networks

We begin by examining in more detail the structure
of a reactive sensor and actuator network application.
A reactive application must be able to detect the oc-
currence of specific events or changes in the network
state, and to respond by automatically executing the
appropriate application logic. For example, in a se-
curity monitoring scenario sensors capable of detect-
ing specific chemicals are deployed in the area under
observation, for example a customs and excise enclo-
sure in a port area. In addition to the sensor nodes,
a smaller number of actuator nodes are also deployed
with the capability to trigger alarms when activated.
In this case, there is little scope for fixed network in-
frastructure due to the transient nature of most objects
within the enclosure and the use of heavy machinery.
The aim is to program the application so that when
specific events are observed and specific conditions are
met the network reacts in a predetermined way, for ex-
ample when the concentration of particular chemical
factors are observed and their concentration exceeds a
set threshold within a small area the alarm in this and
neighboring areas are activated.

ECA rules [15] are one way of implementing this
kind of functionality. An ECA rule has the general
syntax

on event
if condition
do actions
The event part specifies when the rule is triggered.

The condition part is a query which determines if the
sensor network is in a particular state, in which case
the rule fires. The action part states the actions to be
performed if the rule fires. A side effect of these actions

may be that further events are generated, which may
in turn cause more ECA rules to fire.

In sensor and actuator networks in particular the
action part of an ECA rule may be either logical or
physical. For example, the action may be to signal an
actuator node to activate the alarm, or it may be a
notification for a node to initiate a particular control
sequence [16].

There are several advantages in using ECA rules
to implement this kind of functionality compared to
direct implementation in application code [2, 14]:

• ECA rules allow an application’s reactive func-
tionality to be specified and managed within a
rule base rather than being encoded in diverse
programs, thus enhancing the modularity, main-
tainability and extensibility of applications.

• ECA rules have a high-level, declarative syntax
and are thus amenable to analysis and optimiza-
tion techniques which cannot be easily applied if
the same functionality is expressed directly in ap-
plication code.

• ECA rules are a generic mechanism that can ab-
stract a wide variety of reactive behaviors, in con-
trast to application code that is typically special-
ized to a particular kind of reactive scenario.

To illustrate the use of active rules to model reac-
tive functionality we note that the application logic
described at the beginning of this section could be en-
capsulated within the following rule

ON UPDATE toxicity
IF AVG(toxicity) > thres WITHIN radius r1
DO ACTIVATE alarm WITHIN radius r2

3 Sensor Networks and Traditional Ac-
tive Database Systems

ECA rules in the context of a sensor and actuator
network present a number of novel challenges against
the traditional database view [8]. In traditional active
database (and web-based) systems the condition and
action parts of an ECA rule are most often tightly cou-
pled, that is the execution model of a particular rule
is [E][CA]: a database object is monitored and when
modified in a predetermined way an event is generated.
Rules whose event parts match this event are then trig-
gered and, if their conditions hold, their actions are
scheduled for execution. In all cases, execution of the
condition query and the action part is driven by the
same application logic. Hence, ECA functionality is
tightly coupled and coordinated. Moreover, such sys-
tems are generally administered by database experts
and often implement advanced failure-tolerance fea-
tures, including clustering, power backups and repli-
cated communication channels.
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Sensor and actuator networks consist of a large
number (often several hundreds) of loosely-coupled
node elements [1]. Each node operates fairly inde-
pendently and can make its own decisions about its
wake-up/sleep cycle and the data it accepts to for-
ward to nearby nodes. Nodes may also have different
capabilities, for example sensors may be able to detect
temperature, humidity, changes in the magnetic field
of the Earth, different types of biosensing and so on.
Actuators may be biomanipulators, microvalves and
micropumps or they can simply be electrical switches.
In addition to sensor and actuator nodes, nodes that
have the sole purpose of providing communications
and computational assistance may also be introduced
in the system. In all cases, nodes will have high failure
rates which may result in network fragmentation, that
is the separation of network segments into isolated is-
lands of system functionality.

Sensor and actuator networks are deployed in ad-
hoc ways and thus the resulting topologies may be
highly irregular and with highly heterogeneous density
and connectivity patterns. Furthermore, the topology
may often change rapidly during its pre-deployment,
deployment, and re-deployment phases and possibly
at very high speed. This is in stark contrast to tra-
ditional database management systems which assume
that connectivity is fairly fixed and network topology
is rarely of concern and dealt with outside the database
management system.

Last but not least, sensor and actuator nodes are
very limited in power, computational capability and
holding capacity and are normally unavailable for reg-
ular repair or frequent battery recharge. Although
Moore’s law predicts that node capabilities will in-
crease rapidly, they will always be less powerful than
other embedded, portable or hand-held computing de-
vices and most importantly battery power available for
their operation will remain limited for the foreseeable
future.

4 Challenges for Active Functionality
in Sensor Networks

In this paper we propose that ECA rules can provide
a natural computational paradigm to sensor and actu-
ator network applications that require reactive behav-
ior. While sensor network query processors (SNQP)
[3, 5, 11] have proven very successful in providing ap-
propriate abstractions for user interaction, ECA rules
address the problem of unattended system behavior
and can effectively model application logic in auto-
nomic situations1. In the context of such applications,

1The scope of active functionality as described here should
not be confused with the so-called event queries supported by
Tiny DB. Event queries aim at providing user control over data
acquisition so that users can register their interest for specific
results returned by an acquisitional query and specify additional
queries that should be carried out in response. Hence, support-

the system is required to provide a timely response
to events at the lowest communications and compu-
tational cost. Although potentially a SNQP could be
used for this type of application, in practice it would
unnecessarily consume limited resources by regularly
checking for events that may not have occurred. In-
deed, SNQPs primarily address data acquisition from
a relatively small number of vantage points. ECA
rules may provide an effective and efficient mechanism
to support reactive behavior by localizing control and
by providing a mechanism to react to events rather
than proactively test whether a particular event has
occurred.

This difference in scope between SNQP and ECA
rules implies that the two systems have very different
execution profiles which also means that they also have
very different requirements. In the following para-
graphs we attempt to outline the most critical differ-
ences between the two approaches and in the following
section we discuss our current work in trying to ad-
dress the novel requirements of ECA execution within
project Asene.

• Vantage Points. SNQPs assume that queries
are initiated at a single or a relatively small num-
ber of vantage points, with data aggregation po-
tentially carried out at a few intermediate loca-
tions, the so-called storage points. In ECA rules
any sensor in the network may generate an event
which may be used by any actuator also poten-
tially placed at any network location. Thus, an
ECA rule may fire at any node location within the
network and may also activate any node within
the network.

• Communication Pattern. SNQPs collect data
in regular patterns which sensor nodes can use
to synchronize and agree on wake-up/sleep cy-
cles. ECA rules are reactive and thus rules fire at
unpredictable, irregular intervals. Hence, wake-
up/sleep schemes that can support this asyn-
chronous mode of operation are required. More-
over, this irregular pattern implies that nodes con-
sume power at different rates and for this reason
node failure is more irregular and harder to pre-
dict.

• Routing. SNQPs currently mostly use tree-
based routing mechanisms that flood the net-
work at least once, during the tree construc-
tion stage. In this context the communications
overhead placed by the route discovery stage is
justified by the relatively large amount of data
that is being collected. An ECA rule proces-
sor is characterized by small, incremental updates
rather than a single data collection step and thus

ing generic reactive functionality is well beyond the scope of
event queries.
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the route discovery stage of tree-based algorithms
would dominate the communications cost. Con-
sequently, globally optimal routes would probably
not optimize power consumption for the network
as a whole and localized routing algorithms could
be more efficient [7].

• Data Model. SNQPs currently view the sensor
network as a single data space. ECA rules require
an alternative data model which distinguishes be-
tween the different types of objects that are being
observed and generate events. In the following
section we propose a mechanism for the construc-
tion of separate data spaces based on the so-called
topic channels.

• Aggregation. Aggregation in ECA is carried out
at the signal rather than the query layer which
is the norm for SNQP. Although the mathemat-
ical techniques used for aggregation in SNQP [6]
can also be used in ECA rule processing, this is
done at a lower layer and within a particular topic
channel in an approach akin to collaborative sig-
nal processing in distributed environments.

• In-network storage. Although both systems
clearly benefit from in-network storage, SNQP de-
velops hierarchical-directional mechanisms based
on the tree-based routing algorithms employed,
whereas ECA rules benefit from decentralized-flat
and schemes at the topic channel level.

• Network Segmentation. ECA rules execute
within the a specific network locality and thus can
be relatively resistant to network segmentation for
example due to loss of connectivity caused by in-
termediate node failure. ECA rules may still fire
despite their isolation from a sink controller.

5 A System Architecture for ECA in
Sensor Networks

One of the major challenges in implementing an ECA
rule based architecture for sensor and actuator net-
works is the distribution of events in a computation-
ally efficient manner. In this section we introduce the
Asene approach to support ECA functionality in sen-
sor and actuator networks.

Asene is built on top of event channels which are
also viewed as data object primitives. An event chan-
nel has two elements: a collection of nodes that mon-
itor the same attribute and associated algorithmic
mechanisms that coordinate node operation. Within
an event channel nodes carry out collaborative signal
processing and data aggregation and are responsible
for in-network storage and event generation. Finally,
the node components of an event channel encapsulate
internal structures that maintain shared descriptions
of the channel.

Event channels are also responsible for the distribu-
tion of events following the so-called publish/subsribe
(P/S) paradigm [13]. P/S systems are commonly used
to bring together data sources and information con-
sumers by transparently delivering events from the
first to the second. In Asene, event channels are re-
sponsible for maintaining a list of subscribers to the
particular event and for sending notifications. Thus,
subscriber nodes may move freely and re-attach to the
channel at alternative locations. Effectively, an event
channel functions as a decentralised event broker fol-
lowing the P/S jargon.

The particular characteristics of sensor and actu-
ator networks make them especially compatible with
the P/S paradigm, in particular with regard to the
need for in-network storage and processing:

• P/S systems are characterized by the same basic
properties as sensor and actuator networks; that
is, communication is anonymous, inherently asyn-
chronous and multicasting in nature. P/S systems
are also capable of quickly adapting to changing
network topologies.

• P/S systems can support the decentralized opera-
tion of event management and delivery, transpar-
ently for both sensor and actuator nodes. This is
particularly important since computation in sen-
sor and actuator networks is highly asymmetric
and thus local adaptability and local control is of
great importance.

• The P/S anonymity property in particular im-
plies that communicating nodes are not required
to identify the party they wish to communicate
with (that is, subscribers need only describe the
characteristics of the events they want to receive
instead of naming a specific publisher to receive
events from) and thus data aggregation may be
implemented transparently for the end applica-
tion. Moreover, the anonymity property implies
that flexile wake-up/sleep cycles can be developed
since delivery of events to subscribed recipients
does not depends on a single sensor node.

• Conceptually P/S systems deliver events to mul-
ticast groups, a communications mode that is a
good fit for the provision of incremental updates
to aggregation operators constructed on top of
role-based spatial hierarchies of sensor and actua-
tor networks nodes. The power saving potential of
these multi-resolution data aggregation schemes
can be considerable and more importantly their
effectiveness increases rapidly with the number of
nodes in the system. Moreover, it is possible to
achieve relatively high performance by using the
periodic beaconing performed of most medium ac-
cess and topology control protocols for update de-
livery across a particular topic channel.
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The properties that make P/S suitable for use in
sensor and actuator networks also suggest a natural
way to support node failures as a feature of the sys-
tem rather than as a fault. Indeed, in this context data
aggregation is performed independently by each node.
Hence, loss of updates will affect accuracy locally and
nodes will continue computation with whatever data
available, on a best effort basis. This is a distinct ad-
vantage over techniques originating from more tightly
coupled systems, where there would be a need for roll
backs and data cleansing operations which are not ap-
propriate in the case of sensor and actuator networks.

One of the expected advantages of this architecture
is that it allows for complex wake/sleep schemes while
at the same time maintaining a good quality of service
via replication of the in-network stored data and of the
subscription information.

The use of event channels as the core building block
for Asene allows for the full decoupling of the [E], [C]
and [A] components of ECA rules. Also note that
queries associated with the condition part of an active
rule can be answered locally and in some cases the
data required could be disseminated at the same step
as the event itself. It is also worth observing that new
functionality can be introduced in the system via the
simple insertion of new condition nodes, that is nodes
that are responsible for checking for specific conditions
in response to event notifications. Finally, construct-
ing activation channels is also a viable alternative al-
though often the expected number of actuator nodes
would be much smaller than the number of sensors and
it is probably not as cost efficient as an approach.

5.1 Heterogeneity

An interesting observation on the effects of the Asene
architecture is that significant operational benefits
may be achieved if heterogeneous sensor and actua-
tor networks are constructed. Heterogeneity in this
case is seen primarily in communication capability and
in terms of the range of communication. Inserting a
few nodes that have longer range capabilities (but also
higher power consumption) can significantly increase
the robustness of the event channel by increasing the
connectivity across node clusters.

5.2 Composite Events

Using event channels as the main mechanism for data
dissemination also suggests a clear way for construct-
ing rules with composite events: the condition node
needs only subscribe to all corresponding event chan-
nels. Compare this against the difficulty of dealing
with multidimensional data in the context of SNQP.

6 Discussion and Conclusions

In this paper we have argued that, in addition to query
processing, ECA rules is a database technology that

may provide an appropriate computational model for
a distinct set of sensor and actuator network appli-
cations. However, ECA rules in this context present
several challenges which we highlighted in previous
sections. We have also introduced Asene, an ongoing
research project that aims to establish ECA rules as
the common mechanism for the description of reactive
functionality in sensor and actuator networks.

The current version of Asene supports simple event
channels built on top of Tiny OS [10] primitives and
a simple ECA language. We are currently develop-
ing further our algorithms for the efficient construc-
tion of event channels in sensor networks. Our focus
is on a single-step approach that identifies all mem-
bers of all registered event channels in a particular
network and thus removes the need for duplication of
the bootstrap phase. We are also improving on the
data structures used to represent the internal state of
a particular event channel and maintain the list of ac-
tive subscriptions. Our work aims to balance the need
for low communication between nodes and the asyn-
chronous nature of event generation with regard to the
wake-up/sleep node cycles. We are planning to con-
duct extensive experiments with the prototype imple-
mentation to better understand the tradeoffs involved.

In addition to the development of efficient and effec-
tive event channel management mechanisms, a second
major objective of the Asene project is the definition
of an appropriate lightweight ECA language that sat-
isfies the requirements of the application domain. The
brief example presented in Section 2 in the context
of a security management application is taken from
the current version of Asene. Clearly, further work
in understanding the performance implications of the
different constructs is required and balanced against
language expressivity.

The next step for Asene is the integration of ad-
vanced aggregation algorithms and the study of local-
ized routing algorithms for event dissemination. In
doing so we favor a multi-resolution approach sim-
ilar to the aggregation schemes discussed in [6] but
more appropriate for the structure of our event chan-
nel construction algorithms. Finally, we intend to fur-
ther investigate the relative merits of different routing
strategies for event dissemination based on localized
network descriptions. We anticipate both approaches
to offer significant reduction in resource demands from
the network.
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