
Mobile Networks and Applications 9, 481–490, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Localization of Integrity Constraints in Mobile Databases and
Specification in PRO-MOTION

SUBHASISH MAZUMDAR
Computer Science Department, New Mexico Tech, Socorro, NM 87801, USA

PANOS K. CHRYSANTHIS
Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract. The well-developed traditional data management techniques need to be augmented with new approaches in order to continue
to be effective in the mobile environment. In this paper, we focus on the challenge of maintaining integrity constraints in the presence
of disconnections and expensive communication. Our approach of localization is to reformulate global constraints so as to enhance the
autonomy of the mobile hosts in processing transactions. We show how this approach unifies techniques of maintaining replicated data with
methods of enforcing polynomial inequalities. We also discuss how localization can be realized in PRO-MOTION, a flexible infrastructure
for transaction processing in a mobile environment.

Keywords: mobile databases, disconnected operations, transaction processing, data consistency, integrity constraints, caching and replica-
tion

1. Introduction

Thanks to the relentless advances in semiconductors, the
number of users with mobile computers (we will refer to
these machines as mobile hosts or MHs) continues to increase.
These users have discovered that exciting developments in
wireless technology can potentially empower them to access
remote information anywhere, anytime, and in any way. To
be truly effective, however, users of MHs need the ability to
both query and update public as well as private corporate data-
bases. These databases typically execute atomic transactions
to assure data consistency and reliability in spite of concur-
rent updates and system failures. Thus, transaction support
must be extended to mobile users [19].

Owing to portability requirements, mobile computers are,
in general, less robust than stationary ones. Not only are they
prone to physical hazards, but also suffer from limited battery
life, reduced storage capacity, and a relatively low-bandwidth,
expensive, and tenuous wireless connection to the fixed net-
work. They may become disconnected when placed in cer-
tain terrain or enclosure. Also, a MH may choose to power
down only the communication subsystem to save battery life
or communication dollars; while such a MH is disconnected,
it has not failed for it can continue processing [2,8]. Such
transience in connectivity, we argue next, makes transaction
processing a challenging task.

The basic problem is that a mobile computer must share
some data item D with a database in the fixed network, and
consequently agree to satisfy an integrity constraint C that en-
sures correctness of shared components. C is distributed (or
global) since it spans at least the mobile computer and one
other database. Consider a local transaction T executing on
the mobile host; if it accesses D, it must, when it tries to com-

mit, verify that C is preserved, i.e., that it holds at the end of
the transaction. But this verification implies a query which
involves at least one other host – so, T is no longer local:
it is distributed! Consequently, it invites the expenses and
problems associated with distributed transactions: network
communication, distributed concurrency control for synchro-
nization of remote data, and commit protocols [3]. While
complex, this is a minor matter because all this can be accom-
modated by a Distributed DBMS. The major problem is that
in the mobile environment, there is an additional factor, the
whimsical connectivity of mobile hosts, owing to which, un-
bounded and unpredictable delays can afflict not only T but
other transactions running at both the mobile and the station-
ary node(s). This is clearly unacceptable. Extending transac-
tion management and data consistency maintenance to cover
disconnected and mobile operations is the challenge we ad-
dress.

Our approach is pre-emptive: when the MH above
shared D, it agreed to a global constraint C; our aim is to
give it a local constraint C′ instead. For the MH, C′ could
very well be more restrictive than the original C, but this is
the tradeoff against the enhanced autonomy brought by the lo-
cality of C′. As a reflection of this autonomy, the local trans-
action T would remain local; thus, the unacceptable delays
discussed above would be avoided.

By a process we call localization, we reformulate a distrib-
uted constraint into local constraints and adjust them dynam-
ically. We have looked at two kinds of constraints – based on
equality and inequality respectively (for set-based constraints,
see [12]). Localization provides a framework for a number
of well-known but disparate techniques of concurrency con-
trol such as lease, callback, and check-in/check-out [5,20] for
equality constraints on replicated data, the Escrow method



482 MAZUMDAR AND CHRYSANTHIS

[9,10,17] and the Demarcation Protocol [1,4] for linear in-
equality constraints; it has also enabled a hitherto unknown
extension of Escrow/Demarcation Protocol to quadratic in-
equalities.

The conceptual framework of localization blends synergis-
tically with an architecture similar to that of PRO-MOTION,
a flexible infrastructure for transaction processing in a multi-
tier, mobile client–server operating environment [13,22]. By
caching data items locally, it allows MHs to continue ex-
ecuting transactions while disconnected from the stationary
server; it incorporates the modified data back into the station-
ary server’s database when reconnection occurs. The cached
data is in the form of an encapsulated object containing data
bits, methods, rules, and state information. This object is
called the compact. Localization allows us to fill in certain
components of appropriate compacts enabling unilateral com-
mitment of local transactions.

In the next section, we present a running example. Then
we introduce PRO-MOTION; next, we explain localization.
In the following two sections, we apply the technique to dy-
namic replication and polynomial inequalities respectively.
Finally, we outline how the localized constraints would be
handled in PRO-MOTION.

2. An example

Mobile computers are becoming more and more common in
the trucking industry [23]. Each truck has a computer with
a satellite or radio link. It not only communicates with a
corporate database, but is also used for billing and gathering
data from various vehicle instruments; it may even be used to
transmit funds directly for the driver’s expenses.

Consider a trucking company that has accepted a contract
to move manufactured goods from a source to a destination.
It, in turn, subcontracts privately owned trucks by posting a
list of contracts to which truck operators respond with their
offers; typically, one such offer is selected for each contract,
though in some cases, the company may prefer to fulfill a con-
tract through subcontracts based on two or more offers. The
driver of a selected truck then receives a shipping manifest,
goes to the source to pick up the material, and later to the des-
tination to deliver them. The shipping manifest specifies the
quantity of parts to be picked up plus pertinent information
about the truck, the driver, and the source.

We envision a pick-up process during which goods are also
checked to see if they meet their specifications, i.e., if an at-
tribute A (e.g., diameter of a washer) is within its specified
tolerance. The motivation is to perform quality control dur-
ing pick-up itself so as to avoid returning unsatisfactory goods
later because the process of return is costly in terms of both
time and money. Thus, the truck’s mobile computer mea-
sures the mean and variance of A. If these two metrics are
outside their acceptable range, the goods are rejected on the
spot. Assuming that two trucks are awarded partial contracts,
we have an added complication: the destination will merge
the two truckloads and the overall mean µ and variance σ 2

of A of the merged collection must be within tolerable limits:
M0 � µ � M1 and 0 � σ 2/µ2 � K, where M0,M1,K are
constants (we capitalize constants).

When the load is delivered, the driver records the date and
time, obtains a signature from the receiving party for billing.
We label the important steps OFFER, MANIFEST, PICKUP,
and BILLING, respectively. Their ramifications on transac-
tion support and consistency maintenance are as follows.

OFFER. The list of contracts is posted on the company’s
database and refreshed periodically. Any truck can access
this list for review. If an operator wants to offer its service,
it requests and obtains exclusive write privilege, betters
whatever offers are currently available and hands it over
for the company and other operators to review (anonymity
of operators is ensured if necessary). Exclusive write priv-
ilege is needed since an operator who stops on the road to
make an offer does not want to see it concurrently over-
written by another.

Suppose the original contract was for a load Qty.
Trucks 1 and 2 (perhaps among others) responded with of-
fers for loads Qty1, Qty2 (as much as their trucks could
carry), but they were awarded partial contracts for Q1, Q2,
respectively, where Qty = Q1 + Q2 and Q1 � Qty1 and
Q2 � Qty2.

Clearly, it is not in the interest of an operator who wants
to make offers to remain disconnected for long. On the
other hand, indefinite disconnection by a writer can hold
up other operators.

PICKUP. Assume that the quality control attribute A is uni-
formly distributed at the two sources. Let the two trucks
observe means µ1, µ2 and variances σ 2

1 , σ 2
2 while han-

dling quantities Q1 and Q2, respectively. The fraction of
goods handled by them are R1 = Q1/(Q1 + Q2), R2 =
1 − R1, respectively. Then, the restriction on the over-
all µ and σ 2 lead to the constraints in table 1 (two linear
and two quadratic polynomial inequalities in four variables
µ1, µ2, σ

2
1 , σ 2

2 ).
So, our truck driver after measuring µ1, σ

2
1 , will at-

tempt to verify P1–P4. But to do so, he/she must access
µ2, σ

2
2 measured by the second truck. Owing to discon-

nection, even if that second truck performs its measure-
ments at the same time, this verification may incur unpre-
dictable delays.

MANIFEST. The manifest information should be made per-
manent in the company database before the truck is per-
mitted to travel. Next, it should be replicated in the mobile
computer to be looked up when needed. The quantities
of material to be picked up Q1,Q2 are replicated on the

Table 1
PICKUP constraints.

P1 R1µ1 + R2µ2 � M0
P2 R1µ1 + R2µ2 � M1

P3 R1σ 2
1 + R2σ 2

2 + R1R2µ2
1 + R1R2µ2

2 − 2R1R2µ1µ2 � 0

P4 R1σ 2
1 + R2σ 2

2 + R1(1 − R1 − KR1)µ2
1 + R2(R1 − KR2)µ2

2
− 2R1R2(1 + K)µ1µ2 � 0



LOCALIZATION OF INTEGRITY CONSTRAINTS IN MOBILE DATABASES 483

databases of the first and the second truck, respectively.
Disconnection is of little consequence here.

In some cases, e.g., if more goods are available and the
truck has space, its operator may request a change in the
quantity to be picked up. Processing this request is non-
trivial since it involves not only extra (or less) goods but
also change in the constraints themselves (Q1 and Q2 both
affect R1, R2, which occur in P1–P4) affecting both trucks.
Clearly, disconnection during such a change in quantity
can hold up the other truck’s pickup process.

BILLING. The delivery information can be finalized at the
mobile computer and incorporated in the company data-
base shortly thereafter. A disconnection is not catastrophic:
it will only postpone the billing process.

3. PRO-MOTION

PRO-MOTION is ideally suited to realize applications such as
the one above using our approach of localization. It provides
a flexible infrastructure for transaction processing in a multi-
tier, mobile client–server environment [22].1

We assume a general mobile computing environment in
which the network consists of stationary and mobile hosts
(MHs) [7]. Certain specialized stationary hosts called Base
or Mobility Support Stations (BSS/MSSs) are equipped with
wireless communications capabilities that enable the mobile
hosts to connect to them, and through them, to the high-speed
fixed network. At any moment, a MH is either connected to
the network through a specific MSS based on its location or
completely disconnected.

The goal is to process as much of a transaction as pos-
sible on the MH, resorting to communication with the sta-
tionary database server (SDS) only when convenient or when
absolutely required by the semantics of the transaction. This
is achieved in PRO-MOTION by replicating or caching data
from the server; such replicated data is always in the form of
an encapsulated object called a compact (figure 2). A com-
pact is, broadly speaking, a satisfied request to cache data,
enhanced with obligations (e.g., a deadline), methods (a set
of allowable operations), state information (e.g., the time of
last update), and consistency rules (restrictions on possible
states). Unlike mobile agents, compacts are active objects

Figure 1. PRO-MOTION system architecture.

1 The simplest form of multi-tier mobile client–server architecture in PRO-
MOTION is currently referred to as the client–intercept–server model [6].

that are invoked in the context of a transaction and controlled
by the Transaction Manager. Compacts are supported at the
SDS, the MSS, and the MH as follows.

• At the SDS, there is a compact manager. It acts as a front-
end, shielding the server from the idiosyncrasies of the
mobile environment.

• At the MSS, there is a mobility manager, which helps man-
age the communication flow between the compact man-
ager on the server and the compact agent (see below) on
the MH. A MH can send an update message and discon-
nect immediately relying on the mobility manager to pur-
sue the update on its behalf and store the acknowledge-
ment.

• At the MH, there is a compact agent. It negotiates with
the mobility manager, manages compacts, and acts as a
transaction manager for transactions executing on the MH.
It also handles disconnections and manages storage.

The compact represents an agreement between the server
and the MH in which the server delegates control of the data
to the MH which pledges to honor specific conditions regard-
ing its use as set by the server. Compacts are obtained from
the server via requests from the MH (to fill an imminent or
anticipated data need). If the request can be satisfied, the
server’s compact manager creates a compact containing data
plus information required for its correct usage. The compact
is recorded in a compact store and transmitted to the MH.
The request from the MH can be tailored to cause only incre-
mental transmission. For example, transmitting the compact
methods, which may be very expensive, is avoided if they are
already available on the MH. Once the MH receives the com-
pact, it records it in a compact registry which is used by the
compact agent to track the location and status of all active
compacts.

When the needs of the mobile host or the database server
change, compacts may be renegotiated to redistribute re-
sources; when the MH no longer needs the resources, com-
pacts are returned to the database server and deleted from the
local compact registry and the compact store.

Each compact has a common interface which is used by the
compact agent to manage the compacts listed in the compact
registry and to perform updates submitted by transactions run
by applications executing on the MH. The basic set of meth-
ods necessary to manage compacts are the following:

• inquire() retrieves useful information about the compact
state, e.g., name, data type, version, cache status, free stor-
age, and outstanding transaction IDs;

Figure 2. Compacts as objects.



484 MAZUMDAR AND CHRYSANTHIS

• dispatch() performs operations on the compact on behalf
of transactions executing on the MH;

• checkpoint() stores the current state of the compact for re-
covery purposes;

• commit() makes the operations of a transaction permanent
on the compact (local commit), and ultimately on the data-
base server (global commit);

• rollback() abandons a transaction’s modification of the
compact data; and

• notify() tells the compact that the mobile environment has
changed, e.g., when a local transaction must be re-done or
a parameter re-negotiated.

4. Localization

Let us now elaborate on the notion of localization. We assume
that data is distributed among nodes 1, 2, . . . , N . In section 7,
we will relate these nodes to mobile hosts and the stationary
server. We call a constraint C local if it involves only one
node and distributed, otherwise.

Definition 1. A distributed constraint C(x1, . . . , xN) where
xi reside in node i (1 � i � N) is said to be localizable if
there is a rule

C1
(
x1

) ∧ C2
(
x2

) ∧ · · · ∧ CN

(
xN

) → C
(
x1, . . . , xN

)
,

such that Ci(xi) is local for 1 � i � N . Substitution of the
distributed constraint C by local constraints Ci at each node i

(1 � i � N) is referred to as localization.

Variables and quantifiers (not shown) conform to the rules
for Horn clauses [11]. We ignore trivial rules where one or
more of the Cis are false.

We denote the left-hand side of the rule by SC, a sufficient
condition for C, and say that C is localizable through SC (or
that SC localizes C). So, instead of enforcing C which is
distributed, we enforce the local constraint Ci at each node i

for 1 � i � N .
For example, let C be P1: R1µ1 +R2µ2 � M0 (table 1). It

is a distributed constraint with N = 2 (the two nodes are the
two trucks) on variables µ1 and µ2. Using the rule C1∧C2 →
P1, where C1 = (µ1 � L1), C2 = (µ2 � L2), and L1, L2
are constants such that R1L1 +R2L2 � M0, we see that P1 is
localizable. Thus, we can enforce µ1 � L1, a local constraint,
at the first truck, and µ2 � L2 at the second, assured that their
simultaneous enforcement implies P1.

Now, since SC is only sufficient for C, a local update may
violate Ci and hence SC, while still satisfying C. In this case,
we would like SC to be transformable to, say, SC′ that could
accommodate the updated value. SC′ would be of the form:

SC′ = C′
1 ∧ C′

2 ∧ · · · ∧ C′
N .

Though the transformation of SC to SC′ typically involves
constraint changes at more than one node, we want this to
be achieved in an incremental node-by-node manner, perhaps

in some pre-determined order, so that synchronization delays
due to commit protocols arising from distributed transactions
can be avoided.

Definition 2. SC is said to be relocalizable to SC′ through a
sequence of constraints W0(= SC), . . . ,Wi, . . . ,WN(= SC′)
if Wi → C for 0 � i � n and the sequence is incremental
in the sense that Wi−1 and Wi differ in only one conjunct Cj

(for some j ) in Wi−1 which gets replaced by C′
j in Wi . Such

a transformation of SC to SC′ is referred to as relocalization.

Returning to our example, if the first truck observes a mean
µ1 < L1, it does not mean that P1 is violated. It may be
possible to reduce L1 to L′

1 and increase L2 to L′
2 such that

R1L1 + R2L2 = R1L
′
1 + R2L

′
2; also, L1, L2 can be changed

without a distributed transaction if the second truck increases
L2 before the first decreases L1. This is relocalization through
a sequence W0,W1,W2, where

W0 = SC = (µ1 � L1) ∧ (µ2 � L2),

W1 = (µ1 � L1) ∧ (
µ2 � L′

2

)
, and

W2 = SC′ = (
µ1 � L′

1

) ∧ (
µ2 � L′

2

)
.

This is basically what is achieved by the Escrow method and
Demarcation Protocol but these methods do not work for con-
straints P3 and P4.

Note that W0,W1,W2 all imply the original constraint P1,
i.e., at each step, the original constraint P1 is maintained. If
the order of constraint changes was reversed (i.e., the first
truck decreased L1 before the second truck increased L2),
the resulting intermediate state with W1 replaced by (µ1 �
L′

1) ∧ (µ2 � L2) may not have satisfied P1.
In other words, localization allows a distributed constraint

to be replaced by a bunch of local constraints and relocaliza-
tion allows their dynamic adjustment while always implying
the original constraint. The following remarks cover useful
properties and indicate why node autonomy is enhanced.

Remark 1. If a local transaction at node i satisfies Ci , no
global constraint needs to be checked either during execution
or commit and therefore unpredictable delays are avoided.

Remark 2. In general, a node i cannot unilaterally change its
local constraint Ci . However, if C′

i → Ci (the new constraint
C′

i is more restrictive), it can change unilaterally provided the
data which now satisfies Ci does also satisfy C′

i . For example,
the second truck could increase L2 to L′

2 unilaterally.

Remark 3. If Ci → C′
i , local data need not be locked2 during

the transformation from Ci to C′
i because the data, even if it

is updated during this process of constraint change, will, by
satisfying the current Ci , satisfy the new C′

i too.

2 We are not presuming that locking is the concurrency control mechanism.
The remark is applicable no matter what kind of synchronization mecha-
nism is used.



LOCALIZATION OF INTEGRITY CONSTRAINTS IN MOBILE DATABASES 485

Remark 4. In the special case where Ci(x) means that x is
undefined and C′

i means that x is defined and satisfies predi-
cate p, the transformation from Ci to C′

i consists of assigning
a value to x that satisfies p(x); no local locking is involved.
Similarly, if the transformation goes the other way, the current
value of x needs to be invalidated; no locking is involved.

Remark 5. Relocalization of SC can be done one node at a
time, possibly in a certain prescribed sequence, but no distrib-
uted transaction with expensive commit protocols is needed.
In the example, the two trucks had to change their local con-
straints in a certain sequence; but while a node changed its
constraint, it made no synchronization requirement on the
data of the other node.

Remark 6. Suppose the sequence 〈Wi 〉 is broken because of a
unilateral decision made by a node to terminate the process of
relocalization. While the final local constraints would not be
achieved because of the premature termination, there would
be no violation of the global constraint because at each step
of the sequence, the global constraint is satisfied.

Remark 7. When two or more nodes initiate relocalization
concurrently, the maintenance of correctness while avoiding
distributed transactions is not simple – we discuss our algo-
rithms and their performance elsewhere [14,18].

Remark 8. We have shown recently [14] that localization can
be used to extend the scope of the popular two-tier model
in which mobile devices form one tier and always-connected
stationary servers the other.

5. Localization and dynamic replication

In this section, we first review the caching idea from the
localization perspective and see that invalidation is not nec-
essarily a requirement of modification. Data replication se-
mantics such as callback, lease, check-in/check-out can all be
captured under the framework of localization and relocaliza-
tion. We dwell only on lease semantics illustrating a temporal
dimension of localization in the process.

5.1. The caching approach

Equality constraints are generally of the form x ≡ f (y)

where x, y are data items and f is some function (for pure
replication, f is the identity function and ≡ is equality).
When x and y are at different nodes (sites), this is a distributed
constraint that is typically handled in caching schemes by fol-
lowing the rule: either allow x and y to be read-only or invali-
date one of them so that the other can be modified. Of course,
this scheme can be modified to apply to more than two vari-
ables. Further, although we assume that all communication is
peer-to-peer, it is also applicable in settings in which commu-
nication is facilitated by a server. As we will see in section 7,
such communication with a facilitator server is more appro-
priate for mobile databases.

Suppose a logical item X has replicas xi at node i (for
various i). Not all the replicas are defined at all times; we
denote the predicate data item A is defined (undefined) by A↑
(respectively A↓). The condition C for integrity of replicas
can be stated as

C: (∃j)(∃v)
[
(1 � j � N) ∧ xj↑

] N∧
i=1

[
xi↑→ (xi = v)

]
.

This condition C has two parts; the first part states that at any
time at least one replica must be defined and the second states
that all defined replicas should have the same value. Note that
when more than one replica is involved at different sites, the
second part indicates that the constraint is distributed, and that
a replica cannot be updated at one of its sites alone.

C is localized through SC = C1 ∧ · · · ∧ CN, where

Ci =
{

xi↑ ∧ (xi = a), if i has a replica,

xi↓, otherwise.

When node k (which already has a replica) is allowed to mod-
ify the replica, all other copies are invalidated leading to a
transformed SC′ = C′

1 ∧ · · · ∧ C′
N, where

Ci =
{

xi↑, if i = k,

xi↓, otherwise.

This transformation is effected correctly through relocaliza-
tion. First, all nodes except k give up their read access chang-
ing from xi↑∧(xi = a) to xi↓; C is satisfied since xk remains
defined (see also remark 4 in section 4). Next, node k assumes
write access changing from xk↑ ∧ (xk = a) to xk↑; again
C is satisfied since k is the only node with a defined replica
(remark 3). Subsequently, k changes to read-only access by
unilaterally changing to xk↑ ∧ (xk = a), permitted since this
implies xk↑ (remark 2). Finally other nodes such as i, given
the value a, can change from xi↓ to xi↑∧(xi = a); C remains
satisfied regardless of the order of those changes (remark 4).

Finally, we note that invalidation is not a necessary as-
pect of the caching idea. For example, consider the modulo-
equality constraint E [12]:

E: x1 ≡ x2 (mod k),

where x1, x2 are at nodes 1 and 2. E can be localized through
SC = E1 ∧ E2:

Ei : xi = a (mod k)

and a is a constant. In other words, both local data items
x1, x2 can be modified simultaneously and independently pro-
vided that xi mod k remains unchanged.

5.2. Leases

In the mobile context, we have seen that arbitrary disconnec-
tion can hold up nodes. One practical way of coping with this
is to set a time limit on the validity of a replica obtained by a
mobile node. This is the idea of data lease. A leased data item



486 MAZUMDAR AND CHRYSANTHIS

is one shared by the requesters (leaseholders) each for a cer-
tain time interval. Typically, leaseholders have read-only ac-
cess and are free to read the item (as long as the lease has not
expired); in order to modify the data, however, a leaseholder
must obtain permission from all other leaseholders, who give
up their own read access when they give such permission.

Consider OFFER. It would be appropriate to give lease
semantics to the replicated list of contracts so as to control
sharing and yet not allow disconnection to hold up all others
indefinitely. Many trucks can get the list in a read-only mode
for a specified duration. When an operator wishes to make an
offer, it gets an exclusive write access on the list and writes
its own offer provided it betters existing offers (the initial of-
fer is empty for each contract). For example (we will refer
to this example twice later), let a truck k request a read lease
on the current offer list. While viewing, it decides to make
an offer and requests write access on the data. Having fin-
ished writing its offer ahead of the lease interval, it switches
to read-only mode; other operators can now view its offer by
getting read access. If one of these trucks after viewing the
current offers wants to write its bid, it makes a requests for a
write lease whereupon k gives up its read lease.

The global constraint is C as given above. Let a be the
current value of the shared data X and Ti the valid lease dura-
tion for node i. C is localized through SC = C1 ∧ · · · ∧ CN,

where

Ci =



xi↑ ∧ (xi = a),

if i has a valid lease for Ti and time t ∈ Ti,

xi↓, otherwise.

To see how relocalization works, we will pursue a node k

through the sequence followed by truck k in our OFFER
example. Node k is initially a non-leaseholder, as it re-
quests and gets a lease on X obtaining and creating a replica
with the current value a for duration Tk1, later requests and
gets permission to modify the replica for duration Tk2 (it
overlaps with Tk1), subsequently reverts to read-only ac-
cess for duration Tk3, and finally is asked to surrender the
replica. Its local constraint Ck goes through the sequence
C0

k , C1
k , C2

k , C3
k , C4

k (=C0
k ) and the other nodes modify their

conditions so that C is satisfied at each step:

C0
k = xk↓,

C1
k = xk↑ ∧ (xk = a), for t ∈ Tk1,

C2
k = xk↑, for t ∈ Tk2,

C3
k = xk↑ ∧ (xk = b), for t ∈ Tk3,

C4
k = xk↓.

Its initial constraint is C0
k with xk undefined; at this time,

some other node must have a lease on the data to satisfy C.
Once it asks for a lease and gets a read-only lease, its con-
straint changes to C1

k . No other node needs to change its local
constraint. Later, when it wants to modify X, it asks every
other leaseholder for permission. Node i gives permission
along with the current value of X while changing its con-
straint Ci to xi↓. Suppose all leaseholders give permission.

Then along with the last permission, node k changes its own
constraint to C2

k allowing it to modify xk . At this time, this is
the only node with defined X. Suppose k finishes writing; it
gives up its exclusive write access by changing to a read-only
mode with constraint C3

k where b is the final value of xk . Now
node j requests a read lease and is allowed to set up its own
constraint:

Cj = xj↑ ∧ (xj = b) for t ∈ Tj .

Subsequently, when j wants a write lease, node k surrenders
its access (unless its lease has expired already) by changing
its constraint to C4

k = C0
k . The correctness argument for this

relocalization is the same as for the similar example using
plain caching in section 5.1.

6. Localizing polynomial inequalities

Here we discuss the application of localization towards dis-
tributed polynomial inequality constraints. We make use of a
geometric method.

Consider PICKUP. It generated four inequality constraints
P1–P4: two linear inequalities on two variables µ1 and µ2
and two quadratic inequalities on four variables µ1, µ2, σ

2
1 ,

and σ 2
2 . The Escrow method and the Demarcation Protocol

have both shown how linear inequalities can be handled effi-
ciently. But neither of them tell us how to handle the quadratic
inequalities (owing to the product term µ1µ2, they cannot be
converted into a linear form).

While illustrating the localization and relocalization ap-
proach using constraint P1 in section 4, we have already
established that our approach can take care of the linear in-
equalities – basically in the same manner as the Escrow and
Demarcation Protocol. But we can go further. We have been
able to advance from linear to quadratic form by taking the lo-
calization perspective and asking how such constraints can be
localized; the answer was a common approach – a geometric
one – that provided solutions for both classes.

Any constraint C = p(x1, . . . , xN), where each xi can be
represented by a real number, defines a domain Dom(C) in the
N-dimensional space in the Cartesian coordinate system, with
the ith coordinate for xi . C can be geometrically interpreted
as: the datum (x1, . . . , xN) satisfies C if and only if the point
(x1, . . . , xN) in the N-dimensional space is in Dom(C). Now,
suppose we are able to find R1, . . . , RN , each a range of R
such that

(x1 ∈ R1) ∧ · · · ∧ (xN ∈ RN) → [
(x1, . . . , xN) ∈ Dom(C)

]
.

The right-hand side of the above is C and the left-hand side
is a sufficient condition SC for C; further, since each con-
junct is local, we establish localization. Of course, this begs
the question how these Ri can be found. Geometrically, the
same left-hand side defines a rectangular subset of Dom(C).
All we need to do for localization therefore is to find and
maintain a (N-dimensional) rectangle that is contained within
Dom(C) (intuitively, the closer the subset is to Dom(C), the
better). Once we find such a rectangle, the node in charge



LOCALIZATION OF INTEGRITY CONSTRAINTS IN MOBILE DATABASES 487

Figure 3. Managing a linear inequality.

of xi needs to maintain its data value within a range that is
the projection of the rectangle on the axis xi . Relocalization
allows the change of one rectangle into another making sure
that all intermediate rectangles are contained within Dom(C).
Thus, the geometric approach reduces to rectangle manage-
ment. The initial rectangle can be empty; the rectangles can
subsequently be set up through relocalization based on ac-
tual data. Here, we will not present the algorithms involved
[15,16] but discuss two examples to illustrate the method.

For a simple example, consider C = x1 < x2, a linear
inequality, where x1 and x2 reside at nodes 1 and 2, respec-
tively. Geometrically, Dom(C) corresponds to the half-plane
above the line OH (x1 = x2) in figure 3. The rule

(x1 < L) ∧ (L < x2) → (x1 < x2),

where L is a constant, allows us to localize C. The LHS (left-
hand side) of the rule is the sufficient condition SC = (x1 <

L) ∧ (L < x2); geometrically, it is an open rectangle ABE

inside the half-plane.
The current data (x1, x2) = (u, v) is represented by P

which is in rectangle ABE and therefore in the half-plane. If a
local transaction at node 1 attempts to increase the value of x1
to u′ which is greater than L (for simplicity of exposition, let
node 2 not concurrently change x2), there is a violation of the
local constraint but not of the global constraint (point P ′ is
in the correct half-plane). Now the rectangle can be changed
(relocalization) from ABE to, say, FHK via FGE as node 2
changes its bound to L′ and then node 1 changes its bound
to L′. Note that the change via AMK is not acceptable since
that rectangle extends beyond the correct half-plane. Con-
straints P1 and P2 are of the same form as C and therefore the
above description applies to them.

Now we will illustrate how the geometric approach works
for quadratic constraints. Consider a distributed constraint C

of the form

A1x
2
1 +A2x1x2 +A3x

2
2 +A4x1 +A5x2 +A6 < 0 (or > 0),

indicating a region bounded by a conic section or two paral-
lel lines. Suppose by analysis [21] we find that Dom(C) is
the interior of an ellipse. We then find a well-oriented rec-
tangle (i.e., one with sides parallel to the x1–x2 coordinate
system) inside the ellipse whose interior represents the rectan-
gular subset we are seeking. Figure 4 shows such an ellipse

Figure 4. Managing a quadratic inequality.

containing a well-oriented rectangle with diagonal AB whose
projections on the x1 and x2 axes give the local constraints
(p < x1 < q) and (r < x2 < s).

Now let a local transaction at node 1 attempt to change x1
from u to u′ which is greater than the local bound q , effec-
tively attempting to move P to P ′, which is not in rectangle
AB but still inside the ellipse. Node 2 using the value u′ and its
own bounds, then computes a new rectangle (shown dashed)
with diagonal CD and its new projections on the axes x1, x2;
these projections are the new local constraints. It first restricts
its own bounds which it can do unilaterally (remark 2) thus
shrinking the rectangle to QR and then informs node 1 that it
can increase its bound enlarging the rectangle to CD.

7. From localization to PRO-MOTION

7.1. Implementation considerations

So far, we have taken all nodes to be equal: they were to
communicate with each other in a peer-to-peer fashion. Ow-
ing to unpredictable and frequent disconnection, this becomes
impractical: a hierarchical mode is preferable. The stationary
server takes the role of a facilitator – all mobile hosts commu-
nicate directly with it (and indirectly with other MHs) because
the server can be counted upon to remain connected almost all
the time. Even better for the MH, the intermediate MSS layer
(section 3) can talk to the server as a proxy on behalf of a
MH that sends its request to the MSS and immediately dis-
connects. In the light of this arrangement, let us review our
implementation of the lease.

• A MH makes its request to the compact manager of its
associated server.

• The duration of the lease, i.e., a time limit on the validity
of a replica obtained by a mobile node, is set by the server.

• In leases, local sufficient conditions hold only for the du-
ration of the lease – thus local commits of updates on the
MH are conditional.

• Before the lease expires, a writer should transmit its last
value that can be safely committed within the lease period
to the server and revert to a read-only mode for the rest of
the lease unless it releases or re-negotiates it.



488 MAZUMDAR AND CHRYSANTHIS

• A disconnected reader whose deadline has passed causes
no headaches for other lease seekers.

• A disconnected writer k which was unable to communi-
cate its final value before the deadline expired can be han-
dled as follows.

– The server would not contact k if it failed to transmit
its final value. However, an optimization is to allow the
server to request k to surrender an expired lease while
granting a very small duration extension for k to trans-
mit its final value and globally commit any locally com-
mitted updates.

– If the server still elicits no response from k, the server
can substitute for that missing value; thus other lease
seekers will not be held up.

– If no subsequent attempt has been made to get a write
lease on the server-filled missing data, the final value
obtained from k by the server through a later commu-
nication can be substituted despite the expired deadline
(this is an example of optimistic concurrency control).
For example, this would be applicable in BILLING. If
another node did get a write lease in the interim, the
server will notify k to redo its transactions.

• The special role of the server is very useful in the MANI-
FEST example. Ordinarily, the manifest data is read-only.
Each truck gets a read lease on its own Qi and this data
is also maintained at the server. Thus, if a truck, let us
say Truck 1, wants to change the quantity of material it
loads, the server needs to calculate if the change can be
handled not only in terms of the utility and economics of
extra (or reduced) goods but also regarding the constraints
P1–P4. Recall that Q1 and Q2 are both involved in the
coefficients R1 and R2 in the constraints P1–P4. If the
server can connect with and interrogate Truck 2, then the
decision is easier. But even if it cannot, since Truck 2 only
handles sufficient conditions, the server calculates if the
parameters Q2, µ2, σ

2
2 assigned to Truck 2 are compati-

ble with the new Q1. If so, it allows Truck 1’s request,
thereby changing the constraints P1–P4 without Truck 2
being aware of it! This is an added benefit of localization.

7.2. Mapping to the compact

The compacts in PRO-MOTION are ideal for our approach.
The local constraint Ci (obtained by localization) on data D

for a MH i is directly mapped into a compact for D and
handed over to the MH which becomes responsible for con-
straint enforcement. Ci is analyzed as follows: we split it into
temporal intervals (if any), for each interval, check if defined,
and if defined, infer data changeability, and data restriction.
We encode the temporal range as Obligations (deadline or ex-
piration time); if defined, Current_Status takes the value RW
or RO based on data changeability, if it was never defined ear-
lier, the value is NR (nonresident); but when changing from
defined to undefined it takes the value stale, and the data
restriction is encoded within Consistency_Rules.

Table 2
Transitions for the compact.

Ci
k

CS Read() Modify() Commit()

C0
k

NR AskServer() AskServer() reject()
C1

k RO return(val) AskServer() commit()
C2

k RW return(val) update() commit()
C3

k RO return(val) AskServer() if no update then commit()
else AskServer()

C4
k

stale AskServer() AskServer() reject()

Figure 5. Compact: read-only leased data.

For illustration, we revert to the transitions involving truck
k for the OFFER example described in section 5.2. Based
on localization and relocalization, we can rest assured that
if the compact for the replicated data (the list of contracts)
has the requirements stipulated by C0

k through C4
k , this truck

can simply maintain these local constraints at each step and
thereby satisfy the global constraint.

The compact includes, in addition to the common meth-
ods, two type-specific ones, Read() and Modify(). Table 2 lists
for each constraint in the sequence, the corresponding com-
pact entry for Current_Status (CS), as well as the functional
description of the methods Read, Modify, and Commit.

For C0
k , Current_Status is made NR (nonresident); Obliga-

tion and Consistency_Rules are empty since the data is unde-
fined. Read (or Modify) results in an AskServer request to the
(compact manager of the) server for a read lease.

Since the data is defined but unchangeable in C1
k (figure 5),

Current_Status is made RO. The time range is translated into
a deadline and entered in the Obligation field. The Consis-
tency_rules field is left empty. Read returns the value and
Commit performs a local commit. An invocation to Modify
results in an AskServer request for write access.

For C2
k , since the data is defined and changeable, Cur-

rent_status becomes ReadWrite. Also, Modify now performs
an update. Not shown in the table is the additional restric-
tion captured by Consistency_Rules that each offer (time and
dollar value) can only decrease the current offer.

C3
k is like C1

k except that Commit checks if the transaction
has updated locally (in the RW period); if so, it asks the server
if a global commit is possible.

Finally, the call to surrender the lease would be made by
the server through Notify leading to the constraint reverting
to C4

k which is like C0
k except that Current_Status is stale

indicating a data value which may not be current (but in case it
is, no data transfer will be necessary when it becomes defined
later).



LOCALIZATION OF INTEGRITY CONSTRAINTS IN MOBILE DATABASES 489

Figure 6. Compact for mean and variance.

7.2.1. The PICKUP constraints
Now, the quadratic inequality constraint in section 6 ap-
plies to P3 and P4 with one difference: P3, P4 involve
four variables not two; consequently, our rectangle will be
4-dimensional. At any moment, the projections of that rectan-
gle on the four axes µ1, µ2, σ

2
1 , σ 2

2 will give us the indepen-
dent bounds on each of these four variables. Figure 6 shows
the compact for one of the trucks. Along with Obligations
and Current_Status, the Consistency_Rules field contains the
bounds on µ1, σ

2
1 , actually the intersection of those obtained

from all the four constraints.
While four variables are involved, µ1 and σ 2

1 are on one
MH and µ2 and σ 2

2 are on another. There is a short-cut based
on approximation that lets us revert to 2 dimensions. This
is based on accepting a common bound on the variance at
each node, i.e., 0 � σ 2

i /µi � L, for i = 1, 2, where L

is a constant. Using this, P3 and P4 reduce to the form of
the quadratic constraint of section 6 based on two variables
µ1, µ2 instead of four. Then figure 4 applies verbatim.

8. Conclusions

Exciting advances in wireless technology and semiconduc-
tors have thrown open the possibility of extending traditional
database management functionality to the mobile comput-
ing environment. In this paper, we examined the problem
of maintaining integrity constraints while executing transac-
tions in a mobile environment and proposed a framework
of localization. Our proposed framework is based on the
reformulation of global constraints into a conjunction of
local sufficient conditions and their dynamic maintenance.
The consequent enhancement of autonomy of the mobile
hosts empower them to avoid unbounded delays during con-
straint verification. This approach unifies techniques of main-
taining replicated data with methods of enforcing polynomial
inequalities. We discussed how this approach can be imple-
mented in PRO-MOTION, a flexible infrastructure for trans-
action processing in a mobile environment. The method is to
map the results of localization into the parameters of the com-
pact which is the basic unit of data replication for caching,
prefetching, and hoarding in PRO-MOTION.

Acknowledgements

Mazumdar and Chrysanthis are grateful to NSF for support
under grants IRI-9509789 and IRI-95020091, respectively,

and to their students as well as anonymous reviewers for their
comments on the earlier workshop version of this paper.

References

[1] D. Barbará and H. Garcia-Molina, The demarcation protocol: A tech-
nique for maintaining linear arithmetic constraints in distributed data-
base systems, in: Proc. 3rd Internat. Conf. on Extending Database
Technology (1992) pp. 373–388.

[2] P.K. Chrysanthis, Transaction processing in a mobile computing envi-
ronment, in: Proc. IEEE Workshop on Advances in Parallel and Dis-
tributed Systems (1993) pp. 77–82.

[3] P. Chrysanthis, G. Samaras and Y. Al-Houmaily, Recovery and perfor-
mance of atomic commit protocols in distributed database systems, in:
Recovery in Database Management Systems, eds. V. Kumar and M. Hsu
(Prentice Hall, 1998).

[4] H. Garcia-Molina, Global consistency constraints considered harmful,
in: Proc. 1st Internat. Workshop on Interoperability in Multidatabase
Systems (1991) pp. 248–250.

[5] C.G. Gray and D. Cheriton, Leases: An efficient fault-tolerant mecha-
nism for distributed file cache consistency, in: Proc. 12th ACM Sympos.
on Operating Systems Principles (1989) pp. 202–210.

[6] B. Housel, G. Samaras and D. Lindquist, WebExpress:
A client/intercept based system for optimizing web browsing in a
wireless environment, Mobile Networks and Applications 3(4) (1998)
419–431.

[7] J. Ioannidis, D. Duchamp and G.Q. Maguire, IP-based protocols for
mobile internetworking, in: Proc. ACM SIGCOMM Sympos. on Com-
munication, Architectures and Protocols (1991) pp. 235–245.

[8] J. Kisler and M. Satyanarayanan, Disconnected operation in the Coda
file system, ACM Transactions on Computer Systems 10(1) (1992) 13–
25.

[9] N. Krishnakumar and A. Bernstein, High throughput Escrow algo-
rithms for replicated databases, in: Proc. 18th Internat. Conf. on Very
Large Data Bases (1992) pp. 175–186.

[10] A. Kumar and M. Stonebraker, Semantics-based transaction manage-
ment techniques for replicated data, in: Proc. ACM SIGMOD Internat.
Conf. on Management of Data (1988) pp. 117–125.

[11] J. Lloyd, Foundations of Logic Programming (Springer, Berlin, 1984).
[12] S. Mazumdar, Optimizing distributed integrity constraints, in: Proc.

3rd Inernat. Sympos. on Database Systems for Advanced Applications
(1993) pp. 327–334.

[13] S. Mazumdar and P. Chrysanthis, Achieving consistency in mobile
databases through localization in PRO-MOTION, in: Proc. DEXA In-
ternat. Workshop on Mobility in Databases and Distributed Systems
(1999) pp. 82–89.

[14] S. Mazumdar, M. Pietrzyk and P. Chrysanthis, Caching constrained mo-
bile data, in: Proc. 10th Internat. Conf. on Information and Knowledge
Management (2001) pp. 442–449.

[15] S. Mazumdar and G. Yuan, Localizing a class of distributed con-
straints: A geometric approach, J. Computing and Information (2000)
3/ICCI98/6/2.

[16] S. Mazumdar and G. Yuan, Localizing global constraints: A geometric
approach, in: Proc. 9th Internat. Conf. on Computing and Information
(1998) pp. 297–304.

[17] P.E. O’Neil, The Escrow transactional method, ACM TODS 11(4)
(1986) 405–430.

[18] M. Pietrzyk, S. Mazumdar and R. Cline, Dynamic adjustment of local-
ized constraints, in: Proc. 10th Internat. Conf. on Database and Expert
Systems Applications (1999) pp. 791–801.

[19] E. Pitoura and G. Samaras, Data Management for Mobile Computing
(Kluwer, Dordrecht, 1998).

[20] K. Ramamritham and P. Chrysanthis, A taxonomy of correctness crite-
ria in database applications, VLDB J. 4(1) (1996) 181–293.

[21] L.L. Smail, Analytic Geometry and Calculus (Appleton-Century-
Crofts, 1953).



490 MAZUMDAR AND CHRYSANTHIS

[22] G.D. Walborn and P.K. Chrysanthis, Transaction processing in PRO-
MOTION, in: Proc. 14th ACM Annual Sympos. on Applied Computing
(1999) pp. 389–398.

[23] G.D. Walborn and P.K. Chrysanthis, PRO-MOTION: Support for mo-
bile database access, J. of Personal Technologies 1(3) (1997) 171–181.

Subhasish Mazumdar is an Associate Professor of
Computer Science at the New Mexico Insitute of
Mining and Technology (New Mexico Tech). He re-
ceived his B.Tech (Honors) and M.E. (Distinction) in
electronics and electrical communication engineer-
ing from the Indian Institute of Technology, Kharag-
pur and the Indian Institute of Science, Bangalore re-
spectively; his M.S. and Ph.D. degrees in computer
science were from the University of Massachusetts
at Amherst. His current research interests include in-

tegrity of distributed and mobile databases, document management, and the
use of conceptual modeling in software development. For his research he has
received support from the National Science Foundation and the Sandia Na-
tional Laboratory. He is a member of the ACM, IEEE Computer Society, and
Sigma Xi.
E-mail: mazumdar@cs.nmt.edu

Panos K. Chrysanthis is a Professor of Computer
Science at the University of Pittsburgh and an Ad-
junct Professor at Carnegie Mellon University. He
received his B.S. from the University of Athens,
Greece, in 1982 and his M.S. and Ph.D. from the
University of Massachusetts at Amherst, in 1986 and
1991, respectively. His current research focus is on
mobile and pervasive data management. In 1995, he
was a recipient of the National Science Foundation
CAREER Award for his investigation on the man-

agement of data for mobile and wireless computing. Besides journal and
conference articles, his publications include a book and book chapters on ad-
vances in transaction processing and on consistency in distributed databases
and multidatabases. He is currently an editor of the VLDB Journal, and was
program chair of several workshops and conferences related to mobile com-
puting. He is the ICDE 2004 Vice Chair for the area of distributed, parallel
and mobile databases and the General Chair of MobiDE 2003 and Mobile
Data Management 2005. He is a member of ACM (Sigmod, Sigmobile) and
IEEE Computer Society.
E-mail: panos@cs.pitt.edu


