
The Challenges of Requirements Engineering in Mobile Telephones Industry

Alessandro Maccari
Nokia Research Center

P. O. Box 407
FIN 00045 – NOKIA GROUP

Mobile: +358 40 749 9074
Fax: +358 9 4376 6308

alessandro.maccari@nokia.com

Abstract

Requirements engineering ranks as one of the most
difficult and error-prone phases in the life cycle of
devices such as mobile telephones. It is of critical
importance because of the highly dynamic market and the
constant evolution of product features. If carried out
properly, it shortens development time and allows to
build products that respond to the market needs.
However, it is too often regarded as useless and overly
time-consuming. An outlook on the state of practice
allows to identify space for improvement of the
requirements engineering process (REP). I propose three
main challenges that stand on the way towards an
optimal requirements engineering practice in our sector.
A higher degree of co-operation between the industry and
the research world is essential in order to achieve success
in this informal yet critical phase of product development.

1. Requirements in mobile telephones

Wireless (mobile) telephony has experienced
tremendous evolution in the past few years, and the
products, once mere voice communication devices
(portable telephones) with minimum extra functionality,
have turned into complex wireless computing units.

An example is the Nokia 9100 Communicator [10]: its
relevant computing capabilities allow to provide dozens
of services including Short Messaging System functions
(SMS, only in GSM products), web browsing
functionality and wireless imaging.

The user interface has evolved to support graphical
displays, while usability has increased as mobile
terminals, once expensive tools for very special needs, are
used with increasing frequency.

An increasingly complex software architecture has
evolved [7] in order to support compatibility between
different OS platforms (such as Microsoft’s Windows CE
and Symbian’s EPOC), enable new services such as the
Wireless Application Protocol for wireless information
services [14], and an ever-growing number of other
different services (e.g. intelligent networks).

1.1. The challenges of REP

Mobile terminals are performance critical, software-
intensive, embedded systems, and suffer from all
drawbacks typical of nomadic computing devices [11].
Special issues arise during software development,
particularly regarding architecture [12], development
methods [1] and requirements management.

In particular, requirements engineering constitutes
the essential starting point for any software system
development. Without a well-structured REP, the
resulting system is likely to reveal wrong features, not
meet market needs, be out of schedule and bug-infested.
One of Bob Glass’s recent books [2] gets so far as to
argue that inadequate requirements management is the
most frequent cause of software disasters.

1.2. REP in mobile telephony devices: even more
challenging?

Requirements management for mobile telephones is
very complex because of the lack of a global standard
transmission protocol, the numerous product
customisations and the variations due to local standards.

Moreover, several technical limitations affect
wireless devices [11], and impose tight requirements that
cannot be ignored when designing the products.

A badly structured engineering process can pose
severe consequences on several aspects concerning our
software development and product success:
• Software architecture: architects, by continuous

exchange of information with the system
stakeholders, must design and evolve the architecture
according to the system-level requirements set. If the
requirements process is flawed, the resulting
architecture will most likely be wrong or unstable;
this could bear extreme consequences on the system
integrity and maintainability.

• Complexity: the increasing number of services
included in mobile telephone devices, together with
the tight constraints on performance (real time
devices) and limited resources available (e.g.
memory), justify the need of a sound REP.

• Structuring of the features set: the speed of the
market and evolution of external aspect, size,
functionality, autonomy and price of wireless devices
place hard and colliding constraints on the
requirements set. A good requirements management
enables to define priorities within the requirements
set and structure design accordingly.

• Legacy management [5]: all main mobile telephone
manufacturers articulate their products into product
lines (families), or sets of products that share certain
common features. Other features vary across and
inside the various lines, usually following a
somewhat complicated variance pattern. This implies
that a relevant part of any new requirements are
similar (or equal) to those already tackled in existing
products of the same family. New requirements must
be adequately related to old ones, in order to avoid
building code that performs functionality which has
been already implemented. If such a process is
carried out effectively, reuse is possible for a large
part of the software (see below).

• Reuse: the standardisation of most network-related
features (e.g. the signal processing functions) and the
relative stability of some hardware elements during
evolution (e.g. power devices, user interface) put the
base for a wide application of reuse in
telecommunications systems [9, 15]. In the mobile
telephone market, being capable to effectively reuse
software can make the difference with competitors,
as it shortens time to market. In practice, however,
black box reuse is rare: it is extremely hard to build
components for reuse, since it is almost impossible to
predict how the requirements will evolve. Most
likely, some rework will be needed to reuse
components as the requirements change. A clear
model of the requirements of each software
subsystem may help to properly manage such
changes and avoid yet another reuse program failure
[Cockburn98, p. 158].

Telecommunication devices could be the most
complex systems ever built by man. Too often, the
requirements engineering phase is neglected for the sake
of speed in launching new products. Improvements of
REP in this sector of industry are therefore essential.

2. Issues for REP improvement

The variegation and complexity of requirements
engineering makes it hard to state any general principles
or guidelines. No analysis of the state of practice that I
know of has been carried out specifically for our sector. I
propose three main issues connected to software
development method, organisation and architecture.

2.1. Requirements engineering is not integrated in
the development method

In 1998, our research group published a paper [6] that
justified the reasons why a software development method
is tightly connected to the aspects of problem domain,
structure of product base, software development process
and organisation. We have summarised this in Figure 1.

Requirements engineering provides the framework for
problem domains. This is why a method that gives weak
support for REP is destined to fail.

Method

Problem

dom
ain

Org
an

iza
tio

n

Pro
ce

ss

Product
Base

Figure 1. Software development methods and
their implications.

At Nokia, some attempts have been made in order to
develop a requirements engineering process that takes
into account the hierarchy of products in a family.
However, the key problem of integrating requirements
into a method remains mostly unsolved. The reasons can
be connected to the method implications.
• Family requirements are too abstract: it is difficult to

express such features in terms of requirements at
lower (software components) level because of the
complexity of the product architecture (product
domain).

• Requirements are usually handled by non technical
staff (customer service and marketing people), that
negotiate the system features (usually, with
customers), often unduly neglecting the technical
constraints (organisation).

• They are difficult to formalise because of the
vagueness intrinsic in their expressions. Most refer to
user visible features, and are necessarily on a less
formal level than, say, hard real-time requirements
(problem domain).

• While we achieved considerable success in
engineering technical requirements, we have so far
lagged behind as for managing non-technical

requirements (e.g. usability, performance, reliability).
Product family requirements are usually customer
visible, and it is not immediate to integrate them into
a consolidated development practice (process).

It is hard to place all product requirements in a
hierarchy, and even harder to predict the evolution of the
family structure. These and other factors justify the need
of giving requirements management and engineering a
well-defined position in software development methods.

It appears that everyone involved in system design and
implementation understands that REP is an essential and
difficult part of product development. My first position is
that, notwithstanding the above fact, too little is done to
actually integrate requirements engineering into the
existing product and software development methods.

Techniques and tools do not lack. A usual first step is
the adoption of a use case driven approach [3]. The usage
of OOAD methods such as Octopus [1], supported by
modelling languages such as the Unified Modeling
Language (UML) [13], is also commonly thought to
provide a good framework. In this field, unfortunately,
the distance between academia and practice sadly reveals
to be unacceptably wide.
• The academia and research world regularly produces

techniques and notation schemes that are intended to
guide us towards formalisation of REP. Too often,
there is little proof that

• Almost symmetrically, the industry practice is mostly
stuck to ad hoc, informal methods.

Before the usefulness of requirements engineering
techniques is scientifically demonstrated, the industry will
have no motive to engineer the early parts of software
lifecycle. Until then, we should expect little progress.

2.2. Requirements engineering process is not
collaborative

Our experience at Nokia teaches us that requirements
engineering is often done at the wrong time, by the wrong
people, with the wrong techniques and the wrong process.
• Wrong time: formalisation of requirements is needed,

but it is usually done after the requirements have
been decided and transcribed in an informal and
unstructured way (usually, in common language).
What is not understood is that formalisation helps not
only in designing the product, but also in structuring
the requirements set and improving its consistency.
While excessive structuring may lead to some wrong
decisions and involve excessive effort, it is clear that
a greater deal of amount of time and resources should
be dedicated to requirements engineering, even after
design has started.

• Wrong people: the technical staff have the
knowledge necessary to evaluate whether the
requirements are achievable and the effort it takes to
implement certain features. However, they usually

give little contribution in the initial phase of
requirements negotiation, which is left to strategy
and marketing experts. Moreover, it has happened
that some requirements have been added without
consulting the customers, with negative effects on the
market due to misunderstanding of their needs
[proved e.g. in 16]. Customers should always be the
main stakeholders of the system, and this is true
particularly in the requirements engineering phase.

• Wrong techniques: several requirements elicitation
and modelling techniques have been proposed, but
they are not applied during requirements elicitation,
principally because the people involved in this phase
have little technical knowledge (see above: wrong
people) and because of the lack of any empirical
validity proof for most of them.

• Wrong process: requirements engineering is an
essential part of any system’s lifecycle, and should
be a major part of an incremental, iterative
development process (such as the Rational Unified
Process [4]). However, the developers cannot usually
participate in requirements elicitation but to a limited
extent. Thus, they might be forced to design an
overwhelmingly complex architecture in an attempt
to satisfy requirements that are too stringent. An
usual outcome of this scenario is a late reworking of
the impossible requirement(s), with overruns in
schedule, cost and low product quality. One of the
highest resounding examples (which does not belong
to the telecom world, but is very representative in its
kind) is the Advance Automation System (AAS), that
was meant to automate FAA’s flight control system
and instead resulted into a failure because of an
impossible reliability requirement [2, p. 56].

All the above considerations lead to my second
position: input from the customer (user needs), non
technical (such as marketing or strategy) and technical
(resources, performance) point of view should all
contribute to the set of product requirements. Therefore,
representatives of customer, technical and non technical
staff should collaborate on the definition of the set of
requirements before and during the design phase.
Requirements engineering must be a collaborative phase.

2.3. Requirements and software architecture are
not connected

With little doubt, the biggest effort in production of
mobile telephones goes into software development. In a
market where a new product family needs to be launched
every few months, software development can involve
fatal delays. Quite surprisingly, and contrarily to Bob
Glass’s findings [2, p.14], our experience tells us that
such schedule overruns are more likely to happen because
of poor development process and people management
(rather than technical) issues.

In most cases, the root of the problem can be found in
weak connection between the set of requirements and
software architecture. When requirements and
architecture evolve separately, the product failure alarm
should ring.

Such scenario often realises because the staff
developing the architecture has little voice during
elicitation of requirements (see 2.2: wrong people).
Symmetrically, the people that perform requirements
elicitation are not consulted during the architecting phase.
Only a few key requirements are considered when
developing the architecture, and the rest of the work is
left to the component developers.

Hence, my third position is that software architecting
and requirements engineering cannot be separated.
Software architecture is the high level solution to the
problems posed by the requirements. The set of
requirements should develop hand in hand with the
architecture. An architectural team composed by an
assorted selection of marketing, customer service and
technical staff can help bridge the gap. Alistair
Cockburn’s proposal in [Cockburn98, p. 129] may be
used as a basis for creating the optimal team. This also
complies with my previous position, in that it gets people
with different functions and background to speak and co-
operate around the same table.

3. Evolution

Requirements engineering as an academic discipline is
evolving with great speed, and providing diversified
solutions to what are commonly believed to be the main
industrial problems. However, the industry, especially in
the telecommunications sector, is slow and reluctant in
adopting and experimenting them.

Little has been published about practice in REP – [8]
being one exception. Scarce contribution comes from the
telecom industry. This is due to the lack of attention that
REP gets, and to the low level of formality of the current
processes, which makes the process difficult to describe
and the material unsuitable for publications.

The methods that are proposed by researchers should
be applied and empirically validated, in order to assess
their effectiveness. The academic world should focus on
solutions to real, maybe informal, industrial problems.

The industry, on the contrary, should dedicate greater
effort to formalisation of the existing requirements
engineering process, and focus on closer integration with
product development. Higher formalisation is needed,
though it should not be abused, since requirements are
never completely formal.

Looking at the future, I foresee that an increasing
number of projects will experience problems or, in
extreme cases, failure due to a bad REP. At Nokia, we are
in the process of experimenting a number of methods that
provide solutions to the above-mentioned issues. We

expect to contribute to the future research and industrial
issues in this vital field.

4. Acknowledgements

I thank Jyrki Heikkinen and Juha Kuusela for their
comments on requirements and architecture respectively.

5. References

[1]: M. Awad, J. Kuusela, J. Ziegler, Object-oriented technology
for real time systems: a practical approach using OMT and
Fusion, Prentice-Hall, 1996.

[2]: R. L. Glass, Software runaways, Prentice-Hall, USA, 1998.

[3]: I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard,
Object-oriented software engineering: a use case driven
approach, Addison-Wesley, 1992.

[4]: I. Jacobson, G. Booch, J. Rumbaugh, The Unified software
development process, Addison-Wesley, 1999.

[5]: A. Karhinen, M. Sandrini, J. Tuominen, An approach to
manage variance in legacy systems, in Proc. of the 3rd
European Conference on Software Maintenance and
Reengineering, Amsterdam, NL, 1999.

 [6]: J. Kuusela, A. Karhinen, A. Maccari, Justification for
special purpose object oriented software development methods,
Proc. of the Third International Conference on Object Oriented
Methodology WOON98, Saint Petersburg, Russia, 1998.

[7]: J. Kuusela, Architectural evolution, Nokia Mobile Phones
case, in Software Architecture, edited by Patrick Donohoe,
Kluwer Academic Publishers, Boston, USA, 1999.

[8]: M. Lubars, C. Potts, C. Richter, A review of the state of the
practice in requirements modelling, IEEE Symposium on
Requirements Engineering, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1992.

 [9]: A. Maccari, M. Sandrini, Impact of reuse on software
development for telecommunications systems, Proc. of the
European Reuse Workshop 1998, European Software Institute
Press, Madrid, Spain, November 1998.

[10]: see http://www.nokia.com/phones/9110/index.html

[11]: E. Pitoura, G. Samaras, Data management for mobile
computing, Kluwer Academic Publishers, 1998.

[12]: A. Ran, J. Kuusela, Selected issues in architecture of
software intensive products, Proc. of the Second International
Software Architecture Workshop ISAW-2, ACM, 1996.

[13]: see http://www.omg.org/news/pr97/umlprimer.html

[14]: see the WAP forum page at http://www.wapforum.org/

[15]: W. Frakes, [Frakes95]: W. B. Frakes, C. J. Fox, Sixteen
questions about software reuse, Communications of the ACM,
6(38), June 1995.

[16]: B. Curtis, H. Krasner, N. Iscoe, A field study of the
software design process for large systems, Communications of
the ACM 1988, 31(11).

