
Managing MEDLINE: A Comparison of a Native XML Database System with
a Relational Database System

Abstract

The rapid growth of public literature databases like
MEDLINE has created the need to efficiently store,
retrieve and update the millions of scholarly articles
and literature they contain. We believe using
alternative database systems like Native XML
databases (NXD) will greatly speed up the update
process significantly. We used existing and self-
developed software packages to parse and load the
2006 release of MEDLINE into two different database
systems, namely a NXD (Berkeley DB) and a relational
database system (PostgreSQL). The two systems were
compared using data collected on loading and parsing
times, disk-space utilization and query performance.
The NXD offered a significantly faster performance in
terms of data parsing and loading times. It was also
easier to update and maintain, compared to the
relational database system. However, in comparison,
the relational database system we tested offered better
performance in querying large datasets and was also
significantly lower on disk-space utilization.

1. Introduction

The primary source of published scholarly
information in the field of biosciences is MEDLINE,
which is currently a collection of about 16 million
citations maintained by the National Library of
Medicine (NLM) [1]. Researchers often refer to this
massive information source for various kinds of
information. The rapidly increasing rate of new articles
submitted to MEDLINE is a major factor contributing
to its growth. This poses a challenge to researchers to
keep up to date with the latest information. Hence,
there is a need for tools that can automate the data
loading process and also provide a convenient way to
mine specific information from this database.
Moreover, due to the large number of people querying
the database online, and in an effort to control load on
the servers, NLM limits the number of times you can
submit a query within a given time frame. Hence, a
local instance of the MEDLINE database offers
researchers to overcome the limitations of the query
options offered by NLM’s web interface. It offers
greater flexibility in data mining and other applications
by allowing individuals to develop their own
customized applications to mine information from
MEDLINE.

MEDLINE is available for complete download to
its licensees at no charge [2]. The files that NLM
provides for download are available in the form of
several XML (eXtensible Markup Language)
formatted files. The 2006 release of MEDLINE
consists of a total of 836 compressed files which
includes 516 baseline files and 320 update files. The
entire distribution requires 8.7 GB of disk space for the
compressed files, and 54.1 GB for the uncompressed
baseline files [3]. For the purpose of this study, only
the 516 baseline files were used to load an instance of
MEDLINE. It must also be noted that even though the
first 515 of these files contain up to 30,000 citations
each, not all citations are of the same size. For
instance, the most early of MEDLINE citations lack
abstracts, and hence they are of smaller size compared
to later citations, that include full text abstracts. Also,
not all XML documents contain all defined tags.

1.1 XML Technologies

XML is a free, open-standard markup language, which
is flexible, thus allowing its use in a variety of
applications. It is called an extensible language
because users can create their own custom XML files
by modifying, adding or removing tags.
 The DTD (Document Type Definition) defines the
integral structure of the XML document. It describes
the hierarchical arrangement of tags in an XML
document. The DTD contains a list of all legal
elements and their respective child elements, if any,
that may appear in the XML document. An XML
document associated with its DTD must comply with
the rules and default elements and attributes in the
DTD to be considered valid. This serves as a tool to
verify syntactic correctness of data.

1.2 XPath & XQuery

The Berkeley DBXML [4] provides XQuery based
access to query the database for useful information.
XQuery uses path expressions to navigate through the
XML document and it uses predicates as constraints to
filter the required data. Since data in Native XML
Databases (NXDs), is stored as XML documents, it is
therefore possible to use the XPath and XQuery data
models to construct queries. XQuery comprises of a
combination of one or more XPath expressions,
arranged according to the FLWOR expression.

FLWOR [12] is an acronym for "For, Let, Where,
Order by, Return".
The for clause selects all elements under a particular
element into a specified variable.
The where clause selects only those elements that
satisfy a constraint.
The order by clause defines the sort-order.
The return clause specifies what should be returned.

All NXDs, like the Berkeley DB XML,
Xindice [13], eXist [14], etc. store data as XML
formatted files, called documents. These documents
are stored in a designated container. Each container is
capable of storing XML files, called ‘documents’ in
the database. Comparing this system to a relational
database system, a container, defined by a specified
DTD functions as a table, which has an innate structure
defined by its fields, whereas each XML document in a
container may be compared to a single row in a
relational database.
The XML format despite being a flat file, already has
an integral structure, as defined by its DTD; therefore,
there is no need to create a database schema, as in
relational database systems. The NLM provides a DTD
for MEDLINE that defines how the data are
represented in the distributed XML files [7]. Berkeley
DB XML has an optional feature that allows for
validation of each XML document, as it is being
loaded into the container. For the purpose of this study,
validation was not performed on the XML documents,
in order to minimize the loading time.
For the original XML files to be stored in a relational
database, extensive amount of parsing needs to be
performed. Native XML Databases (NXDs) use an
XML document as its fundamental unit, comparable to
a row in a relational database. Loading and storing data
in the XML format will tremendously ease the loading
of data into the database, and will considerably reduce
the loading time by eliminating the parsing process.
This is especially useful, since NLM provides frequent
updates for MEDLINE, sometimes approximately 3 to
4 times a week. Hence, the database needs to be
updated frequently to incorporate the updated
information. Moreover, since a NXD will preserve the
XML format and allow storing the original XML files
without any semantic modifications, it will also
eliminate the chance of errors or misrepresentation of
data.

In this study, we investigate the use of a NXD
system (Berkeley DBXML) [4] to host MEDLINE,
and study the advantages and possible disadvantages
of using such a database format over a traditional
relational database system (PostgreSQL) [5] by
performing a comprehensive comparative analysis.

The rest of the paper is organized as follows: In
Section 2, we give the implementation of both the
relational and Native XML databases and describe the
process involved to load and store MEDLINE. In
Section 3, we present results and discuss the
performance comparison of the databases. In Section
4, we discuss related work and finally offer our
conclusions in Section 5. The code for our
implementation can be found at:
http://www.mscs.mu.edu/~praveen/Research/Medline/

2. Implementation

2.1 Relational Database System

For the relational database implementation, we used a
modified version of the tool developed and provided
by Oliver et al. [6]. It was modified to work with
PostgreSQL, whereas the database schema and SQL
queries remained unchanged.

2.2 Native XML Database System

The files distributed by NLM are of two kinds,
baseline and update files. Each baseline XML file
contains upto 30,000 MEDLINE citations [3]. Each
XML file contains the root node <MedlineCitationSet>
with several child nodes called <MedlineCitation>,
one for each citation or PMID (PubMed ID) (Figure
1). The maximum depth of an XML document that
contains all possible tags, as defined by the MEDLINE
DTD is 92. In order to store each citation as an
individual XML document in the NXD, we developed
the MedlineChunker program, implemented in Perl,
that processes each file by chunking it into individual
XML documents, one, for each citation.

Figure 1: Structure of an XML formatted uncompressed
baseline file from MEDLINE: Each distributed baseline
XML file has a <MedlineCitationSet> root node, with

http://www.mscs.mu.edu/%7Epraveen/Research/Medline/

several <MedlineCitation> child nodes, one for each
MEDLINE citation.

 MedlineChunker works by iterating through each
compressed file, one at a time, uncompressing it in
memory, removes the root tag, and extracts each
individual record as data under the <MedlineCitation>
node using regular expressions, and loads it as a
document into the Berkeley DB XML (Figure 2). This
method preserves the integral structure of data, as it is
represented in the original XML file. Each document
in the NXD has a <PMID> node that defines the
PubMed ID of the document and works as the unique
identifier in the database. The entire process is carried
out in memory, in an effort to increase efficiency by
avoiding writing dump files, then loading them from
disk.

Figure 2. MEDLINE NXD chunking and loading process:
In Step 1, the MedlineChunker software uncompresses each
MEDLINE distribution file, then breaks up (chunks) each
file into individual citations, in the form of several XML
documents. In Step 2, the XML documents are loaded into
the container.

2.3 Hardware configuration and system
requirements

We used a SUN Solaris 10, 750-Ghz dual-processor
system, with 4.5 GB of random access memory
(RAM). It had a SCSI 3 connected RAID level 5 array
with five hard disks, each with a capacity of 400 GB.
PostgreSQL 8.0.3 [5] was used to host the relational
database and Berkeley DB XML 2.2.13 [4] for the
NXD system. Perl 5.8.4 and the Sleepycat DBXml
module were utilized to chunk and load the MEDLINE
files for the Berkeley DBXML version. Java 1.5.0_01
was used to run a modified version of the Java

MedlineParser package [6] to load MEDLINE into
PostgreSQL.

3. Results and Discussion

This section describes the comparisons drawn on the
two database types on the basis of loading time and
disk space utilization as well as the querying times.
This is followed by the comparison of query structures
and description of the translation process to derive an
XQuery for each corresponding SQL query statement.

3.1 Loading time and disk space utilization

Loading time for the NXD was significantly

faster and the entire 2006 release of MEDLINE took
48.25 hours to load, whereas the relational database
took 92.70 hours to parse and load the data into the
database (Table 1). Loading the NXD is much faster,
because it does not involve any parsing, and stores the
entire XML document as a record, ‘as-is’. However,
loading into a relational database involves parsing to
remove XML tags, which is relatively a very time-
consuming process. We also compared loading time
using different test sets, each containing a different
number of MEDLINE baseline files (Figure 3). The
loading of data in PostgreSQL was relatively linear as
compared to DBXML. The initial bend in loading time
in Berkeley DBXML can be attributed to a lack of
abstracts in earlier MEDLINE files, while later
MEDLINE files contain full text abstracts.

Figure 3. Loading time for Berkeley DBXML and
PostgreSQL: Loading time comparison testing of DBXML
and PostgreSQL implementations using sets of 26, 50, 100,
150 and 200 baseline files. The slight bend in the DBXML
implementation can be attributed to a lack of abstracts in
early MEDLINE records, and thereafter, full text abstracts in
later citations, where it becomes linear.

The NXD was relatively very high on disk space
and occupied 150.3GB and the relational database took

16.8GB of disc space (Table 1). This can be attributed
to the fact that for each record, the NXD stores the
entire XML document, including all tags, which are
repetitive in each document, hence taking up a lot of
disc space. On the other hand, as a result of parsing
when loading the relational database, all XML tags
were eliminated before the data was loaded into the
database, thus cutting down on data that needs to be
stored in the database.

Database Language Input
Size

Loading
Time

Disc
Space

NXD
(Berkeley
DBXML)

Perl 54.1 GB
(516 files)

48.25
Hours

150.3
GB

Relational
(PostgreSQL
)

Java 54.1 GB
(516 files)

92.70
Hours

16.8
GB

Table 1. Loading time and disk space comparison.

3.3 Querying the databases

In order to compare meaningful queries, when using
MEDLINE data, we used SQL queries described by
Oliver et al. [6]. The SQL queries were each translated
into their corresponding XQuery. Table 2 describes a
simple SQL statement and the corresponding XPath
statement to fetch the Pubmed IDs of all citations in
the database. The time taken to perform this query in a
relational database took 3.3 minutes, while the NXD
counterpart took a long 168 minutes (Table 6). This
could be attributed to the fact that Berkeley DBXML
stores the entire result set in the memory and then only
prints it when required, whereas, a relational database
instantly streams the output to the screen without
storing the entire result set in the memory.

A SELECT pmid FROM
medline_citation;

B Collection(“mymedContainer.dbxml”
)/MedlineCitation/PMID/text()

Table 2. Query 1: Fetch all Pubmed Ids in the MEDLINE
database

Query2 (Table 3) fetches the journals that have
citations associated with the MeSH term ‘Leukemia’.
This query took 39.5 minutes in Berkeley DBXML
and 7.7 minutes in PostgreSQL (Table 6).

A SELECT mc.medline_ta,
count(mc.pmid) as
num of publications

FROM medline citation mc
JOIN medline mesh heading msh
ON mc.pmid = msh.pmid
WHERE msh.descriptor_name =
'Leukemia' GROUP BY mc.medline ta
ORDER BY count(mc.pmid) desc;

B let $p:= <tag> {for $x in
collection(“mymedContainer.dbxml”
)/MedlineCitation[MeshHeadingList
/MeshHeading/DescriptorName =
“Leukemia”]/Article/Journal/Title
return $x} </tag>
for $v in distinct-
values($p/Title) order by
count($p/Title[.=$v]) descending
return concat($v,
count($p/Title[.=$v]))

Table 3. Query 2: Fetch Journals that contain citations that
are associated with the MeSH term ‘Leukemia’ and also the
number of such citations for each such journal.

We performed another query (Query 3) that is a
modification of the query above to include all citations
that have MeSh terms containing the word ‘Leukemia’
(Table 4). Therefore, such a query would also include
terms such as ‘Leukemia, Myeloid’ and ‘Leukemia,
Bovine’.

A SELECT mc.medline_ta,
count(mc.pmid) as
num_of_publications FROM
medline_citation mc JOIN
medline_mesh_heading msh ON
mc.pmid = msh.pmid
WHERE msh.descriptor name
CONTAINS 'Leukemia'
GROUP BY mc.medline ta
ORDER BY count(mc.pmid) desc;

B let $p:= <tag> { for $x in
collection(“mymedContainer.dbxml”
)/MedlineCitation[MeshHeadingList
/MeshHeading[contains(DescriptorN
ame,“Leukemia”]/Article/Journal/T
itle return $x} </tag>
for $v in distinct-
values($p/Title) order by
count($p/Title[.=$v]) descending
return concat($v,
count($p/Title[.=$v]))

Table 4. Query 3: Fetch Journals that contain citations that
contain the MeSH term ‘Leukemia’ and also the number of
such citations for each such journal.

When comparing querying times for both the
databases, it is important to note here that the Berkeley
DBXML database could not be indexed for the entire
MEDLINE data because in order to index data for a

‘contains’ query, we need to create an ‘edge-element-
substring-string’ index, which is an extremely slow
and disk-space consuming process on data the size of
MEDLINE, as the database stores subsets of each
MeSh term. For example, for the term Leukemia, it
will store L, Le, Leu, Leuk, Leuke, and so on as
individual indexed terms.

A

SELECT 'Berkeley' as institution,
count(pmid) as num_of_publications
FROM medline citation
WHERE
CONTAINS(article_affiliation,'"Ber
keley"') = 1 AND date_created >
2003 UNION
SELECT 'Stanford' as institution,
count(pmid) as num_of_publications
FROM medline citation
WHERE
CONTAINS(article_affiliation,'"Sta
nford"') = 1 AND date_created >
2003;

B let $x :=
collection(“mymedContainer.dbxml”)
/MedlineCitation[contains(Article/
Affiliation/text(), “Berkeley”)]
let $y := $x/DateCreated[Year >
2003] let $p :=
collection(“mymedContainer.dbxml”)
/MedlineCitation[contains(Article/
Affiliation/text(), “Stanford”)]
let $q := $p/DateCreated[Year >
2003] return (concat
(“Berkeley”, count($y)), concat
(“Stanford”, count($q)))

Table 5. Query 4: Fetch the number of citations published in
the last three years by Berkeley and Stanford.

Table 5 illustrates Query 4, which fetches the number
of papers published in MEDLINE by Berkeley and
Stanford in the last 3 years. For this particular query,
since it was not a ‘contains’ query, it was easier to
index the database for the ‘Year’ node. Therefore, this
query had much better response time compared to
other queries. Berkeley DBXML completed this query
in 4.3 minutes. PostgreSQL took 3.8 minutes to
complete this query (Table 6).

Database Query
1

Query
2

Query
3

Query
4

DBXML 168 39.5 196 4.3
PostgreSQL 3.3 7.7 5.4 3.8

Table 6. Querying time comparison; Time in minutes.

4. Related Work

In Table 7, we summarize our survey of related
research works, which have undertaken performance
evaluation of relational databases versus native XML
databases across different features: disk space
utilization, loading time, query performance and use of
bioinformatics data.

Table 7. Comparison parameters used to evaluate databases
to store XML data in various studies. *This study evaluated
only native XML and relational databases with XML
packages to store XML data, however it involved the use of
bioinformatics data as part of the test set.

The use of bioinformatics data for comparison
purposes is particularly interesting to biologists and
computer scientists who work with similar kind of
data. Benjamin Bin Yao et al. [15] describe the
XBench XML benchmark and evaluate the relative
performance of various DBMSs. Similar to the results
in our study, they found native XML databases
performed much faster, compared to a relational
database (SQL Server) with an XML package. This
confirms our belief that native XML databases can be a
promising data management standard of the future,
with increasingly more data sources releasing their
data in the XML format.
Alan Halverson et al. [16] propose a method for
storing XML data in traditional relational databases,
called Relational Over XML (ROX). Their results
show the native XML database requiring more disk
space for the same data-set compared to the relational
database, which is consistent with our results;
however, with data storage becoming increasingly
cheaper, this should not be a major concern.
Yi Chen et al. [17] propose a polynomial time
streaming algorithm to evaluate XPath queries. It was
observed that this method streamlines the query
processing time by storing data in a lazy fashion. They
test this approach using several native XML databases.
Zhen Hua Liu et al. [18] discuss the Oracle XMLDB
XQuery architecture and its capabilities for natively
supporting these XQuery operations using SQL/XML
standard functions. Hongjun Lu et al. [19] evaluate the

performance of various XML databases including
native XML databases and relational databases with
XML mapping approaches. They test these databases
on the basis of query response times. Their results
indicate that the native XML databases by far
outperformed the document-dependent relational
databases in terms of query processing times.

5. Conclusions

There is a growing need for both computer scientists
and biologists to keep an up-to-date version of
MEDLINE in their local system. However, using
existing tools of relational database system is a
daunting task because of the sheer amount of time it
takes to load and parse data. Hence, alternative
databases such as Native XML Databases (NXDs) are
one option to alleviate such problems. Berkeley
DBXML was significantly faster for loading data,
compared to PostgreSQL. However, the relational
database surpassed Berkeley DBXML when it came to
querying large sets of complex result sets. The native
XML database did not have efficient memory
management capabilities, as compared to the relational
database, which prevented it from performing SORT
and GROUP BY operations on larger data sets.
Moreover, it was also noted that conventional
relational databases have superior and well developed
indexing techniques compared to the native XML
database, which did not perform well in contain
queries because it is not feasible to index data on the
basis of substrings.
We hope our study has given pointers to scientists
debating over the use of NXDs versus relational
database systems. We also believe by solving the
challenges of efficient indexing and memory
management techniques for NXDs, these could be
powerful tools for efficiently maintaining MEDLINE
information.

6. References

1. National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov

2. Leasing data from the NLM,
http://www.nlm.nih.gov/databases/leased.html

3. File Names, Record Counts, and File Size for 2006
MEDLINE/PubMed Baseline
Database.Distribution,
http://www.nlm.nih.gov/bsd/licensee/2006_baselin
e_med_filecount.html

4. Berkeley DBXML,
http://www.oracle.com/database/berkeley-
db.xnl/index.html

5. PostgreSQL, http://www.postgresql.org/

6. Oliver, DE., Bhalotia, G., Schwartz, AS., Altman,
RB., Hearst, MA.: Tools for loading MEDLINE
into a local relational database. BMC
bioinformatics, 5:146 (2004)

7. DTDs for NLM Databases,
http://www.nlm.nih.gov/databases/dtd/index.html

8. Hulse, N., Rocha, R., Del Fiol, G., Bradshaw, R.,
Hanna, T., Roemer, L.: The Knowledge Authoring
Tool: An XML-based Knowledge Acquisition
Environment. Conf Proc IEEE Eng Med Biol Soc,
5:3350-3353 (2004)

9. Mudunuri, U., Stephens, R., Bruining, D., Liu, D.,
Lebeda, FJ.: botXminer: mining biomedical
literature with a new web-based application.
Nucleic acids research, 34(Web Server
issue):W748-752 (2006)

10. Shaohua, Alex Wang YF., Huey, C., Frank, P,,
Barg, U., Adam, F., Raj, L., Sarada, C., Gladys,
W., Marc, K., Robert, L. Martino, Calvin A. J.:
Performance of Using Oracle XMLDB in the
Evaluation of CDISC ODM for a Clinical Study
Informatics System. 17th IEEE Symposium on
Computer-Based Medical Systems (2004)

11. Seibel PN., Kruger J., Hartmeier S., Schwarzer K.,
Lowenthal K., Mersch H., Dandekar T., Giegerich
R.: XML schemas for common bioinformatic data
types and their application in workflow systems.
BMC bioinformatics, 7:490 (2006)

12. XQueryFLWOR expressions,
http://www.w3schools.com/xquery/xquery_flwor.a
sp

13. Xindice, http://www.xindice.org
14. eXist, http://exist.sourceforge.net
15. Yao, B., Ozsu, T., Khandelwal, N.: XBench

Benchmark and Performance Testing of XML
DBMSs. Proceedings of the 20th International
Conference on Data Engineering (2004)

16. Halverson, A., Josifovski, V., Lohman, G.,
Pirahesh, H., Mörschel, M.: ROX: Relational Over
XML. Proceedings of the 30th VLDB Conference,
Toronto, Canada (2004)

17. Chen, Y., Davidson S., Zheng, Y.: An Efficient
XPath Query Processor for XML Streams.
Proceedings of the 22nd International Conference
on Data Engineering, ICDE (2006)

18. Liu, Z., Krishnaprasad, M., Arora, V.: Native
XQuery Processing in Oracle XMLDB, Oracle
Corporation.

19. Lu, H., Jiang, H.: What Makes the Differences:
Benchmarking XML Database Implementations.
ACM Transactions on Internet Technology, Vol. 5,
No. 1 (2005)

http://www.ncbi.nlm.nih.gov/
http://www.nlm.nih.gov/databases/leased.html
http://www.nlm.nih.gov/bsd/licensee/2006_baseline_med_filecount.html
http://www.nlm.nih.gov/bsd/licensee/2006_baseline_med_filecount.html
http://www.w3schools.com/xquery/xquery_flwor.asp
http://www.w3schools.com/xquery/xquery_flwor.asp
http://www.xindice.org/

	1. Introduction
	1.1 XML Technologies
	1.2 XPath & XQuery

	2. Implementation
	2.1 Relational Database System
	2.2 Native XML Database System
	2.3 Hardware configuration and system requirements

	3. Results and Discussion
	3.1 Loading time and disk space utilization
	3.3 Querying the databases

	4. Related Work
	5. Conclusions
	6. References

