
 

  
Abstract - We have earlier introduced constraint checker, a 
general framework for checking global constraints using an agent 
based approach. In this paper, we complement the constraint 
checker with algorithms for checking global constraints involving 
aggregates in the presence of updates. The algorithms take as 
input an update statement, a list of global constraints involving 
aggregates, and granulizes each global constraint into sub 
constraint granules. The sub constraint granules are executed 
locally on remote sites and then the algorithm decides if a 
constraint is violated based on these sub constraint executions. 
The algorithms are efficient as the global constraint checks are 
carried before the update; hence we save time and resources 
spent on rollbacks.  

Index Terms— Global Integrity Constraints, Multidatabases, 
Aggregate Constraints 

I. INTRODUCTION 
Aggregate queries and their optimisations have long been 
recognised as an important area in advanced database 
applications, such as data warehousing and decision support 
systems [5,15].Naturally, these kinds of applications 
enormously utilise constraints involving aggregates. Hence, 
we need to check for such aggregate constraint violations 
under updates.  Granular computing (GrC) [10,11,17] has 
received much attention during recent years. The different 
issues and perspectives of granular are well explained in [16]. 
One of the basic ideas of GrC is to decompose a computing 
problem into sub granules. These sub granules are either 
aggregated or decomposed further into new sub granules and 
this process repeats until we find the solution to the computing 
problem. We apply the decomposition idea of GrC to check 
for global constraint violations in multidatabases.  

Most of the commercial database systems and previous 
research has considered checking for constraint violations 
after executing an update statement. However, this leads to 
extra time and resources being spent on rollbacks, when the 
constraints are violated. This situation is further exacerbated in 
a multidatabase setting, when an update statement causes 
global constraints to be violated. Therefore, we design an 
agent based general framework, propose algorithms, and 
implement prototype of the system for checking global 
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constraints without having to execute the update statement. 
This saves time and resources spent on rollbacks.  

We have earlier proposed a general framework for 
checking global semantic integrity constraints using mobile 
agents [12]. To our knowledge, we have not come across of 
any research using mobile agents for checking global semantic 
integrity constraints. These constraints are mainly classified as 
constraints involving arithmetic and aggregate functions. In 
[13], we have proposed algorithms for checking constraints 
involving arithmetic predicates. Here, we extend our on-going 
work by proposing algorithms for checking constraint 
violations involving aggregates.  Due to space limitations, we 
are not able to describe the implementation details. 
 The rest of the paper is organised as follows: In Section 2, 
we give an example healthcare multidatabase system that will 
be referred throughout the paper. We also give basic notations 
for integrity constraints. The aggregate constraint checking 
algorithms are discussed in Section 3. We compare our work 
with other peer’s work and offer our conclusions in Section 4. 

II. PRELIMINARIES 
We give an example healthcare multidatabase system. We 

also introduce the basic notations for integrity constraint 
representation. 

A. Example Database 
Consider our example of a health care multidatabase as 

shown in Figure 1. It is a very natural scenario to have 
patient's information distributed across multiple sites. In such 
a database setting, it is possible to have same predicate (table) 
names at two different sites. Hence, we need a notation that 
distinguishes one predicate from the other. We use the 
notation of: Si:table t, where t is the name of the table 
stored on site Si. To make the problem interesting and generic, 
we consider both vertical and horizontal distribution of data. 
CLAIM table is horizontally distributed across all the three 
sites, S1, S2 and S3. A patient can make multiple claims 
uniquely identified by their CaseId. For example, John is 
associated with multiple claims (with CaseId's - 1, 3, and 4) on 
sites S1 and S3. We avoid the description of the tables and 
columns as they are self explanatory from their names. 

B. Constraints 
We consider integrity constraints in the form of range-
restricted denials (datalog style notation). 
 A1 ^ A2 ^ … ^ An 
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Where each Ai is a literal or an aggregate literal involving a 
base predicate and global variables are assumed to be 
universally quantified over the whole formula [1]. An 
aggregate literal is expressed as  
          Ai(ŝ, α(y):v):- B  

 

 
Figure 1: Example healthcare multidatabase 

Where (i) B is a conjunction of predicate atoms that represent 
relations, (ii) ŝ is the grouping list of attributes that must 
appear some where in the body of the rule - B, (iii) α is 
aggregate function such as avg, count, max, and min, (iv) y is 
the aggregate variable, and (v) v is the result of applying the 
aggregate function. We assume that the aggregate literals are 
not recursive, just as in [14]. 
Say integrity constraint C1 states “the sum of claim amounts 
for each patient with healthplan 'B' may not be more than 
100000”. This can be conveniently represented using the 
approach of [6]. A constraint is a query whose result is either 0 
or 1([6] calls it "panic"). If the query produces 0 on the 
multidatabase D, then D is said to satisfy the constraint, or the 
constraint is violated on D. 
A(SSN,SUM(Amount):v1) :- S1:PATIENT(SSN,-,'B'), 
                         S1:CASE(CaseId,SSN,-), 
                         S1:CLAIM(CaseId,- 
              ,Amount,-). 
B(SSN,SUM(Amount):v2):-  S1:PATIENT(SSN,-,'B'), 
                         S1:CASE(CaseId,SSN,-), 
                         S2:CLAIM(CaseId,- 
              ,Amount,-). 
C(SSN,SUM(Amount):v3):-  S1:PATIENT(SSN,-,'B'), 
                         S1:CASE(CaseId,SSN,-), 
                         S3:CLAIM(CaseId,- 
              ,Amount,-). 
PanicC1  A(SSN,v1),B(SSN,v2),C(SSN,v3), 

 v1+v2+v3 >10000. 
For convenience, we will refer PanicC1 as just C1. 

III. CONSTRAINT PLANNING INVOLVING 
AGGREGATES 

The basic idea of constraint planning is to decompose a 
global constraint into a conjunction of sub constraints (or 
granules), where each conjunct represents the constraint check 
as seen from each individual database [4]. Given an update 
statement, a brute force approach would be to go ahead and 

update the database state from D to D' and then check for 
constraint violation. However, we want to be able to check for 
constraint violation without updating the database. Hence, the 
update statement is carried out only if it is a non constraint 
violator.The approach of the constraint planning algorithm 
involving aggregates is to scan through the global constraint 
Ci(involving aggregates), update statement U and then 
generate the conjunction of sub constraints, Cij's (Cij indicates 
the sub constraint corresponding to constraint ci on site sj). 
The value of each conjunct (Cij) is either 0 or 1 and if the 
overall value of the conjunction is 1, constraint is violated, 
otherwise not. 

A. CPAggreg-insert 
Algorithm CPAggreg-insert  
(constraint planning involving aggregates for an insert 
statement) gives constraint decompositions (Cij's), 
corresponding to global constraint Ci (involving aggregates) 
and an insert statement (decomposition is based on the locality 
of sites). Algorithm CPAggreg-insert takes as input the 
insert statement U and the list of all global constraints C and 
outputs the list of sub constraints (Cij) for each Ci being 
affected by U.  
DOL (database object list) identifies the database objects 
being modified by the update statement, U. DOL (line 3) 
identifies, the table R with attributes (column names) a1…an 
inserted with values t1…tn. The constraint data source table, 
CDST (line 4) gives the list of sites involved, for each 
constraint being affected by the update statement. The outer 
for loop variable i (line 6) loops through all the constraints 
C1…Cq affected by the update U. The inner for loop variable j 
(line 7) loops through each site (<S11,…,S1n1 >,…,<Sq1,…,Sqnq 

>) for each constraint i. Inside the for loop (lines 6-40), all the 
sub constraints Cij’s are generated. Sj:p1 (X1) ,p2 (X2),…,pr 

(Xr) (line 8) denotes, for a particular site Sj, X1…Xr are the 
vector of variables corresponding to the predicates (table 
names), p1…pr.  
Algorithm CPAggreg–insert  
1:    INPUT: (a) U: insert Sm:R(t1,…,tn)  
                      (b) C: list of all global constraints /* insert is 
occurring on site Sm */ 
2:    OUTPUT: list of sub constraints < Ci1 ,…,Ciki > for each 
Ci affected by U 
3:    DOL (U) = < R (a1= t1,…,an= tn) > 
4:    CDST(C,DOL(U))  =  < <C1, (S11,…,S1n1 )>,…,<Cq, 
(Sq1,…,Sqnq )> > 
5:  let θ = {x1  t1,…,xn  tn}be obtained from DOL(U) 
where x1…xn are variables 
     corresponding to the columns of table R 
6:    for each i in {1… q} do 
7:       for each j in {1…ni} do 
8:          let A be all arithmetic sub goals associated with Sj,  
Aggreg be all Aggregate literals associated with site Sj 
(atleast one of the predicates in the body of aggregate literal 
belongs to Sj) and Sj: p1(X1), p2(X2)… pr(Xr) be sub goals of  
Ci associated with Sj 
9:          if (j <> m) then  
/* site where update is not occurring */ 



 

10:         for each Aggregate literal, aggreg(ŝ,α(y):v):- 
B do 
11:        Aijd = select ŝ,α(y) 
                 from predicates in the   
                 Body B 
                 where <cond1> 
                 group by ŝ  
12:           if all the predicates in B belong to same site Sj,  
<cond1> is obtained by standard joining of  tables from B  
using variables from θ; else semi-join operation is employed 
for distributed tables. It includes any arithmetic sub goal 
conditions. Aijd is the value of the aggregate literal 
corresponding to constraint Ci, site Sj and d is the nth such 
literal. Vijd is the value of  aggregate operation corresponding 
to Aijd 
13:            end for  
14:        else if (j=m) then   /* site where update is occurring */ 
15:           for each Aggregate literal, 
aggreg(ŝ,α(y):v):- B do 
16:                Aijd =  select ŝ,α(y) 
                from predicates in the  
                Body B where <cond2>  
                group by ŝ  
17:               if α = “sum” then 
18:                vijd = θ(y)+ vijd   
/*vijd is the value calculated from Aijd of line 16 */ 
19:                else if  α  = “min” then 
20:                   vijd = min(θ(y),vijd) 
21:                else if  α  = “max” then 
22:                   vijd = max(θ(y),vijd) 
23:                else if  α  = “count” then 
24:                  if θ(y) is not null then vijd = vijd + 1 /* we are  
                        assuming single row inserts */  
25:               else if  α  = “avg” then 
26:                   add  θ(y)to the sum aggregate and divide by  
                         total count 
27:              end if 
28:          end for 
29:     if (there exists variables in A that do not appear in 
Aggreg or θ ) then 
30:         for each variable νar in A that do not appear in 
Aggreg or θ do 
31:                   let k be the site where νar appears in a sub 
goal, S:t(X) in Ci 
32:                  IPikd = (select Col(νar) from S:t 
where <cond3> ) 
33:                  Col(νar) is the column name corresponding 
to νar . <cond3> is  
                        obtained from joining X and θ . d is nth 
intermediate predicate                                                                  
34:          end for 
35:      end if 
36:     Cij = return 1 if (<cond4> and (logical and) A′ ) else 
return 0. 
37:   <cond4> is obtained from θ and X1…Xr. A′ is A with 
IP’s replacing corresponding variables and vijd’s replacing 
corresponding aggregate values 
38:    end if  /* end of the “else if” on line 12 */ 

39:   end for 
40: end for 
41:  apply the substitution θ(U) to all Cij 
A critical feature of the algorithm is the generation of vijd’s 
(lines 15-28) at the site where update is happening. Also, an 
intermediate predicate (IP) is generated only at the site where 
update is occurring. In concept, IP’s represent information that 
needs to be shared from a different site. Implementation wise, 
IP is a SQL query returning value of the variable, νar (line 30) 
from a different site. IPikd (line 32) means the dth intermediate 
predicate corresponding to constraint Ci and site SK.   
Example 3.1 : Here, we show the working of the algorithm 
CPAggreg-insert on the example database and 
constraints introduced in Section 2. Consider the initial 
multidatabase state as shown in Figure 1 
Input:    U1 = insert into S2:CLAIM values 
          (5,'02/20/2005',25000,'Emergency'); 
C = list of all global constraints 
Output: list of sub constraints Ci1 ,…,Ciki  for each Ci affected 
by U1 
DOL = {S2:CLAIM (CaseId=5,ClaimDate='02/20/2005
', 
                
Amount=25000,Type='Emergency'}. 
CDST = <C1, (S1, S2, S3)> /* C1 is given in 
Section 2.2 */ 
θ = {S2:CLAIM(CaseId1=5,ClaimDate1='02/20/2005'
, Amount1 = 25000,Type1 = 'emergency') } 
/* A111 and A112 are generated from CPAggreg-
insert from line 11 */ 
A111 = select PA.SSN,sum(CL.Amount) "v111" 
       from S1_PATIENT PA, S1_CASE CA, 
S1_CLAIM CL 
       where PA.SSN = CA.SSN and PA.HealthPlan 
= 'B' 
       and CA.CaseId = CL.CaseId and CA.CaseId 
= CaseId1 
       group by PA.SSN; 
A112 = select PA.SSN,sum(CL.Amount) "v112" 
       from S1_PATIENT PA, S1_CASE CA, 
S3_CLAIM CL 
       where PA.SSN = CA.SSN and PA.HealthPlan 
= 'B' 
       and CA.CaseId = CL.CaseId and CA.CaseId 
= CaseId1 
       group by PA.SSN; 
/* A121 is generated from CPAggreg-insert from 
line 16 */ 
A121 = select PA.SSN,sum(CL.Amount) "v121" 
       from S1_PATIENT PA, S1_CASE CA, 
S2_CLAIM CL 
       where PA.SSN = CA.SSN and PA.HealthPlan 
= 'B' 
       and CA.CaseId = CL.CaseId and CA.CaseId 
= CaseId1 
       group by PA.SSN; 
V121 = amount1 + v121; /* from line 18 */ 
C12 = return 1 if {V111+V112+V121 > 100000} /* 
line 36 */ 
θ(C12) = return 1 if { θ(V111)+θ(V112)+θ(V121) > 
100000 } 
/* θ(V111) is obtained by substituting 
CaseId1=5 in A111 and similarly we calculate 
θ(V112) and θ(V121) */ 



 

Hence, θ(C12) = return 1 if (50000+30000+25000 
> 100000) 
Therefore, C1 = C12 = 1 (true). Hence, 
constraint C1 is violated by the given update. 

B. Discussion 
Due to space constraints, we are not able to report algorithm 

for delete statements:  CPAggreg-delete (Constraint Planning 
involving Aggregates for a delete). CPAggreg-delete proceeds 
in a similar fashion as the CPAggreg-insert. The only 
difference is the site where delete is occurring. Line 16 of 
CPAggreg-insert is modified in the where clause and <cond2> 
is obtained by negating the variables from θ (negation is done 
because it’s a delete statement). The constraint planning for a 
modify can be modeled as a delete followed by an insert. 

The constraint planning algorithm considers only 
elementary update statements. The elementary update 
statements are statements affecting only one row of a table at a 
time. However, note that any update statement can be 
translated equivalently to a set of elementary updates. Hence 
the generality of the algorithm is not lost. Also, note that we 
have not considered the issue of constraint checking in the 
presence of transactions.  

If we have a template of possible update statements, most of 
the steps of the algorithm can be executed in compile time and 
when an actual update statement is given, a template match 
can occur and only the last line of the algorithm (line 41 of 
CPAggreg-insert) happens at run time. By pushing most of the 
processing at compile time, we gain efficiency at run time. 
Hence, constraint checking before the update statement saves 
lot of time and resources spent on rollbacks and also uses very 
less time at run time.   

IV. RELATED WORK AND CONCLUSIONS 
Related Work: Grufman et al. [4] provide an excellent formal 
description of distributing a constraint check over a number of 
databases. In their constraint distribution model, constraint 
check is carried after executing an update statement. They 
consider semantic integrity constraints involving simple 
arithmetic predicates. However, our algorithms are much more 
sophisticated as we perform constraint checks before the 
updates and thus saving time and resources on rollbacks. Also, 
we consider semantic integrity constraints involving both 
arithmetic and aggregate predicates. Ibrahim [8] proposes a 
strategy for constraint checking in distributed database where 
data distribution is transparent to the application domain. They 
propose an algorithm for transforming a global constraint into 
a set of equivalent fragment constraints. However, our 
algorithm coverage is much broader as we can have different 
tables on different sites. In our approach, the constraint 
planning algorithm generates the sub constraints, which can be 
readily implementable on oracle database system.  

Grefen and Widom [3] give an exhaustive survey of 
protocols for integrity constraint checking in federated 
database systems. Gupta and Widom [7] give approaches for 
constraint checking in distributed databases at a single site.  
Conclusions: We have presented constraint checker, an agent 
based framework for checking global semantic integrity 

constraints. We proposed algorithms for checking global 
semantic integrity constraints involving aggregates in the 
presence of updates. The algorithms check for constraint 
violations before the update happens; hence, we save on time 
and resources spent on rollbacks. Most of the processing of the 
algorithm could happen in compile time; hence we save on the 
time spent at run time.  

Constraint optimizations are part of our on-going future 
work. We plan to give a performance cost model for our 
constraint optimizations. We also intend to evaluate the 
performance of the system under varying conditions.  
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