

Abstract - We have earlier introduced constraint checker, a
general framework for checking global constraints using an agent
based approach. In this paper, we complement the constraint
checker with algorithms for checking global constraints involving
aggregates in the presence of updates. The algorithms take as
input an update statement, a list of global constraints involving
aggregates, and granulizes each global constraint into sub
constraint granules. The sub constraint granules are executed
locally on remote sites and then the algorithm decides if a
constraint is violated based on these sub constraint executions.
The algorithms are efficient as the global constraint checks are
carried before the update; hence we save time and resources
spent on rollbacks.

Index Terms— Global Integrity Constraints, Multidatabases,
Aggregate Constraints

I. INTRODUCTION
Aggregate queries and their optimisations have long been
recognised as an important area in advanced database
applications, such as data warehousing and decision support
systems [5,15].Naturally, these kinds of applications
enormously utilise constraints involving aggregates. Hence,
we need to check for such aggregate constraint violations
under updates. Granular computing (GrC) [10,11,17] has
received much attention during recent years. The different
issues and perspectives of granular are well explained in [16].
One of the basic ideas of GrC is to decompose a computing
problem into sub granules. These sub granules are either
aggregated or decomposed further into new sub granules and
this process repeats until we find the solution to the computing
problem. We apply the decomposition idea of GrC to check
for global constraint violations in multidatabases.

Most of the commercial database systems and previous
research has considered checking for constraint violations
after executing an update statement. However, this leads to
extra time and resources being spent on rollbacks, when the
constraints are violated. This situation is further exacerbated in
a multidatabase setting, when an update statement causes
global constraints to be violated. Therefore, we design an
agent based general framework, propose algorithms, and
implement prototype of the system for checking global

Praveen Madiraju (praveen@mscs.mu.edu) is an Assistant Professor in the
Department of Mathematics, Statistics and Computer Science at Marquette
University, Milwaukee, USA. Rajshekhar Sunderraman (raj@cs.gsu.edu) is an
Associate Professor in the Department of Computer Science at Georgia State
University, Atlanta, USA. Haibin Wang is a research scientist in Winship
cancer institute at Emory University, Atlanta, USA.

constraints without having to execute the update statement.
This saves time and resources spent on rollbacks.

We have earlier proposed a general framework for
checking global semantic integrity constraints using mobile
agents [12]. To our knowledge, we have not come across of
any research using mobile agents for checking global semantic
integrity constraints. These constraints are mainly classified as
constraints involving arithmetic and aggregate functions. In
[13], we have proposed algorithms for checking constraints
involving arithmetic predicates. Here, we extend our on-going
work by proposing algorithms for checking constraint
violations involving aggregates. Due to space limitations, we
are not able to describe the implementation details.
 The rest of the paper is organised as follows: In Section 2,
we give an example healthcare multidatabase system that will
be referred throughout the paper. We also give basic notations
for integrity constraints. The aggregate constraint checking
algorithms are discussed in Section 3. We compare our work
with other peer’s work and offer our conclusions in Section 4.

II. PRELIMINARIES
We give an example healthcare multidatabase system. We

also introduce the basic notations for integrity constraint
representation.

A. Example Database
Consider our example of a health care multidatabase as

shown in Figure 1. It is a very natural scenario to have
patient's information distributed across multiple sites. In such
a database setting, it is possible to have same predicate (table)
names at two different sites. Hence, we need a notation that
distinguishes one predicate from the other. We use the
notation of: Si:table t, where t is the name of the table
stored on site Si. To make the problem interesting and generic,
we consider both vertical and horizontal distribution of data.
CLAIM table is horizontally distributed across all the three
sites, S1, S2 and S3. A patient can make multiple claims
uniquely identified by their CaseId. For example, John is
associated with multiple claims (with CaseId's - 1, 3, and 4) on
sites S1 and S3. We avoid the description of the tables and
columns as they are self explanatory from their names.

B. Constraints
We consider integrity constraints in the form of range-
restricted denials (datalog style notation).
 A1 ^ A2 ^ … ^ An

Praveen Madiraju, Rajshekhar Sunderraman and Haibin Wang, Member, IEEE

A Framework for Global Constraint Checking
Involving Aggregates in Multidatabases Using

Granular Computing

Where each Ai is a literal or an aggregate literal involving a
base predicate and global variables are assumed to be
universally quantified over the whole formula [1]. An
aggregate literal is expressed as
 Ai(ŝ, α(y):v):- B

Figure 1: Example healthcare multidatabase

Where (i) B is a conjunction of predicate atoms that represent
relations, (ii) ŝ is the grouping list of attributes that must
appear some where in the body of the rule - B, (iii) α is
aggregate function such as avg, count, max, and min, (iv) y is
the aggregate variable, and (v) v is the result of applying the
aggregate function. We assume that the aggregate literals are
not recursive, just as in [14].
Say integrity constraint C1 states “the sum of claim amounts
for each patient with healthplan 'B' may not be more than
100000”. This can be conveniently represented using the
approach of [6]. A constraint is a query whose result is either 0
or 1([6] calls it "panic"). If the query produces 0 on the
multidatabase D, then D is said to satisfy the constraint, or the
constraint is violated on D.
A(SSN,SUM(Amount):v1) :- S1:PATIENT(SSN,-,'B'),
 S1:CASE(CaseId,SSN,-),
 S1:CLAIM(CaseId,-
 ,Amount,-).
B(SSN,SUM(Amount):v2):- S1:PATIENT(SSN,-,'B'),
 S1:CASE(CaseId,SSN,-),
 S2:CLAIM(CaseId,-
 ,Amount,-).
C(SSN,SUM(Amount):v3):- S1:PATIENT(SSN,-,'B'),
 S1:CASE(CaseId,SSN,-),
 S3:CLAIM(CaseId,-
 ,Amount,-).
PanicC1 A(SSN,v1),B(SSN,v2),C(SSN,v3),

 v1+v2+v3 >10000.
For convenience, we will refer PanicC1 as just C1.

III. CONSTRAINT PLANNING INVOLVING
AGGREGATES

The basic idea of constraint planning is to decompose a
global constraint into a conjunction of sub constraints (or
granules), where each conjunct represents the constraint check
as seen from each individual database [4]. Given an update
statement, a brute force approach would be to go ahead and

update the database state from D to D' and then check for
constraint violation. However, we want to be able to check for
constraint violation without updating the database. Hence, the
update statement is carried out only if it is a non constraint
violator.The approach of the constraint planning algorithm
involving aggregates is to scan through the global constraint
Ci(involving aggregates), update statement U and then
generate the conjunction of sub constraints, Cij's (Cij indicates
the sub constraint corresponding to constraint ci on site sj).
The value of each conjunct (Cij) is either 0 or 1 and if the
overall value of the conjunction is 1, constraint is violated,
otherwise not.

A. CPAggreg-insert
Algorithm CPAggreg-insert
(constraint planning involving aggregates for an insert
statement) gives constraint decompositions (Cij's),
corresponding to global constraint Ci (involving aggregates)
and an insert statement (decomposition is based on the locality
of sites). Algorithm CPAggreg-insert takes as input the
insert statement U and the list of all global constraints C and
outputs the list of sub constraints (Cij) for each Ci being
affected by U.
DOL (database object list) identifies the database objects
being modified by the update statement, U. DOL (line 3)
identifies, the table R with attributes (column names) a1…an
inserted with values t1…tn. The constraint data source table,
CDST (line 4) gives the list of sites involved, for each
constraint being affected by the update statement. The outer
for loop variable i (line 6) loops through all the constraints
C1…Cq affected by the update U. The inner for loop variable j
(line 7) loops through each site (<S11,…,S1n1 >,…,<Sq1,…,Sqnq

>) for each constraint i. Inside the for loop (lines 6-40), all the
sub constraints Cij’s are generated. Sj:p1 (X1) ,p2 (X2),…,pr

(Xr) (line 8) denotes, for a particular site Sj, X1…Xr are the
vector of variables corresponding to the predicates (table
names), p1…pr.
Algorithm CPAggreg–insert
1: INPUT: (a) U: insert Sm:R(t1,…,tn)
 (b) C: list of all global constraints /* insert is
occurring on site Sm */
2: OUTPUT: list of sub constraints < Ci1 ,…,Ciki > for each
Ci affected by U
3: DOL (U) = < R (a1= t1,…,an= tn) >
4: CDST(C,DOL(U)) = < <C1, (S11,…,S1n1)>,…,<Cq,
(Sq1,…,Sqnq)> >
5: let θ = {x1 t1,…,xn tn}be obtained from DOL(U)
where x1…xn are variables
 corresponding to the columns of table R
6: for each i in {1… q} do
7: for each j in {1…ni} do
8: let A be all arithmetic sub goals associated with Sj,
Aggreg be all Aggregate literals associated with site Sj
(atleast one of the predicates in the body of aggregate literal
belongs to Sj) and Sj: p1(X1), p2(X2)… pr(Xr) be sub goals of
Ci associated with Sj
9: if (j <> m) then
/* site where update is not occurring */

10: for each Aggregate literal, aggreg(ŝ,α(y):v):-
B do
11: Aijd = select ŝ,α(y)
 from predicates in the
 Body B
 where <cond1>
 group by ŝ
12: if all the predicates in B belong to same site Sj,
<cond1> is obtained by standard joining of tables from B
using variables from θ; else semi-join operation is employed
for distributed tables. It includes any arithmetic sub goal
conditions. Aijd is the value of the aggregate literal
corresponding to constraint Ci, site Sj and d is the nth such
literal. Vijd is the value of aggregate operation corresponding
to Aijd
13: end for
14: else if (j=m) then /* site where update is occurring */
15: for each Aggregate literal,
aggreg(ŝ,α(y):v):- B do
16: Aijd = select ŝ,α(y)
 from predicates in the
 Body B where <cond2>
 group by ŝ
17: if α = “sum” then
18: vijd = θ(y)+ vijd
/*vijd is the value calculated from Aijd of line 16 */
19: else if α = “min” then
20: vijd = min(θ(y),vijd)
21: else if α = “max” then
22: vijd = max(θ(y),vijd)
23: else if α = “count” then
24: if θ(y) is not null then vijd = vijd + 1 /* we are
 assuming single row inserts */
25: else if α = “avg” then
26: add θ(y)to the sum aggregate and divide by
 total count
27: end if
28: end for
29: if (there exists variables in A that do not appear in
Aggreg or θ) then
30: for each variable νar in A that do not appear in
Aggreg or θ do
31: let k be the site where νar appears in a sub
goal, S:t(X) in Ci
32: IPikd = (select Col(νar) from S:t
where <cond3>)
33: Col(νar) is the column name corresponding
to νar . <cond3> is
 obtained from joining X and θ . d is nth
intermediate predicate
34: end for
35: end if
36: Cij = return 1 if (<cond4> and (logical and) A′) else
return 0.
37: <cond4> is obtained from θ and X1…Xr. A′ is A with
IP’s replacing corresponding variables and vijd’s replacing
corresponding aggregate values
38: end if /* end of the “else if” on line 12 */

39: end for
40: end for
41: apply the substitution θ(U) to all Cij
A critical feature of the algorithm is the generation of vijd’s
(lines 15-28) at the site where update is happening. Also, an
intermediate predicate (IP) is generated only at the site where
update is occurring. In concept, IP’s represent information that
needs to be shared from a different site. Implementation wise,
IP is a SQL query returning value of the variable, νar (line 30)
from a different site. IPikd (line 32) means the dth intermediate
predicate corresponding to constraint Ci and site SK.
Example 3.1 : Here, we show the working of the algorithm
CPAggreg-insert on the example database and
constraints introduced in Section 2. Consider the initial
multidatabase state as shown in Figure 1
Input: U1 = insert into S2:CLAIM values
 (5,'02/20/2005',25000,'Emergency');
C = list of all global constraints
Output: list of sub constraints Ci1 ,…,Ciki for each Ci affected
by U1
DOL = {S2:CLAIM (CaseId=5,ClaimDate='02/20/2005
',

Amount=25000,Type='Emergency'}.
CDST = <C1, (S1, S2, S3)> /* C1 is given in
Section 2.2 */
θ = {S2:CLAIM(CaseId1=5,ClaimDate1='02/20/2005'
, Amount1 = 25000,Type1 = 'emergency') }
/* A111 and A112 are generated from CPAggreg-
insert from line 11 */
A111 = select PA.SSN,sum(CL.Amount) "v111"
 from S1_PATIENT PA, S1_CASE CA,
S1_CLAIM CL
 where PA.SSN = CA.SSN and PA.HealthPlan
= 'B'
 and CA.CaseId = CL.CaseId and CA.CaseId
= CaseId1
 group by PA.SSN;
A112 = select PA.SSN,sum(CL.Amount) "v112"
 from S1_PATIENT PA, S1_CASE CA,
S3_CLAIM CL
 where PA.SSN = CA.SSN and PA.HealthPlan
= 'B'
 and CA.CaseId = CL.CaseId and CA.CaseId
= CaseId1
 group by PA.SSN;
/* A121 is generated from CPAggreg-insert from
line 16 */
A121 = select PA.SSN,sum(CL.Amount) "v121"
 from S1_PATIENT PA, S1_CASE CA,
S2_CLAIM CL
 where PA.SSN = CA.SSN and PA.HealthPlan
= 'B'
 and CA.CaseId = CL.CaseId and CA.CaseId
= CaseId1
 group by PA.SSN;
V121 = amount1 + v121; /* from line 18 */
C12 = return 1 if {V111+V112+V121 > 100000} /*
line 36 */
θ(C12) = return 1 if { θ(V111)+θ(V112)+θ(V121) >
100000 }
/* θ(V111) is obtained by substituting
CaseId1=5 in A111 and similarly we calculate
θ(V112) and θ(V121) */

Hence, θ(C12) = return 1 if (50000+30000+25000
> 100000)
Therefore, C1 = C12 = 1 (true). Hence,
constraint C1 is violated by the given update.

B. Discussion
Due to space constraints, we are not able to report algorithm

for delete statements: CPAggreg-delete (Constraint Planning
involving Aggregates for a delete). CPAggreg-delete proceeds
in a similar fashion as the CPAggreg-insert. The only
difference is the site where delete is occurring. Line 16 of
CPAggreg-insert is modified in the where clause and <cond2>
is obtained by negating the variables from θ (negation is done
because it’s a delete statement). The constraint planning for a
modify can be modeled as a delete followed by an insert.

The constraint planning algorithm considers only
elementary update statements. The elementary update
statements are statements affecting only one row of a table at a
time. However, note that any update statement can be
translated equivalently to a set of elementary updates. Hence
the generality of the algorithm is not lost. Also, note that we
have not considered the issue of constraint checking in the
presence of transactions.

If we have a template of possible update statements, most of
the steps of the algorithm can be executed in compile time and
when an actual update statement is given, a template match
can occur and only the last line of the algorithm (line 41 of
CPAggreg-insert) happens at run time. By pushing most of the
processing at compile time, we gain efficiency at run time.
Hence, constraint checking before the update statement saves
lot of time and resources spent on rollbacks and also uses very
less time at run time.

IV. RELATED WORK AND CONCLUSIONS
Related Work: Grufman et al. [4] provide an excellent formal
description of distributing a constraint check over a number of
databases. In their constraint distribution model, constraint
check is carried after executing an update statement. They
consider semantic integrity constraints involving simple
arithmetic predicates. However, our algorithms are much more
sophisticated as we perform constraint checks before the
updates and thus saving time and resources on rollbacks. Also,
we consider semantic integrity constraints involving both
arithmetic and aggregate predicates. Ibrahim [8] proposes a
strategy for constraint checking in distributed database where
data distribution is transparent to the application domain. They
propose an algorithm for transforming a global constraint into
a set of equivalent fragment constraints. However, our
algorithm coverage is much broader as we can have different
tables on different sites. In our approach, the constraint
planning algorithm generates the sub constraints, which can be
readily implementable on oracle database system.

Grefen and Widom [3] give an exhaustive survey of
protocols for integrity constraint checking in federated
database systems. Gupta and Widom [7] give approaches for
constraint checking in distributed databases at a single site.
Conclusions: We have presented constraint checker, an agent
based framework for checking global semantic integrity

constraints. We proposed algorithms for checking global
semantic integrity constraints involving aggregates in the
presence of updates. The algorithms check for constraint
violations before the update happens; hence, we save on time
and resources spent on rollbacks. Most of the processing of the
algorithm could happen in compile time; hence we save on the
time spent at run time.

Constraint optimizations are part of our on-going future
work. We plan to give a performance cost model for our
constraint optimizations. We also intend to evaluate the
performance of the system under varying conditions.

V. BIBLIOGRAPHY
 [1] Das, S.K. and Williams, M.H. Extending integrity maintenance

capability in deductive databases. In the proceedings of the UK ALP-90
Conference, pp.75-111, 1990.

[2] Grefen, P. and Apers, P. Integrity Control in Relational Database
Systems - An Overview, Journal of Data and Knowledge Engineering,
10 (2), 187-223, 1993

[3] Grefen, P. and Widom, J. Protocols for integrity Constraint Checking in
Federated Databases. International Journal of Distributed and Parallel
Databases, 5(4)

[4] Grufman, S., Samson, F., Embury, S.M., Gray, P.M.D and Risch T.
 Distributing Semantic Constraints Between Heterogeneous Databases.
 Proceedings of the Thirteenth International Conference on Data
 Engineering (ICDE), April, 1997
[5] Grumbach, S.,Rafanelli, M., and Tininini, L. Querying Aggregate Data.
 PODS 1999.
[6] Gupta, A., Sagiv, Y., Ullman, J.D. and Widom, J. Constraint Checking
 with Partial Information. Proceedings of the PODS , Minneapolis,
 Minnesota, May 1994.
[7] Gupta, A. and Widom, J. Local Verification of Global Integrity
 Constraints in Distributed Databases. Proceedings of the ACM
 SIGMOD, Washington, D.C., May 1993
[8] Ibrahim, H. A Strategy for Semantic Integrity Checking in Distributed
 Databases. Proceedings of the ninth International Conference on
 Parallel and Distributed Systems, ICPADS 2002, pages 139-144
[9] Lange,D.B., and Oshima, M. Mobile Agents with Java: The Aglet API.
 World Wide Web 1(3): 111-121 (1998).
[10] Lin, T. Y. Granular Computing: Fuzzy Logic and Rough Sets,
 In Computing with words in information/intelligent systems, L.A.
 Zadeh and J. Kacprzyk (eds), Physica-Verlag (A Springer-Verlag
 Company), 183-200, 1999
[11] Lin, T. Y. Data Mining and Machine Oriented Modeling: A
 Granular Computing Approach, Journal of Applied Intelligence,
 Kluwer, Vol 13, No 2, 2000, 113-124.
[12] Madiraju, P. and Sunderraman, R. Mobile Agent Approach for Global
 Database Constraint Checking. Proceedings of ACM Symposium on
 Applied Computing (SAC'04), Nicosia, Cyprus, 2004, pp. 679-683.
[13] Madiraju, P. and Sunderraman, R. An Efficient Constraint Planning
 Algorithm for Multidatabases, Proceedings of 2005 ACS/IEEE
 International Conference on Computer Systems and Applications
 (AICCSA 2005), Cairo, Egypt, January 3-6, 2005
[14] Martinenghi, D. Simplification of integrity constraints with aggregates
 and arithmetic built-ins. In proceedings of Flexible Query Answering
 Systems (FQAS), 2004.
[15] Tan, K-L., Goh, C.H. and Ooi, B.C. Progressive evaluation of nested

aggregate queries. The VLDB Journal, Volume 9, Issue 3 (December
 2000).
[16] Yao, Y.Y., Perspectives of Granular Computing , 2005 IEEE
 Conference on Granular Computing, to appear
[17] Zadeh, L.A. Some reflections on soft computing, granular computing
 and their roles in the conception, design and utilization of
 information/intelligent systems, Soft Computing, 2, 23-25, 1998.

