

Enforcing Interdependencies and Executing Transactions Atomically Over
Autonomous Mobile Data Stores Using SyD Link Technology1

Sushil K. Prasad*, Anu G. Bourgeois*, Erdogan Dogdu*, Raj Sunderraman*, Yi Pan*, Sham Navathe**, Vijay Madisetti***

*Computer Science Department
Georgia State University, Atlanta, GA 30303

**College of Computing
***Department of Electrical Engineering

Georgia Institute of Technology, Atlanta GA 30332

Abstract

System of Mobile Devices (SyD) is a middleware we
developed that can be used for implementing collaborative,
mobile, and distributed applications over heterogeneous
devices, data stores, and computing environments. Current
prototype implementation of SyD consists of five modules.
These modules provide ease of programming in the areas of
distributed communication, remote method invocation,
service publication and discovery, directory services,
distributed service invocation and aggregation, event
handling, collaborative link creation and enforcement. A
central module is SyDLink, which allows SyD-based
applications to create “coordination” links. Coordination
links represent dependencies among heterogeneous devices
and application components. Based on the underlying event-
and-trigger mechanism, they allow automatic updates as
well as real-time enforcement of global constraints and
interdependencies. SyDLink objects provide the underlying
mechanism in SyD to enforce atomic execution of distributed
transactions. We explain and demonstrate the use of
SyDLink objects via a running example, a collaborative SyD
calendar application, throughout the paper.

1. Introduction

System on Devices (SyD) middleware technology was
introduced [1] to address key problems of device
heterogeneity, data format and network, and that of mobility.
SyD combines ease of application development, mobility of
code, application, data and users, network and geographical
location independence, and the scalability required of large
enterprise applications concurrently with the small footprint
required by handheld devices. SyD uses the simple yet
powerful idea of separating device management from the
management of groups of users and/or databases.

The current technology for the development of such
collaborative applications over a set of wired or wireless
devices and networks has several limitations. Developing an
application requires explicit and tedious programming on
each kind of device, both for data access and for data
communication. The application code is specific to the type
of device, data format, and the network. The data-stores are
typically a centralized logical entity providing only a fixed

set of services, with little flexibility for user-defined ad
hoc services or the ability of user applications to
dynamically configure a collection of independent data
stores. Applications running across mobile devices are
complex because of the lack of persistence of their data due
to their weak connectivity. There are only a few existing
middlewares which address the stated requirements. Even
these are either not completely functional at this time, or
enable only client-side programming on mobile devices, or
are geared to a limited domain of applications, or are limited
in group or transaction functionalities or mobility support.

The calendar application is an example of a typical SyD
application in which several individuals maintain their
independent schedule information in their hand-held and
other devices [2-4]. The typical functionalities provided in
such an application are: (i) set up meetings among
individuals with certain conditions to be met such as a
required quorum, (ii) set up tentative meetings which could
not be set up otherwise due to unavailability of certain
individuals, and (iii) remove oneself from a meeting or
cancel an entire meeting resulting in automatic triggers being
executed that may possibly convert tentative meetings into
confirmed ones. Section 2 presents the current prototype
implementation of SyD middleware and also introduces the
SyD-based calendar application.

Creating and maintaining a dynamic group of entities, as
in a meeting, is integral to SyD. We use SyD coordination
links that can be employed by the SyD middleware for this
purpose. The coordination links are abstract relationships
among entities with underlying constraints and event-based
triggers. These allow automatic updates and synchronization
across independent data stores as well as on-the-fly
establishment and enforcement of global constraints and
interdependencies. Subscription links allow automatic flow
of information from a source entity to other entities that
subscribe to it. This can be employed for synchronization as
well as for more complex changes. Negotiation links
enforce dependencies and constraints across entities and
trigger changes based on constraint satisfaction.

Section 3 introduces the SyD coordination links, how they
express interdependencies, and how transaction atomicity is
achieved using links with examples from the calendar
application. Section 4 presents the implementation and
execution of SyDLink objects. Section 5 provides a
comparison with existing calendar applications. Section 6
concludes with an overview and a comparison of SyD to
existing distributed database technologies.

1This research was partially supported by State of Georgia's
Yamacraw Embedded Software Contract #CLH49 and #DLN01.
Embedded Software Contract #CLH49 and #DLN01.

2. Overview of SyD
 SyD is envisioned as a middleware that will enable rapid
prototyping and implementation of distributed applications
SyD is envisioned as a middleware that will enable rapid
prototyping and implementation of distributed applications
that need a collection of heterogeneous, independent
databases to collaborate with each other in a mobile
environment. Each individual device in SyD may be a
traditional database such as relational or object-oriented, or
may be an ad-hoc data store such as a flat file, an EXCEL
worksheet or a list repository. These may be located in
traditional computers, in personal digital assistants (PDAs)
or even in devices such as a utility meter or a set-top box.
These devices are assumed to be independent of each other,
i.e. they do not share a global schema. The devices in SyD
co-operate with each other to perform interesting tasks and
we envision a new generation of applications to be built
using the SyD framework.

Figure 1 depicts the layered architecture of SyD runtime
environment in the current implementation. SyD in this
environment is a middleware providing distribution
transparency and management to SyD-based application
development, therefore, greatly reducing the development,
implementation, deployment, and maintenance time
(software life cycle) for designers and programmers of
distributed applications on heterogonous mobile devices and
environments.

Figure 1. SyD Runtime Environment

SyD is a middleware located between applications and the

communication services provided by primitive distribution
middleware (Sockets, RMI, JXTA, CORBA, etc. [5-6]).
Each layer depends on the services provided by a lower
layer. Therefore, each layer hides complexities of the tasks
provided in that layer from upper layers. This provides
following advantages:
a. Distribution transparency: SyD modules provide location,

access, resource sharing, and migration transparencies
[21]. Application developers concentrate on application

functionality, and business logic; distribution services are
provided by SyD Kernel seamlessly.

b. Rapid application development: Detailed application
distribution issues are hidden from designers and
programmers (distribution transparency) therefore
reducing design and development time.
SyD utilizes “primitive” distribution middleware

technologies for remote method invocations, distributed
object access, and registration. These could be Sockets,
Java/RMI, CORBA, .NET, SOAP, etc [5-7,10,11]. In the
current implementation, we have used TCP Sockets for
small footprint and maximum flexibility. Future versions of
SyD will be expanded to include other distribution
middleware technologies, such as JXTA, for wider
heterogeneity and acceptance.

The next lower layer in the current architecture is a JVM.
We have developed SyD Kernel using Java and utilizing
TCP Sockets for distributed communication layer.
Consequently, applications developed using SyD run on a
JVM. This also allows SyD applications to run on
heterogonous devices and operating systems since JVM is
available on many different platforms including small
mobile devices (e.g., we employed Jeode JVM on iPAQs).

In this framework, applications are developed rapidly
using SyD Kernel modules without any knowledge about
lower layer services (primitive distribution middleware,
OS/environment).
Figure 1 lists three sample mobile applications that we have
developed using SyD middleware: a calendar application, a
fleet application, and a price-is-right bidding game suitable
to be played at an airport or a mall. Section 4 will provide
more detail about the calendar application.

We have designed and implemented a modular SyD
Kernel utility in Java. SyD Kernel includes the following
five modules (Figure 1 and Figure 2):

SyDDirectory: Provides user/group/service publishing,
management, and lookup services to SyD users and device
objects. Also supports intelligent proxy maintenance for
users/devices. SyDListener: Enables SyD device objects to
publish their services (server functionalities) as “listeners”
locally on the device and globally via the directory services.
It then allows users on SyD network to invoke single or
group services via remote invocations seamlessly (location
transparency). SyDEngine: Allows users to execute single or
group services remotely via SyDListener and aggregate
results. SyDEventHandler: This module handles local and
global event registration, monitoring, and triggering.
SyDLinks: Enables an application to create and enforce
interdependencies, constraints and automatic updates among
groups of SyD entities.

A SyD-based application (SyDAppO object), such as
SyDCalendar, SyDFleet, etc., typically has a server
component and a client component. Such an application
developed using SyD Kernel interacts with SyD Kernel

module APIs to get higher-level distribution services in the
following fashion:
a. Publishing on SyDDirectory: Applications register and

publish their information including location and service
availability on SyDDirectory for other users to lookup and
execute via SyDEngine. User/object groups can also be
formed on SyDDirectory.

b. Registering services as listeners using SyDListener:
SyDListener registers application methods as remote
listeners for remote invocations locally in RMI registry
and globally in SyDDirectory.

c. Execution via SyDEngine: Users can execute individual
object’s services remotely using SyDEngine. It is also
used to execute a service on a group of objects.
SyDEngine executes remote services by invoking
SyDListener.

Figure 2. SyD Kernel architecture and the interactions
between modules and application objects.

A SyD-based server application provides services to local
user and also global users on the network. Global users
access remote services by invoking methods remotely that
are previously published as listeners. Therefore, user
interface (client) and server application functionalities are
separated in the implementation. Client interface allows
users to invoke application services, locally or globally. A
SyD-based application provides distribution transparency via
SyDDirectory-based server applications. A SyDDirectory
maintains user/service directories and upon request delivers
the location information to requesters on the fly. In this
framework, a requester of a remote service acts as a “client”
of the remote service that is provided by a remote SyD-
based application that acts as a “server”. For this interaction,
the client consults with the SyDDirectory to get remote
user/service information about the remote “server”.

2.1 SyD-Based Design of Calendar Application

SyD Calendar application is a typical collaborative
application that we developed using SyD. Calendar

application allows multiple users to share their calendars in
real-time, setup group meetings, cancel meetings, and
similar functions. Individual calendars can be maintained on
small devices like PDAs (currently we are using Compaq
iPAQ, and PalmPilots with WiFi wireless network
connections), on PCs, or on servers. System allows users to
register proxy devices for individual applications that will
take care of disconnections. The following are some usage
examples:

Scenario 1: Meeting Setup: A user wants to setup a group
meeting. User enters the dates between which he or she
wants to setup a meeting on his PDA and also the people
whom he or she wants to call for the meeting. A list of open
slots common to all the participants appears on the screen.
Next, select an available slot, and the meeting is scheduled;
calendar application updates the calendars of all participants.

Scenario 2: Tentative Meetings: In scenario 1, if some
participants’ calendars cannot be accessed (a usual case
especially for users of mobile devices), calendar application
interacts with the proxy devices of the individuals and sets
up a meeting tentatively. Later, when the unavailable users
come online, application polls their calendars and tries to
update their calendars to setup the meeting permanently
using the minimum participation criteria or other criteria.

In the above scenarios, coordination among individual
users’ calendars is achieved by SyDLink objects created on
the fly between the user setting up a group meeting and
participants of the meeting. Links are tentative links in the
case actual calendars of participants cannot be accessed due
to disconnectivity or unavailability (link is then between a
SyD object and a SyD proxy object), or links are permanent
links in the case actual participant’s device can be accessed.

2.2 How is this application in current practice?

In current practice, the calendars of each user would have to
be located explicitly and entries would have to be written
explicitly by the committee calendar program to each unique
database, after taking into consideration that it is a PDA, PC,
or web-server, each with its own native communications
mechanism. The resultant code would also not be portable,
and very difficult to maintain. Methods that can trigger the
committee calendar when individual calendars are changed
cannot be easily written and their execution is not efficient.

3. The SyD Link Concept

As illustrated above, forming and managing dynamic groups
of objects is one of the key aspects of SyD technology. In
this section, we present SyD coordination links as a solution.
A coordination link is an abstract relationship among a
group of objects/databases (referred to as entities hereafter)
with an underlying constraint and a set of event-triggered
actions. In this section, we define links, how they express

interdependencies, and describe the different types of
transactions that are possible.

3.1. Link Definition

A component of SyD, SyDLink, enables an application to
create and enforce interdependencies, constraints and
automatic updates among groups of SyD entities. A SyD
coordination link is an entry in a data-store associated with
an entity that has the following components:

A link is specified by its type (subscription / negotiation),
its subtype (permanent / tentative), references to one or more
entities, triggers associated with each reference (event-
condition-action (ECA) rules), a priority, a constraint (and,
or, xor), a creation time and an expiry time. Two types of
links are considered at this point: subscription links and
negotiation links. Subscription links are useful for automatic
updates and synchronization by enforcing pre-order
information dissemination in a directed acyclic graph.

Negotiation links, with specified logical constraints,
enforce interdependencies between objects and its
predecessors. The leaf level objects can safely start
execution with assurance from predecessors that they are all
reserved and will finish in time. Permanent links act as
acquired locks or reservations that are released at the expiry
time. Tentative links are essentially queued requests for a
semaphore-like prioritized reservation or lock.

All link information is maintained in a link database that
is stored locally by the user. This link database is created for
a user when he/she installs a SyD application with link-
enabled features. The application can maintain a logical
connection by creating a link between various entities. All
an application has to do is specify a list of users to be linked.
For example, consider the calendar application linking users
X, Y, Z based on their availability at a particular time. The
SyDLink module will negotiate with each of the users and if
and only if all the users are available at the specified time,
will links be created between the users. If any user is not
available at that time, then no links will be created. In this
way, links can be created automatically based on
availability.

3.2. Transactions Using Links

The existence of links enables us to perform many types of
transactions over a collection of data stores. Permanent links
allow for atomic transactions satisfying real time
transactions. Tentative links, however, allow transactions to
be carried out over a period of time without starvation. If a
link is tentative, the action for the link is pending as the link
is stored in a FIFO queue associated upon the link it is
waiting upon. Once the permanent link that it is waiting
upon, either expires or is deleted, then the first tentative link
waiting in the queue is automatically converted to a
permanent link, and the appropriate transaction(s) then take

place. This situation is suitable for non-critical or long
running transactions. For example, if link L1 has been
caused to be tentative by permanent link L0, then when link
L0 is deleted it triggers the automatic conversion of link L1
from tentative to permanent status and via the SyDEngine, it
invokes the delete method on linked device. Consequently,
all links logically associated with L0 are deleted in a
cascading manner. All the links waiting on link L0 are
maintained in a SyD_WaitingLink table. Once L1 is deleted,
then the waiting link with the highest priority is converted to
a permanent link. It is possible to have groups of links
waiting on a particular link and deletion of the permanent
link triggers automatic conversion of all links in the group
with highest priority, from tentative to permanent.

As the devices we are considering are mobile devices,
there are issues to consider such as loss of connection,
power consumption, and weak connectivity. These
temporary disconnections are implicitly tolerated by
transferring control to a proxy and by partially completing a
transaction, while leaving the subsystem consistent. This
corresponds to a flexible transaction that could possibly be
long running while the proxy is in control. Details regarding
proxy synchronization are given in Section 4.

The constraint parameter enables QoS/constrained
transactions to take place. For example each link with a
deadline for abandoning a link execution trial can enforce a
real time constraint. On invocation of a link, the overall
deadline is passed as a constraint parameter where each
intervening data store makes a local determination of its
current execution delay (QoS), creates a tentative back link
to its predecessor to reserve itself, and forwards the
remaining time down the chain of negotiation links. If the
constraint is violated on a forward traversal, then the
initiator is informed. Else, each object in the path executes
the sub-transaction, deletes its tentative back link, and passes
the results back to its predecessor.

4. SyD Link Implementation and Execution

In this section we will describe how links are currently
implemented in a SyD object and invoked when executing a
method in a device object. We will also provide information
regarding proxy synchronization. Refer to [22] for more
details regarding the implementation of SyD middleware.

4.1. Link Implementation

As mentioned in the previous section, all link information is
maintained in a link database that is stored locally by each
user. Considering the Calendar application, it is dependant
on SyDLinks in order to manage the interdependencies
between various calendars. Cancel meeting especially
involves following all the interdependencies and
automatically converting a tentative meeting to permanent

based on priority. Using SyDLinks, the application can call
deleteLink() which follows the following steps to achieve
automatic triggering.

When the deleteLink() method is called on User1, it first
checks to see if there are any associated waiting links in its
database. If there are, then it will automatically convert the
status of chosen waiting links from tentative to permanent
through the SyDEngine. Next, it deletes the local link
specified in the method call. The SyDListener module
notifies the SyDEngine to invoke the deleteLink() method
on all associated links located with other users. The calendar
database of the user is then updated to reflect any deleted
meetings and changed meetings. In order to invoke the
necessary methods on the linked devices, the SyDEngine
looks up the remote URL of the associated users from the
SyDDirectory and invokes the methods remotely. The same
steps are triggered and executed on each associated user.

4.2. Proxy Synchronization

Our SyD objects are assumed to always have web presence.
At the first glance, this may seem unreasonable due to all of
the disconnectivity issues associated with mobile devices.
For this, if a SyD object A is down or disconnected, a proxy
takes over the place of A. Once A comes back up, A takes
over the proxy. The proxy and the SyD object act as a single
entity for an outsider. This makes the SyD architecture fault
tolerant and applicable to mobile environment and is
transparent to the outside world.

To enable this, each device can either choose to register
its own proxy, or have the SyDDirectory assign one to it.
After a designated interval, the client object copies its data to
the proxy object to synchronize with each other. If for any
reason the client object is no longer available, then the
SyDEngine automatically informs the SyDDirectory to
update the URL information for the client to its proxy. Due
to a possible time lapse, the information available at the
proxy may be stale data. Now, any requests coming to the
client will be directed to the proxy. Each application
determines the method in which the proxy handles the data.

Considering the calendar application, each time data is
copied from the client object to the proxy, all open slots are
blocked by having the client reserve a meeting with itself.
Therefore, while the proxy is active, there are no free slots
available for any other user to set up a permanent meeting.
However, other users may set up tentative meetings if
desired. Then, when the client is available, all links that
blocked times during the synchronization are deleted,
triggering any tentative meetings to become permanent.

5. Comparison to Other Calendar Applications

There are a number of different calendar applications;
Microsoft Outlook, Groupwise, and Lotus Notes for
example. The calendar application presented here is not
targeted to compete with the services of the above products.
Instead, the application has been chosen to showcase the
technical features of SyD. We will show that this calendar
application implemented using SyD has a number of
technically superior features over existing applications.
 SyD implies a System on Devices that are tightly
integrated. There is a global logic that defines the entire
system. There are interdependencies between the databases –
a property unique to the calendar application implemented in
SyD. Most other calendar applications do not have any
global logic or any interdependencies between the databases.
SyD supports global querying, triggers, and constraints. The
devices in SyD always have a web presence and can perform
real time updates without human intervention. In SyD,
device, network, and language independence can be
achieved. These features make the calendar application
implemented using SyD a technically superior product.
 The calendar application implemented in SyD also
includes some new design and implementation features,
which are possible due to the many technical features of
SyD. In other calendar applications each user stores a copy
of every member’s folder on his local machine. Each time a
meeting needs to be set up, the initiator sends an e-mail to
the required participants. The recipients then manually have
to accept this meeting before it can be scheduled. There is no
concept of priority (for either users or meetings), only the
initiator of a meeting can cancel that meeting. There is no
option of automatic rescheduling of meetings cancelled due
to attendee unavailability and no authentication of users.
 The calendar application using SyD overcomes all these
shortcomings. Each user’s local machine stores only that
particular user’s information. There are no copies of other
user’s information. This requires much less storage space.
Each user is assigned a priority and each meeting is also
assigned a priority depending on the must attendees. A
cancelled meeting is automatically rescheduled and does not
require any manual consent on the part of the user.
Cancellations are based on priority and any cancellation
automatically triggers a rescheduling.
 A low priority meeting can also be bumped from its
time slot to accommodate a meeting of higher priority. The
low priority meeting is then automatically rescheduled. The
entire process is automated and involves minimum human
intervention. This calendar implementation also introduces a
new concept of multiple ‘OR’ groups, wherein the initiator
can specify that at least one member from each group must
attend the meeting. All transactions are secure. There is an
authentication process that verifies the validity of the users.
 These new features are not implemented in the existing
calendar applications. They could be incorporated into the
existing applications, but the implementation would be ad-
hoc and lack a systematic logic. That is the most

distinguishing feature of SyD as compared to existing
middleware and database technologies [14-20].

6. Conclusions and Future Directions

A calendar application based on SyD technology is
presented in this paper. We assume that personal data reside
on mobile devices such as PDA or workstations. Hence, the
system works in a wireless environment. Previously, SyD
was proposed to address the key problems of heterogeneity
of device, data format and network, and that of mobility, and
to enable independent collections of information or
databases to collaborate. In this paper, we illustrate the use
of SyD through a calendar application. Forming and
managing dynamic groups of objects is one of the key
aspects of SyD technology. We presented SyD coordination
links as a solution and demonstrated how the links are
employed to establish meetings. A prototype implementation
of the calendar application using some of the SyD features
and its software architecture are also presented. Some issues
involved in the calendar application such as scheduling
options, database triggers, e-mail services, security, and
directory service are discussed as well.
 Compared with many existing calendar applications,
many new features are introduced in our calendar
application. Of course, they could be incorporated into the
existing applications, but the implementation would be ad-
hoc and lack a systematic logic. On the other hand, the SyD
middleware implements a systematic global logic, because
of which all these new features can be implemented
systematically with ease in programming. Our
implementation also considers factors such as low
communication bandwidth and weak connectivity in a
mobile environment, and small memory and low power in
PDAs in our implementation. Hence, proxy and naming
services are provided in our implementation.

7. References

1. "System of Databases (SyD): An Enabling Technology

for Programming Applications on Multiple Mobile
Databases," Patent application filed.

2."A Calendar Application Based on SyD Technology,"
Yamacraw IAB presentation, October 2001. Patent
application filed.

3. "System of Databases (SyD): A Model with
Coordination Link Primitives and a Calendar
Application," Yamacraw IAB presentation, April 2001.
Patent application filed.

4. "System of Database (SyD): Architecture, Global
Queries, Triggers, and Constraints," Yamacraw IAB
presentation, April 2001. Patent application filed.

5. Steve Vinoski, CORBA: Integrating Diverse
Applications Within Distributed Heterogeneous
Environments, IEEE Comm. Magazine, Feb., 1997.

6. T.F. Lunney and A. McCaughey, Component based
distributed systems "CORBA and EJB in context",
Computer Physics Communications, 2000, in press.

7. R. Sessions. COM and DCOM: Microsoft's Vision for
Distributed Objects. Wiley, New York, 1997.

8. K. Ramamritham, Real-Time Databases, Distributed and
Parallel Databases 1(1993), pp. 199-226, 1993.

9. U. Dayal and H. Hwang. View definition and
generalization for database integration in MULTIBASE:
A system for heterogeneous distributed databases. IEEE
Trans. Software Engineering, SE-10, 6, 628-644, 1984.

10. SOAP: Simple Object Access Protocol, W3C recomm,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

11. SOAP version 1.2 working draft, Editors: Martin
Gudgin (DevelopMentor), Marc Hadley (Sun
Microsystems), Jean-Jacques Moreau (Canon), and
Henrik Frystyk Nielsen (Microsoft Corp.) July 9th, 2001
http://www.w3.org/TR/2001/WD-soap12-20010709/

12. John Ellis, Linda Ho, and Maydene Fisher, JDBC 3.0
Specification Proposed Final Draft 4, Sun Microsystems,
October 25, 2001. See http://java.sun.com/products/jdbc

13.Oracle Documentation Library
http://tinman.cs.gsu.edu/~raj/oradoc/index.html

14. A. P. Sheth and J. A. Larson, Federated Database System
for Mapping Distributed Heterogeneous, Autonomous
Databases, ACM Computing Surveys, 22:3, September
1990, pp.183-236.

15. A. Sheth & J. Larson. Federated databases: architectures
and integration. 22(3):182-236, 1990.

16. C. Yu, W. Sun, S. Dao, and D. Keirsey. Determining
relationships among attributes for interoperability of
multi-database systems. In 1 st International Workshop
on Interoperability in Multidatabase Systems, pages 251-
-257, Kyoto, April 1991. IEEE Computer Society Press.

17. Witold Litwin, Leo Mark, Nick Roussopoulos:
Interoperability of Multiple Autonomous Databases.
ACM Computing Surveys 22(3): 267-293 (1990).

18. A. Vaduva, Rule Development for Active Database
Systems. PhD thesis, University of Zurich, 1998.

19. E. Pitoura and B. Bhargava. A Framework for Providing
Consistent and Recoverable Agent-Based Access to
Heterogeneous Mobile Databases. ACM SIGMOD
Record, 24(3): 44-49, September 1995.

20.M. H. Dunham and V. Kumar. Location dependent data
and its management in mobile databases. Proc. of DEXA
Wksp, pg 414-419, Vienna, Austria, Aug 1998.

21.Emmerich, Eng. Distributed Objects, Wiley, 2000.
22.“Implementation of a Calendar Application using SyD

Coodination Links,” S. K. Prasad, A. G. Bourgeois, E.
Dogdu, R. Sunderraman, Y. Pan, S. Navathe, and V.
Madisetti, to appear in Proc. Wksp on Internet
Computing and E-Commerce, IPDPS, 2003.

