

Implementation of a Calendar Application Based on SyD Coordination Links1

Sushil K. Prasad*, Anu G. Bourgeois*, Erdogan Dogdu*, Raj Sunderraman*, Yi Pan*, Sham Navathe**, Vijay Madisetti***

*Computer Science Department
Georgia State University, Atlanta, GA 30303

**College of Computing
***Department of Electrical Engineering

Georgia Institute of Technology, Atlanta GA 30332

ABSTRACT
System on Devices (SyD) for e-services is a specification for a
middleware to enable heterogeneous collections of information,
databases, or devices (such as hand-held devices) to collaborate with
each other. This paper illustrates the advantages of SyD by
describing a prototype calendar of meetings application. This
application highlights some of the technical merits of SyD by
exploiting the use of coordination links. Based on the underlying
event-and-trigger mechanism, these links allow automatic updates as
well as real-time enforcements of global constraints and
interdependencies, not available with existing calendar applications.
Additionally, the calendar application illustrates coordination among
heterogeneous devices and databases, formation and maintenance of
dynamic groups, mobility support through proxies, and performance
group transactions across independent data stores.

1. INTRODUCTION
ystem on Devices (SyD) middleware technology was
introduced in [1] to address the key problems of
heterogeneity of device, data format and network, and that

of mobility. SyD combines ease of application development,
mobility of code, application, data and users, independence
from network and geographical location, and the scalability
required of large enterprise applications concurrently with the
small footprint required by handheld devices. SyD uses the
simple yet powerful idea of separating device management
from the management of groups of users and/or databases.
Limitations of Current Technology: The current
technology for the development of such collaborative
applications over a set of wired or wireless devices and
networks has several limitations. Developing an application
requires explicit and tedious programming on each kind of
device, both for data access and for data communication. The
application code is specific to the type of device, data format,
and the network. The data-stores are typically a centralized
logical entity providing only a fixed set of services, with little
flexibility for user-defined ad hoc services or the ability of
user applications to dynamically configure a collection of
independent data stores. Applications running across mobile
devices are complex because of the lack of persistence of their
data due to their weak connectivity. There are only a few
existing middlewares which address the stated requirements.
Even these are either not completely functional at this time, or
enable only client-side programming on mobile devices, or are
geared to a limited domain of applications, or are limited in
group or transaction functionalities or mobility support, as
further elaborated in Section 5.

The calendar of meetings application is an example of a
typical SyD application in which several individuals maintain
their independent schedule information in their hand-held and
other devices [2-4]. The typical functionalities provided in

such an application are: (i) set up meetings among individuals
with certain conditions to be met such as a required quorum,
(ii) set up tentative meetings which could not be set up
otherwise due to unavailability of certain individuals, and (iii)
remove oneself from a meeting or cancel an entire meeting
resulting in automatic triggers being executed that may
possibly convert tentative meetings into confirmed ones.
Section 2 contains an overview of SyD and illustrates a high-
level design of the calendar application. Section 3 provides
detail of the current prototype implementation.

Creating and maintaining a dynamic group of entities, as in
a meeting, is integral to SyD. We propose SyD coordination
links, which may be employed by the SyD middleware for this
purpose. The coordination links are abstract relationships
among entities with underlying constraints and event-based
triggers. These allow automatic updates and synchronization
across independent data stores as well as on-the-fly
establishment and enforcement of global constraints and
interdependencies. Subscription links allow automatic flow of
information from a source entity to other entities that
subscribe to it. This can be employed for synchronization as
well as more complex changes. Negotiation links enforce
dependencies and constraints across entities and trigger
changes based on constraint satisfaction. Section 4
introduces the SyD coordination links and gives a detailed
logical design of the calendar application.

We also present a prototype implementation of the SyD
middleware and the SyD-based calendar application. This
illustrates some key SyD features such as coordination among
heterogeneous devices and databases, formation and
maintenance of dynamic groups, providing mobility support
through proxies, and performing group transactions across
independent data stores. The implementation is done in Java
using Oracle database for data stores. The application is
currently implemented on a collection of handheld devices on
a wireless LAN. Section 5 presents details of the calendar
application implementation. In Section 6, a comparison of the
calendar application with the existing similar applications is
presented. Section 7 concludes the paper.

2. OVERVIEW OF SYD
In this section, we describe the design of SyD and related
issues, and highlight the important features of its architecture.
SyD is envisioned as a system that will enable rapid
prototyping and implementation of applications that need a
collection of heterogeneous, independent databases to
collaborate with each other in a mobile environment. Each
individual device in SyD may be a traditional database such as
relational or object-oriented, or may be an ad-hoc data store
such as a flat file, an EXCEL worksheet or a list repository.
These may be located in traditional computers, in personal
digital assistants (PDAs) or even in devices such as a utility

S

1This research was partially supported by State of Georgia's Yamacraw Embedded Software Contract #CLH49 and #DLN01.

meter or a set-top box. These devices are assumed to be
independent of each other, i.e. they do not share a global
schema. The devices in SyD co-operate with each other to
perform interesting tasks and we envision a new generation of
applications to be built using the SyD framework. The SyD
architecture is captured in Figure 1.

Figure 1. SyD Architecture

The SyD architecture has three layers.
1. At the lowest layer, individual data stores are
encapsulated by device objects. These device objects export
the data that the devices hold along with methods/operations
that allow access, as well as manipulation of this data in a
controlled manner. This is enabled by SyD Deviceware
consisting of a listener module to register objects and to
execute local methods in response to remote invocations, and
an engine module to invoke methods on remote objects. SyD
device objects also have inherent capabilities link with each
other in an interdependent fashion to enable object
composition and atomic transactions over multiple objects,
provided by a linking module.
2. At the middle layer, there is SyD groupware, a logically
coherent collection of services, APIs, and objects that
facilitates the execution of application programs. Specifically,
SyD groupware consists of directory services module, portion
of engine module for group service invocation and result
aggregation, and an event handler module for global events.
3. At the highest level are the applications themselves. They
rely only on these groupware services, and are independent of
device, database and network. These applications include
instantiations of SyDAPP Objects that are aggregations of the
device objects, and SyD middleware objects. The three-tier
architecture of SyD enables applications to be developed in a
flexible manner without knowledge of device, database and
network details.
SyD software technology is, thus, characterized by the
following: data stores, middleware for communications, data
and method access, and the applications that take advantage of
SyD. Ordered stores of data, be they formal databases or
ASCII lists, stored on PDAs or on mainframes, are supported
by SyD deviceware that allows the construction, naming, and
publication of device objects, that operate on these data stores
through methods. SyD groupware is responsible for making

software applications (anywhere) aware of the named objects
and their methods/services, executing these methods on behalf
of applications, allowing the construction of SyD Application
Objects (SyDAppOs) that are built on the device objects, and
providing the communications infrastructure between SyD
Applications (SyDApps), in addition to providing QoS
support services for SyDApps. SyDApps are applications
written by and for the end users (human or machine) that
operate on the SyDAppOs alone and are able to define their
own services that utilize the SyDAppOs, without directly
depending on either the location or the type of database or
type of device (PDA or mainframe) where a certain
information field is stored. The SyD groupware provides only
a named device object for use by the SyDApps, without
revealing the physical address, type or location of the
information store.

SyDApps are, thus, truly portable, network and database
independent, and are able to operate across multiple networks
and multiple devices, relying on the middleware to provide the
supporting services that translate the SyDApps code to the
correct drivers, for both communications and computing.
SyDApps can also decide on their own features and services
they offer, without depending on individual databases residing
on remote computing devices to offer those services. The
SyD architecture, thus, is compatible with and extends the
currently emerging web-services paradigm for Internet
applications.

3. CURRENT PROTOTYPE IMPLEMENTATION
We have developed a prototype implementation of SyD
middleware and several SyD-based applications. In this
section, we describe the detailed architecture of current SyD
implementation.

3.1 Detailed Architecture
Figure 2 depicts the layered architecture of SyD runtime
environment in the current implementation. SyD in this
environment is a middleware providing distribution
transparency and management to SyD-based application
development, therefore, greatly reducing the development,
implementation, deployment, and maintenance time (software
life cycle) for designers and programmers of distributed
applications on heterogonous mobile devices and
environments.

SyD is a middleware located between applications and the
communication services provided by primitive distribution
middleware (Sockets, RMI, JXTA, CORBA, etc. [5-6]). Each
layer depends on the services provided by a lower layer.
Therefore, each layer hides complexities of the tasks provided
in that layer from upper layers. This provides following
advantages:
a. Distribution transparency: SyD modules provide location,

access, resource sharing, and migration transparencies
[21]. Application developers concentrate on application
functionality, and business logic; distribution services are
provided by SyD Kernel seamlessly.

b. Rapid application development: Detailed application
distribution issues are hidden from designers and

programmers (distribution transparency) therefore
reducing design and development time.

Figure 2. SyD Runtime Environment

SyD utilizes “primitive” distribution middleware technologies
for remote method invocations, distributed object access, and
registration. These could be Sockets, Java/RMI, CORBA,
.NET, SOAP, etc [5-7,10,11]. In the current implementation,
we have used TCP Sockets for small foot-print and maximum
flexibility. Future versions of SyD will be expanded to include
other distribution middleware technologies, such as JXTA, for
wider heterogeneity and acceptance.

The next lower layer in the current architecture is a JVM.
We have developed SyD Kernel using Java and utilizing TCP
Sockets for distributed communication layer. Consequently,
applications developed using SyD run on a JVM. This also
allows SyD applications to run on heterogonous devices and
operating systems since JVM is available on many different
platforms including small mobile devices (e.g., we employed
Jeode JVM on iPAQs).

In this framework, applications are developed rapidly using
SyD Kernel modules without any knowledge about lower
layer services (primitive distribution middleware,
OS/environment).
Figure 2 lists three sample mobile applications that we have
developed using SyD middleware: a calendar application, a
fleet application, and a price-is-right bidding game suitable to
be played at an airport or a mall. Section 5 will provide more
detail about the calendar application.

We have designed and implemented a modular SyD Kernel
utility in Java. SyD Kernel includes the following five
modules (Figure 2 and Figure 3):
a. SyDDirectory: Provides user/group/service publishing,

management, and lookup services to SyD users and
device objects. Also supports intelligent proxy
maintenance for users/devices.

b. SyDListener: Enables SyD device objects to publish their
services (server fun ctionalities) as “listeners” locally on
the device and globally via the directory services. It then
allows users on SyD network to invoke single or group
services via remote invocations seamlessly (location
transparency).

c. SyDEngine: Allows users to execute single or group
services remotely via SyDListener and aggregate results.

d. SyDEventHandler: This module handles local and global
event registration, monitoring, and triggering.

e. SyDLinks: Enables an application to create and enforce
interdependencies, constraints and automatic updates
among groups of SyD entities.

A SyD-based application (SyDAppO object), such as
SyDCalendar, SyDFleet, etc., typically has a server
component and a client component. Such an application
developed using SyD Kernel interacts with SyD Kernel
module APIs to get higher-level distribution services in the
following fashion:
a. Publishing on SyDDirectory: Applications register and

publish their information including location and service
availability on SyDDirectory for other users to lookup
and execute via SyDEngine. User/object groups can also
be formed on SyDDirectory.

b. Registering services as listeners using SyDListener:
SyDListener registers application methods as remote
listeners for remote invocations locally in RMI registry
and globally in SyDDirectory.

c. Execution via SyDEngine: Users can execute individual
object’s services remotely using SyDEngine. It is also
used to execute a service on a group of objects (group
functionality). SyDEngine executes remote services by
invoking the SyDListener module.

A SyD-based server application provides services to local
user and also global users on the network. Global users access
remote services by invoking methods remotely that are
previously published as listeners. Therefore, user interface
(client portion) and server application functionalities are
separated in the implementation. Client interface allows users
to invoke application services, locally or globally. A SyD-
based application provides distribution transparency via
SyDDirectory-based server applications. A SyDDirectory
maintains user/service directories and upon request delivers
the location information to requesters on the fly. In this
framework, a requester of a remote service acts as a “client”
of the remote service that is provided by a remote SyD-based
application that acts as a “server”. For this interaction, the
client consults with the SyDDirectory to get remote
user/service information about the remote “server”.

3.2 SyD-Based Design of Calendar Application
As an example of the SyD framework, we use an individual’s
(say Phil) calendar as a basic SyD object. This calendar could
be stored on a PC, a web server, or a PDA that supports the
SyD clientware software. The SyD clientware names and
publishes the SyD object, Phil_calendar_SyD, and registers
this object with the SyD middleware, SyDMW. A SyDApp
constructs an object called Calendars_of_phil+andy+suzy_
SyDAppO that “links” together and defines a set of methods
that can operate on the calendar objects of all three
individuals, assuming Andy and Suzy also publish their
calendar SyD objects for use by SyDApps via the SyDMW.

 The SyDAppO called Calendars_of_phil+andy+suzy_
SyDAppO may support the following methods:
Find_earliest_meeting_time(), Change_meeting_time_to_
next_available(), etc. The SyDAppO, Calendars_of_
phil+andy+suzy_SyDAppO, would be instantiated from a

general class called Calendars_of_committee_SyDAppC that
could be provided by a vendor or written by users themselves.

Figure 3. SyD Kernel architecture and the interactions between

modules and application objects.

What is important to note is that the execution of the
SyDApps is reliant on the SyDMW for locating,
communicating with, and operating on the various SyD
objects that could be distributed across the internet, intranet or
an ad hoc heterogeneous network, and the SyDMW could be
hosted on a local machine or hosted through an Application
Service Provider (ASP). The SyDMW is also responsible for
QoS issues as required by the SyDApps.

3.3 How does this application work in current practice?

In current practice, the calendars of each user would have to
be located explicitly and entries would have to be written
explicitly by the committee calendar program to each unique
database, after taking into consideration that it is a PDA or a
PC or a web-server, each with its own native communications
mechanism. The resultant code would also not be portable,
and very difficult to maintain. Methods that can trigger the
committee calendar when individual calendars are changed
cannot be easily written and their execution is not efficient.

4. COORDINATION LINKS
As illustrated above, forming and managing dynamic groups
of objects is one of the key aspects of SyD technology. In this
section, we present SyD coordination links as a solution. A
coordination link is an abstract relationship among a group of
objects/databases (referred to as entities hereafter) with an
underlying constraint and a set of event-triggered actions. We
define the links and then show how the links are employed to
establish meetings.

4.1 Link Definition
A component of SyD, SyDLink, enables an application to
create and enforce interdependencies, constraints and
automatic updates among groups of SyD entities. A SyD
coordination link is an entry in a data-store associated with an
entity that has the following components:

A link is specified by its type (subscription / negotiation),
its subtype (permanent / tentative), references to one or more
entities, triggers associated with each reference (event-

condition-action, ECA, rules), a priority, a constraint (and, or,
xor), a link creation time and a link expiry time. Subscription
links are useful for automatic updates and synchronization and
negotiation links, with specified logical constraints, enforce
interdependencies.

4.2 Operations on Links
A link allows several kinds of group operations on a set of
related entities. Let an entity X be linked to entities Y and Z,
which may in turn be linked to other entities. A change in X
may trigger changes in Y and Z, or X can change only if Y
and Z can be successfully changed. We define two primary
types of coordination links, namely, subscription link and
negotiation link. Subscription link allows automatic flow of
information from a source entity to other entities that
subscribe to it. This can be employed for synchronization as
well as more complex changes. Negotiation links enforce
dependencies and constraints across entities and trigger
changes based on constraint satisfaction.

Following are the operations of SyDLinks:
1. Link database creation: All link information is maintained
in a link database that is stored locally by the user. This link
database is created for a user when he/she installs a SyD
application with link-enabled features.
2. Link creation: The application can maintain a logical
connection by creating a link between the various entities. All
an application has to do is specify a list of users who have to
be linked. For example, if the application needs to link users
X, Y, Z based on their availability at a particular time, then the
SyDLink module will negotiate with all the users (1) and if
and only if all the users are available (2) at that particular
time, links will be created (3) between the users. If any user is
not available at that time then no links will be created. So
links can be created automatically based on the availability.
3. Automatic conversion of tentative links to permanent links:
If link L1 has been caused to be tentative by permanent link
L0, then when link L0 is deleted it triggers the automatic
conversion of link L1 from tentative to permanent status. All
the links waiting on link L0 are maintained in a
SyD_WaitingLink table.

Once L1 is deleted then the waiting link with the highest
priority is converted to a permanent link. It is possible to have
groups of links waiting on a particular link and deletion of the
permanent link triggers automatic conversion of all link in the
group with highest priority, from tentative to permanent.
4. Link Deletion: Whenever SyD_deleteLink() method is
invoked, two actions take place. First, it checks if there are
any waiting links for the current link being deleted. If there
are, then the waiting link (or group of waiting links) with the
highest priority is converted from tentative to permanent
status. Second, if the link being deleted is from user A to B,
then SyD_deleteLink() is invoked on B via SyDEngine.
Consequently, all links logically associated together are
deleted in a cascading manner.
5. Method Invocation: When a subscription link is established
between two entities X and Y then execution of a method M1
on X should automatically trigger execution of method M2 on
Y. In order to facilitate this a SyD_LinkMethod table is
maintained. All the details regarding the source and

destination methods and the destination users is maintained in
this table. The application programmer has to include a call to
check whether the current method being executed is listed in
the SyD_LinkMethod table. If it is, then the respective method
names and user names have to be sent to the SyDEngine, to be
executed remotely.
6. Link expiry: Periodically, the local event handler triggers a
method which checks for links whose expiration times have
been surpassed. All such links are automatically deleted.
4.3 Classification and Semantics of Coordination Links
In the following, the phrase "Change X" is employed to refer
to an action on X; "Mark X" refers to an attempted change,
which triggers any associated link without actual change on X.

Subscription Link: Mark A; if successful Change A then
try: Change B, Change C . Note that a “try” may not
succeed).

Negotiation-and Link: Change A only if B and C can be
successfully changed (This implements an atomic transaction
with "and" logic).
Semantics (may not be implemented this way):
Mark A for change and Lock A
If successful
 Mark B and C for change and Lock B and C
 If successful
 Change A; Change B and C
 Unlock B and C
Unlock A
 Negotiation-xor Link: Change A only if exactly one of B
and C can be successfully changed.
(implements atomic transaction with "xor" logic and can be
extended to exactly k out of n).
Semantics:
Mark A for change and lock A
Mark B and C for change. Obtain locks on those entities that
can be successfully changed.
If obtained exactly one lock

then Change A; Change the locked entities.
Unlock entities

Negotiation-or Link: Change A only if at least one of B
and C can be successfully changed. (Implements atomic
transaction with "or" logic and can be extended to at least k
out of n)
Semantics:
Mark A for change and lock A
Mark B and C for change; Obtain locks on those entities that
can be successfully changed.
If obtained at least one lock

then Change A; Change the locked entities.
Unlock entities

4.4 Cancel Meeting Scenario in SyD Calendar Application
The Calendar application is dependant on SyDLinks in order
to manage the interdependencies between various calendars.
Cancel meeting especially involves following all the
interdependencies and automatically converting a tentative
meeting to permanent based on priority. Using SyDLinks the
application can call deleteLink() which follows the following
steps to achieve automatic triggering. (Refer to Figure 9.)

1. Check to see if there are any associated waiting links.
2. If so,

2.1 Automatically convert status of waiting links from
tentative to permanent through SyDEngine.

3. Delete the local link.
4. Invoke deleteLink on the rest of the associated links.
5. Update the calendar database of the user.
6. SyDEngine gets the remote URL of the associated users
from the SyDDirectory Service and invokes the necessary
method.
7. Repeat steps 1 through 6 for each associated user.

Figure 4. UML activity diagrams showing execution of SyD links for
negotiation-or for three SyD objects A, B, and C where A is the
activating object.

5.DETAILED DESIGN OF CALENDAR APPLICATION
A typical scenario for a meeting setup is that a user enters the
dates between which he wants to setup a meeting and also the
people whom he wants to call for the meeting. A list of open
slots common to all the participants appears, and the meeting
is scheduled with a click on the desired slot. There may be
additional design criteria, such as A and B are must-attendees,
but one of C, D, E would suffice. After finding an empty slot,
the meeting can only be tentatively scheduled, because during
the delay between the enquiry for the empty slots and the
actual scheduling, the status of the participants may have
changed. Also, someone may want to voluntarily change his
schedule later, potentially causing the meeting to become
tentative or get canceled. Likewise, a higher priority meeting
may bump a previously scheduled meeting. A tentative
meeting may be confirmed at a later time due to some
cancellations. Also, an executive may want to delegate the
task of scheduling a meeting to a staff who would be able to
call the meeting with the transferred authority of his boss.

Here is a simple scenario for a meeting setup in the calendar
application. User A wants to call a meeting between dates d1

and d2 involving folks B, C, D and himself. The first step is
to find the empty slots in everybody's calendar. Finding
empty slots can be carried out as follows: User A enters the
date and the people to participate for the meeting in a GUI
form. The system will then (i) query each table for free slots
which fall between dates d1 and d2, (ii) ensure that all
participants confirm, before the subsequent actions would be
valid, (iii) find common empty slots by intersecting the views
returned from calendars, and (iv) present these slots to user A.
User A then clicks on a desired empty slot. This causes a
series of steps. A negotiation-and link is created from user A's
slot to the specific slot in each calendar table. The link is
triggered by any change in A's slot. Choosing the desired slot
attempts to write and reserve that slot in A's calendar, and that
triggers the negotiation-and link. The “action” of this link is
to:
 (i) Query each table for this desired slot, and ensure that it is
not reserved, and reserve this slot.
(ii) If all succeed, then each corresponding slots at A, B, C and
D create a negotiation link back to A's slot.

Otherwise, for those folks who could not be reserved, a
tentative back link to A is queued up at the corresponding slots
to be triggered whenever the status of the slot changes. The
forward negotiation-and link to A, B, C and D are left in place.
In addition, back subscription links to A from others are
created. These subscription links inform A on subsequent
changes in the other participants and would help A decide
(based on a threshold) to cancel this tentative meeting
altogether or try another time slot.

Assume that C could not be reserved. Thus, C has a
tentative back link to A, and others have subscription links to
A. Whenever C becomes available (or its status changes for
this slot), if the tentative link back to A is of highest priority, it
will get triggered, informing A of C's availability, and will
attempt to change A's slot to be reserved. This would trigger
the negotiation-and link from A to A, B, C, and D, which in
turn go through another round of negotiations to reserve each
of the four folks. Assuming that all succeed (C already is
available), all corresponding slots are reserved, and the target
slots at A, B, C and D create negotiation links back to A's slot.
Thus, a tentative meeting has been converted to committed.

Now suppose, D wants to change the schedule for this
meeting to another slot. This attempt by D would trigger its
back link to A, which would trigger the forward negotiation-
and link from A to A, B, C and D. If all succeed, then a new
duration is reserved at each calendar with all forward and back
links established. If not all can agree, then D would be unable
to change the schedule of the meeting. Similar actions would
take place if D simply wanted to cancel, or if D is
involuntarily asked to bump this meeting by another entity. A
higher priority request to D to commit to another meeting
would bump this meeting, and then this meeting would
become tentative, with D (instead of C) having a tentative link
to A.

Suppose B is a supervisor (a higher priority entity). Then,
as a result of the meeting schedule, A would not be able to
establish a negotiation back link from B, but only a
subscription back link. This retains B's ability to change his
schedule at will. If B does change his schedule, this change

will trigger the subscription back link to A, and A will
negotiate with A, C and D for the change. If one fails, then
the meeting becomes tentative, which results in conversion of
all back links to A to subscription links and conversion of the
back link from B to A into a tentative link queued up at B's
slot awaiting change in B's status.

As a second example, suppose A wants to schedule a
meeting with a quorum of 50% among the faculty of Biology
and at least two faculties from Physics and, in addition, B and
C are must attendees. This meeting can be scheduled by
establishing a negotiation-and link to B and C (must
attendees), a negotiation-or link (at least k of n type) to all in
Biology with n = size of biology faculty, and k = 50% of n,
and a negotiation-or link to all in Physics with k = 2. On
successful reservation of all entities, slots are reserved at the
accepting entities and negotiation back links to A are
established.

From the non-accepting entities, a tentative link back to A is
established, thus allowing these faculty members to reserve
their slots in future, if they become available. A cancellation
by someone in Biology will trigger the back link to A and in
turn will trigger the negotiation links from A to all. In
particular, the negotiation-or link to Biology faculty will make
a determination if 50% can still make it, and then grant the
cancellation to the Biology faculty requesting it. If the quorum
falls below 50% among the Biologists, the negotiation-or links
to the remaining Biologists are triggered, and only if an
additional commitment is found, then the cancellation request
is granted.

5.1 Software Architecture and Implementation
Each user has a database embedded in his/her device (mobile
or static) and we also assume that each device is always
available. (At the first look, this assumption may seem
unrealistic, but this can be implemented using a proxy if the
device is inactive. In the calendar application, each user can
initiate a meeting (either tentative or permanent) with the
users he has access with, depending upon the availability of
the time slots, can cancel a meeting (if he is the initiator of the
meeting), or can drop out of the meeting if the constraints are
still met. The setting up or cancellation of meetings triggers
the update of the local and remote database schemas. The
security overhead for accessing remote databases can be
overcome by using proper cryptographic techniques while
sending the messages. The users who are involved in the
meeting are notified about the details of the meeting using an
e-mail message.

This application highlights the automatic scheduling of
events, or in general, automatic triggering of the system of the
databases. The coordination is accomplished by using the
negotiation links as described in Section 3. All changes
happen in real-time, which is one feature the current mobile
devices are lacking.

5.2 Use of a Name Server and Proxy
Our SyD objects are assumed to always have web presence.
For this, if a SyD calendar object A is down or disconnected, a
proxy takes over the place of A. Once A comes back up, A
takes over the proxy. The proxy and the SyD object act as a
single entity for an outsider. This makes the SyD architecture

fault tolerant and applicable to mobile environment and is
transparent to the outside world.

Further extending the idea of a proxy, if the SyD client
object does not have the necessary capability to perform all
the desired actions, this functionality could be made available
from the proxy. Taking the example of a SyD calendar object
A, if the embedded system on which A is being implemented
does not have the capability of using a database server, the
database server could potentially be placed on the proxy for A.
The information regarding the proxies and peer SyD objects,
proxies and their allotment to SyD objects should be available
to all proxies and SyD objects. The use of SyDDirectory
(Name server) solves this purpose. The main functionality of
the Name Server is to store the information about all the
proxies and Syd objects and map each SyD object to at least
one proxy.

In our implementation of the calendar system, the SyD
calendar objects are implemented on the Compaq iPAQs with
Windows CE operating system. The following steps take
place in the calendar application:
1. The proxies register themselves with the Name Server when

the application server starts.
2. The clients relay their information to the Name Server, and

get back a proxy object, which acts as the proxy for it.
3. The client sends an HTTP request for the servlets on the

application server at the proxy using the proxy object.
4. A client object is obtained at the proxy and is stored in the

session of the application server.
5. For the whole session, the proxy contacts the client using

the reference stored in the session.
The communication between the proxy, client, and the

Name Server is achieved by using the Java RMI method calls.
Vectors are used as the data structure to store the client and
proxy information at the Name Server. A hash table is used
for the mapping of clients and proxies.

5.3 Event-based Triggers
Oracle provides a special feature called Java Stored
Procedures in 8i and later versions. In this, the Java classes are
stored in the database as a procedure, and can be executed
from inside the database as a trigger. Using this technique, one
could connect to the remote peer databases and do the
necessary updates following the triggering event [13]. The
implementation of the current version undertakes Oracle
triggers and Java store procedure route to implement the
specific functionality, since all the SyD calendar objects are
Oracle databases. But in the future versions, we will
implement the triggers in the middleware.

One main disadvantage of the Oracle triggers is database
portability. This kind of triggering could not be implemented
on a client with a database other than Oracle. Our SyD model
does not allow any dependencies on a specific database. In
order to achieve this we would use middleware triggers. The
triggers exist in the middleware and get executed upon a
specific change in the database state. Assuming the database
changes are occurring only from the Calendar User Interface,
this could be easily achieved by checking for the necessary
change in the database.

5.4 Security/Authentication
One of the primary issues in any distributed application is
security. To make the calendar application secure, it has to be
ensured that only authorized users have access to remote
databases. In order to ensure secure transactions, the client
application trying to access a remote database must be
authenticated. For the purpose of authentication, each user is
provided with a unique user id and password. Each user’s
database also has a table containing the user id and password
of authorized users. A 32-bit key is used to encrypt the user id
and password. Encryption is done using the Tiny Encryption
Algorithm [22]. The encrypted user id and password are sent
as parameters along with every request. On the server side,
before processing the request, the user id and password are
decrypted. These are then compared against a list of users who
have access permission. If it is a valid user, the request is
processed and a response is generated.

6 COMPARISON TO EXISTING CALENDAR APPLICATIONS
There are a number of different calendar applications offered
today; some of which are Microsoft Outlook, Groupwise, and
Lotus Notes. The calendar application presented here is not
targeted to compete with the services rendered by the above
products. Instead, the calendar application has been chosen to
showcase the technical features of SyD. We will show that
this calendar application implemented using SyD has a
number of technically superior features over existing
applications.
 SyD implies a System on Devices that are tightly
integrated. There is a global logic, which defines the entire
system. There are various interdependencies between the
databases – a property unique to the calendar application
implemented in SyD. Most other calendar applications do not
have any global logic or any interdependencies between the
databases. SyD supports global querying, triggers, and
constraints. The devices in SyD always have a web presence
and can perform real time updates without human
intervention. In SyD, device, network, and language
independence can be achieved. These features make the
calendar application implemented using SyD a technically
superior product.
 The calendar application implemented in SyD also
includes some new design and implementation features, which
are possible due to the many technical features of SyD. In
other calendar applications each user stores a copy of every
member’s folder on his local machine. Each time a meeting
needs to be set up, the initiator sends an email to the required
participants. The recipients then manually have to accept this
meeting before it can be scheduled. There is no concept of
priority (for either users or meetings), only the initiator of a
meeting can cancel that meeting. There is no option of
automatic rescheduling of meetings cancelled due to attendee
unavailability. There is also no authentication of users.
 The calendar application using SyD overcomes all these
shortcomings. Each user’s local machine stores only that
particular user’s information. There are no copies of other
user’s information. This requires much less storage space.
Each user is assigned a priority and each meeting is also
assigned a priority depending on the must attendees. A

cancelled meeting is automatically rescheduled and does not
require any manual consent on the part of the user.
Cancellations are based on priority and any cancellation
automatically triggers a rescheduling.
 A low priority meeting can also be bumped from its time
slot to accommodate a meeting of a higher priority. The low
priority meeting is then automatically rescheduled. The entire
process is automated and involves minimum human
intervention. This calendar implementation also introduces a
new concept of multiple ‘OR’ groups, wherein the initiator
can specify that at least one member from each group must
attend the meeting. All the transactions are secure. There is an
authentication process that verifies the validity of the users.
 These new features are not implemented in the existing
calendar applications. They could be incorporated into the
existing applications, but the implementation would be ad-hoc
and lack a systematic logic. That is the most distinguishing
feature of SyD as compared to existing middleware and
database technologies [14-20]. The SyD middleware
implements a systematic global logic, because of which all
these new features can be implemented with ease in
programming.

7 CONCLUSIONS AND FUTURE DIRECTIONS
A calendar application based on SyD technology is presented
in this paper. We assume that personal data reside on mobile
devices such as PDA or workstations. Hence, the system
works in a wireless environment. Previously, SyD was
proposed to address the key problems of heterogeneity of
device, data format and network, and that of mobility, and to
enable independent collections of information or databases to
collaborate. In this paper, we illustrate the use of SyD through
a calendar application. Forming and managing dynamic
groups of objects is one of the key aspects of SyD technology.
We presented SyD coordination links as a solution and
demonstrated how the links are employed to establish
meetings. A prototype implementation of the calendar
application using some of the SyD features and its software
architecture are also presented. Some issues involved in the
calendar application such as scheduling options, database
triggers, e-mail services, security, and directory service are
discussed as well.
 Compared with many existing calendar applications,
many new features are introduced in our calendar application.
Of course, they could be incorporated into the existing
applications, but the implementation would be ad-hoc and lack
a systematic logic. On the other hand, the SyD middleware
implements a systematic global logic, because of which all
these new features can be implemented systematically with
ease in programming. Our implementation also considers
factors such as low communication bandwidth and weak
connectivity in a mobile environment, and small memory and
low power in PDAs in our implementation. Hence, proxy and
naming services are provided in our implementation.

8 REFERENCES
1. "System of Databases (SyD): An Enabling Technology for

Programming Applications on Multiple Mobile
Databases," Submitted for publication.

2."A Calendar Application Based on SyD Technology,"
Yamacraw IAB presentation, October 2001.

3. "System of Databases (SyD): A Model with Coordination
Link Primitives and a Calendar Application," Yamacraw
IAB presentation, April 2001.

4. "System of Database (SyD): Architecture, Global Queries,
Triggers, and Constraints," Yamacraw IAB presentation,
Apr 2001.

5. Steve Vinoski, CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments, IEEE
Communications Magazine, February, 1997.

6. T.F. Lunney and A. McCaughey, Component based
distributed systems "CORBA and EJB in context",
Computer Physics Communications, 2000, in press.

7. R. Sessions. COM and DCOM: Microsoft's Vision for
Distributed Objects. John Wiley & Sons, NY, 1997.

8. K. Ramamritham, Real-Time Databases, Distributed and
Parallel Databases 1(1993), pp. 199226, 1993.

9. U. Dayal and H. Hwang. View definition and
generalization for database integration in MULTIBASE: A
system for heterogeneous distributed databases. IEEE
Trans. Software Engineering, SE-10, 6, 628-644, 1984.

10. SOAP: Simple Object Access Protocol, W3C recomm.,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

11. SOAP version 1.2 working draft, Editors: Martin Gudgin
(DevelopMentor), Marc Hadley (Sun Microsystems), Jean-
Jacques Moreau (Canon), and Henrik Frystyk Nielsen
(Microsoft Corp.) July 9th, 2001
http://www.w3.org/TR/2001/WD-soap12-20010709/

12. John Ellis, Linda Ho, and Maydene Fisher, JDBC 3.0
Specification Proposed Final Draft 4, Sun Microsystems,
October 25, 2001. See http://java.sun.com/products/jdbc

13.Oracle Documentation Library
http://tinman.cs.gsu.edu/~raj/oradoc/index.html

14. A. P. Sheth and J. A. Larson, Federated Database System
for Mapping Distr. Heterogeneous, Autonomous
Databases, ACM Comp. Surveys, 22:3, 1990, pp.183-236.

15. A. Sheth & J. Larson. Federated databases: architectures
and integration. 22(3):182-236, 1990.

16. C. Yu, W. Sun, S. Dao, D. Keirsey. Determining
relationships among attributes for interoperability of multi-
database systems. The 1st Int. Workshop on
Interoperability in Multidatabase Systems, pg. 251-257,
Kyoto, Apr 1991. IEEE Computer Society Press.

17. Witold Litwin, Leo Mark, Nick Roussopoulos:
Interoperability of Multiple Autonomous Databases. ACM
Computing Surveys 22(3): 267-293 (1990).

18. A. Vaduva, Rule Development for Active Database
Systems. PhD thesis, University of Zurich, 1998.

19. E. Pitoura, B. Bhargava. A Framework for Providing
Consistent and Recoverable Agent-Based Access to
Heterogeneous Mobile Databases. ACM SIGMOD
Record, 24(3): 44--49, 1995.

20.M. H. Dunham and V. Kumar. Location dependent data
and its management in mobile databases. Proceedings of
DEXA Workshop, pages 414-419, Vienna, Austria, 1998.

21.W. Emmerich, Engineering Distributed Objects, Wiley,
2000.

22. D. Wheeler and R. Needham, “TEA, A Tiny Encryption
Algorithm,” Fast Software Encryption: 2nd Int’l. Wkshp,
vol. 1008 of Lec. Notes in Comp. Sc., pg. 363-366, 1994.

