
 A Methodology for Engineering Collaborative Applications over Mobile Web

Objects using SyD Middleware

Sushil K.Prasad, Anu G. Bourgeois, Praveen Madiraju, Srilaxmi Malladi, and Janaka

Balasooriya

Department of Computer Science

Georgia State University

Atlanta, GA 30302

{sprasad, anu, cscpnmx, cscsrmx, cscjlbx}@cs.gsu.edu

Abstract

Future web applications will be more collaborative

and will use the standard and ubiquitous Internet

protocols. We have previously developed System on

Mobile Devices (SyD) middleware to rapidly develop
and deploy collaborative applications over

heterogeneous and possibly mobile devices hosting

web objects. In this paper, we present the software

engineering methodology for developing SyD-enabled

web applications and illustrate it through a case study
on a System of Calendar application, with

implementation on iPAQs and its performance metrics

study. SyD-enabled web objects allow us to create a

collaborative application rapidly with limited coding.

In this case study, the modular software architecture

allowed us to hide the inherent heterogeneity among
devices, data stores, and networks by presenting a

uniform and persistent object view of mobile calendar

objects interacting through XML/SOAP requests and

responses. The performance results we obtained show

that the application scales well as we increase the

group size and adapts well within the constraints of
mobile devices.

Keywords: Object and Web Service Coordination,

SyD Coordination Bonds, Mobile Web Objects,

Collaborative Applications

1. Introduction

 Rapid development of collaborative distributed

applications by leveraging off existing web entities will

be key to bringing the Internet’s collaborative potential

to the users at large. Such collaborative applications

span domains as diverse as personal applications

(travel, calendaring and scheduling), enterprise e-

commerce applications (supply chains, work flows,

and virtual organizations), and scientific biomedical

applications (biomedical data and process integration,

and experiment workflows). The constituent

autonomous entities, the sub-applications, and the

coordinating applications themselves, are usually

hosted on heterogeneous and autonomous, possibly

mobile platforms [9]. There is an emerging need for a

comprehensive middleware technology to enable

development and deployment of these collaborative

distributed applications over a collection of mobile

(and wired) devices. This has been identified as one of

the key research challenges recently [4, 12]. Our work

is an ongoing effort to address this challenge, and in

[15], we reported the design of System on Mobile

Devices (SyD) middleware and its prototype

implementation
1
.

 The current technology for the development of such

collaborative web applications over a set of wired or

wireless devices has several limitations. It requires

explicit and tedious programming on each kind of

device, both for data access and for inter-device and

inter-application communication. A few existing

middlewares have addressed some of the requirements

of a comprehensive middleware [2, 6, 7, 8, 21]. For

example, Proem [8] is one such platform for

developing and deploying peer-to-peer (p2p)

collaborative applications in a mobile ad-hoc

networking environment. Commercial products such as

.NET compact framework [11] and J2ME are also

popular. In [1], authors describe issues related to

service composition in mobile environments and

evaluate criteria for judging protocols that enable such

composition. ISAM [21] supports mobile collaborative

applications using Java-based middleware. Yet another

group of services such as Chef [3], Global-MMCS

[20], and CAROUSEL [10] support collaboration

primarily among people, not applications. The

limitations of existing middlewares include: only

1 http://www.cs.gsu.edu/~yes

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

client-side programming on mobile devices, a

restricted domain of applications, or limited in group or

transaction functionalities or mobility support, as

further elaborated in [15]. SyD supersedes the existing

technologies in terms of unique features such as

orientation on mobile-specific applications, enabling

servers on handhelds, heterogeneity of data/devices,

simple middleware API, etc. Only SyD supports a

normal database transaction model. We have a

methodology for any generic application development

and primitives to enforce constraints among web

objects.

Rapid Web Application Engineering: In this paper,

we describe SyD’s high-level programming

methodology to rapidly engineer group web

applications over a collection of heterogeneous,

autonomous, and possibly mobile data stores and sub-

applications. A key goal of SyD is to enable SyD

objects to coordinate in a distributed (and centralized)

fashion. Each SyD object is capable of embedding

SyD coordination bonds [5,15,16] (or ``Web bonds'' in

the context of web services [13, 14]) to other entities

enabling it to enforce dependencies and act as a

conduit for data and control flows (Section 2). The

methods provided by SyD enable developing

collaborative applications rapidly and easily.

 We demonstrate this software engineering

methodology by showing how to develop and deploy a

personal system of calendars application. In this

distributed application, each user has his own database

that is stored locally or on a proxy. The application

logically bonds all members of a particular meeting

together. A meeting can be rescheduled in real-time for

all attendees by triggering the underling SyD bonds by

any one participant [16]. The performance results we

obtained for this application on iPAQs show that it

scales well as we increase group size and fits well

within the constraints of mobile devices.

 SyD naturally extends to enabling collaborative

applications across web-based objects. The SyD

objects are stateful, web-based, and have interfaces like

web services for method invocations. Furthermore, all

method invocations and their responses in SyD employ

SOAP-like XML envelopes. Therefore, SyD objects,

their interactions, and the underlying techniques

discussed in this paper have a direct bearing on web

services and their compositions and coordination.

 Section 2 briefly describes our background work on

SyD middleware and the logical design of calendar

application. Section 3 describes the generic SyD-based

software engineering methodology and illustrates its

steps through calendar application case study. It also

describes specific deployment details of calendar

application on iPAQs. Section 4 provides performance

metrics and Section 5 concludes our paper.

2. SyD Architecture and Coordination

Bonds - Background

 In this section, we describe the design of System on

Mobile Devices (SyD) and related issues, as well as

highlight the important features of its architecture.

(Refer to [15] for more details.)

2.1. SyD Architecture Overview

 SyD uses the simple yet powerful idea of separating

device management from management of groups of

users and/or data stores. The SyD framework has three

layers to accomplish this task. At the lowest layer,

individual data stores are represented by device objects

that encapsulate methods/operations for access, and

manipulation of this data (SyD Deviceware). At the

middle layer, there is SyD Groupware, a logically

coherent collection of services, APIs, and objects to

facilitate the execution of application programs. At the

highest level are the SyD Applications themselves.

They rely only on groupware and deviceware SyD

services, and are independent of device, data and

network. These applications include instantiations of

server objects that are aggregations of the device

objects and SyD middleware objects.

 We have developed a prototype test bed of SyD

middleware that captures the essential features of

SyD's overall framework and several SyD-based web

applications. We have designed and implemented a

modular SyD kernel in Java as depicted in Figure 1.

The SyD Kernel includes the following five modules:

1. SyDDirectory: Provides user/group/service

publishing, management, and lookup services to

SyD users and device objects. Also supports

intelligent proxy maintenance for users/devices.

2. SyDListener: Provides a uniform object view of

device services, and receives and responds to

clients’ synchronous or asynchronous XML-based

remote invocations of those services [15]. Also

allows SyD device objects to publish their services

locally to the listener and globally through the

directory service.

3. SyDEngine: Allows users/clients to invoke

individual or group services remotely via XML-

based messaging and aggregates responses. This

yields a basic composer of mobile web services.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Figure 1. Interaction among modules of SyD
Kernel [15]

4. SyDBond: Enables an application to create and

enforce interdependencies, constraints and

automatic updates among groups of SyD entities

and web Services [13, 16].

5. SyDEventHandler: Handles local and global

event registration, monitoring, and triggering.

2.2. SyD Coordination Bonds

 A key goal of SyD is to enable SyD objects to

coordinate in a distributed fashion. Each SyD object is

capable of embedding SyD coordination bonds to other

entities enabling it to enforce dependencies and act as a

conduit for data and control flows. Over data store

objects, this provides active database like capabilities;

in general, aspect-oriented properties among various

objects are created and enforced dynamically. Its use in

rapid configuration of ad-hoc collaborative

applications, such as a set of calendars for a meeting

setup [16], or a set of inter-dependent web services in a

travel reservation application [5], has been

demonstrated. The SyD bonds have the modeling

capabilities of extended Petri nets and can be employed

as general-purpose artifacts for expressing the

benchmark workflow patterns [13, 14].

 Coordination bonds enable applications to create

contracts between entities and enforce

interdependencies and constraints, and carry out atomic

transactions spanning over a group of

entities/processes. While it is convenient to think of an

entity as a row, a column, a table, or a set of tables in a

data-store, the concept transcends these to any SyD

object or its component. There are two types of bonds:

subscription bonds and negotiation bonds. Subscription

bonds allow automatic flow of information from a

source entity to other entities that subscribe to it. This

can be employed for synchronization as well as more

complex changes, needing data or event flows.

Negotiation bonds enforce dependencies and

constraints across entities and trigger changes based on

constraint satisfaction.

 A SyD bond is specified by its type

(subscription/negotiation), status (certain/tentative),

references to one or more web entities, triggers

associated with each reference (event-condition-action

rules), priority, constraint (and, or, xor), bond creation

and expiry time, and a waiting list of tentative bonds (a

priority queue). A tentative bond may become certain

if the awaited certain bond is destroyed.

 Let an entity A be bonded to entities B and C, which

may in turn be bonded to other entities. A change in A

may trigger changes in B and C, or A can change only

if B and C can be successfully changed. In the

following, the phrase "Change X" is employed to refer

to an action on X (action usually is a particular method

invocation on SyD object X with specified set of

parameters); "Mark X" refers to an attempted change,

which triggers any associated bond without an actual

change on X.

• Subscription Bond: Mark A; If successful Change

A then Try: Change B, Change C. A ``try" may not

succeed.

• Negotiation-and Bond: Change A only if B and C

can be successfully changed.

 Using SyD bonds, we demonstrate here how an

empty time slot is found, how a meeting is setup

(tentative and confirmed), and how voluntary and

involuntary changes are automatically handled [16]. A

simple scenario is as follows: A wants to call a meeting

involving B, C, D and himself. After the empty slots in

everybody's calendar found, a “negotiation-and bond”

is created from A's slot to the specific slot in each

calendar table shown as solid lines (Figure 2).

Choosing the desired slot attempts to write and reserve

that slot in A's calendar, triggering the negotiation-and

bond. The `action' of this bond is to:

i) Query each table for this desired slot, ensure that it is

not reserved, and reserve this slot.

ii) If all succeed, then each corresponding slot at A, B,

C and D create a negotiation bond back to A's slot.

 Else, for those individuals who could not be

reserved, a tentative bond back to A is queued up at the

corresponding slots to be triggered whenever the status

of the slot changes. Assume that C could not be

reserved. Thus, C would have a tentative bond back to

A, and others have subscription bond to A. Whenever C

becomes available, if the tentative bond back to A is of

highest priority, it will get triggered, informing A of

C's availability, and will attempt to change A's slot to

be reserved. This triggers the negotiation-and bond

from A to A, B, C and D, resulting in another round of

negotiation. If all succeed, then corresponding slots are

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

reserved, and the target slots at A, B, C and D create

negotiation bonds back to A's slot (Figure 2). Thus, a

tentative meeting would be converted to permanent.

Now suppose D wants to change the schedule for this

meeting. This would trigger its back bond to A,

triggering the forward negotiation-and bond from A to

A, B, C and D. If all succeed, then a new duration is

reserved at each calendar with all forward and back

bond established. If not all can agree, then D would be

unable to change the meeting.

Figure 2. A scheduled meeting [16]

3. Designing Collaborative Applications

Collaborative SyD Applications: Collaborative group

applications leverage off multiple constituent web

entities, where each of those entities is a server

application/component or an object or a data store. A

centralized coordinator application resides on one host

and composes or configures multiple SyD objects

(which are themselves typically distributed).

Composition is by invocation of method calls of

constituent objects. Configuration employs the SyD

coordination bonds to establish flow and dependency

structure between the coordinator application and the

constituent objects. A distributed coordinator

application primarily employs SyD bonds among

constituent SyD objects and thus is co-hosted

distributively alongside them. The calendar of

meetings application illustrates a distributed

coordinator application.

3.1. Generic Design Methodology

SyD middleware provides components to aid easy

development of collaborative applications which span

from centralized to pure distributed. Collaborative

applications interact with each other and in the process

come across data dependencies or control

dependencies or both depending on the nature of

application. The SyD components provide an effective

way of collaboration with heterogeneous peer devices

and also provide a way to enforce dependencies. SyD

bonds provide methodologies to enforce data and

control dependencies in such application scenarios.

The challenge is to associate SyD bonds in an early

stage of application design for its effective use. In fact,

one can follow standard UML design methods to

design applications [19] and then insert bond artifacts

at appropriate design phases as required. We will

explain the design process of a collaborative

application [17] with SyD middleware and SyD bonds

at hand based on UML for distributed objects to model

collaborative applications.

Figure 3. Generic collaborative application
design process

 The steps for designing distributed applications

using the concepts of SyD are as follows (Figure 3):

 Step 1: A requirement specification is given by the

user of the application system describing the way the

system is expected to work.

 Step 2: A requirement analysis is carried out to

identify actors and use cases. An actor is an external

entity (person, another system or object), which uses

the system. Use cases are either text descriptions or

flow descriptions of how actors interact with the

system in all scenarios encountered in the applications.

From use cases and actors, use case diagrams are

drawn. Use case model diagrams show interaction

between actors and all use cases.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

 Step 3: Activity diagrams are developed based on use

case diagrams, use cases and actors. UML activity

diagrams are equivalent to flow charts and data flow

diagrams in object-oriented paradigm. In activity

diagrams, the data flow spans across use cases and

allows one to identify data and method inter-

dependency of the use cases at an abstract level. These

data and control dependencies can be analyzed and

modeled using SyD bonds.

 Step 4: Next step is the identification of classes and

class diagrams. Class diagrams represent the static

behavior of the system. Class diagrams describe the

types of objects in a system and their relationships.

Class diagrams model class structure and contents

using design elements such as classes, packages and

object. The methods that have a data resource object as

an attribute might be “SyD-bondable” methods as it is

likely to enforce interdependency. The persistence or

non-persistent data objects with dependencies can be

modeled using SyD methods to automate any method

invocation needed for the application. Dynamic

behavior of the system is modeled using sequence

diagrams and collaboration diagrams. Both these

diagrams help to identify inter-service dependencies at

method level where we can apply SyD bonds to

enforce them. Such design can further be clarified

using communication diagrams that show the message

flow between objects.

 Once all the objects, data, data dependencies, and

control dependencies have been identified and modeled

using SyD and other components, implementation can

begin. Server logic can be coded starting from SyD-

listener skeleton which is middleware specific. Client

coding can be started using SyDBond, SyDEngine,

SyDDoc directory logic which is application specific.

Figure 3 shows our collaborative application design

process.

3.2. Designing Calendar Application – Case

Study

 Here, we illustrate the design process of a distributed

calendar application. We will limit the discussion to

particular scenarios in the system wherever

appropriate.

Step 1: The requirements specification details the

view of user and addresses the aspects of the benefits

of the new system, interaction with other systems and

system functionality. Based on the specification,

several different use cases are identified for calendar

application. The use cases of interest are: get available

times, setup meeting, cancel meeting, view calendar,

reschedule meeting, create bond, and delete bond.

 Step 2: For the cancel meeting, the text description

of use cases is given in Table 1. This can be

represented in a pictorial view as use case diagram.

The interaction between the actors and all use cases of

the system can be given in a use case model diagram.

Table 1: CANCEL_MEETING Use Case

Use Case CANCEL_MEETING

Participating

Actors

Application, Initiator, System

Entry

Condition

1. Cancel meeting option is

selected by the Initiator or is

invoked by system.

Flow of
Events

2. System invokes

CANCEL_MEETING

3. Confirmation of cancel

meeting sent to all attendees.

4. System checks for any

associations waiting on the

initiator.

6. All the associations waiting up

on are now converted to

confirmed status.

7. All the associations are

informed of the change.

Exit

Condition

8. Return to main menu.

Step 3: The activity diagram for cancel meeting

follows these steps. For the calendar application, the

method call for cancel meeting checks for any

dependencies associated in its execution. The presence

of confirmed dependencies will result in its successful

execution. However, in case of tentative dependencies,

a reschedule is triggered resulting in an automatic

execution of the scenario “conversion of status”, in

case of no conflicts. These method dependencies

indicate place holders for SyD methods [13, 14].

Step4: The methods cancel meeting (attendeelist,

starttime,endtime), reschedule(attendeelist, starttime,

endtime), confirm meeting(attendeelist, starttime,

endtime), etc., executed in a calendar application result

in the update of dependent data objects. These data

dependencies indicate place-holders for SyD Bonds.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

3.3 Case Study Implementation Details

 The design of the calendar application has been

implemented on HP iPAQ H3600 and H3700 series

running windows CE operating system. Here, we

describe implementation details providing insights into

the development process. These details logistics and

device-level details should help developers of similar

applications for mobile devices.

 Step 1: We implemented SyD Middleware (as a java

package) and Calendar code using java JDK 1.3. The

system user interface was designed using JAVA

Applets. We used Oracle8i as the back end database

for storing SyD bond and application specific tables.

All were implemented on a PC. Calendar application

code interfaces with SyD Middleware application code

for executing method calls (SyDEngine), listening for

incoming method calls (SyDListener), and making

directory service calls (SyDDirectory).

 Step 2: We installed JVM for iPAQ, Jeode EVM

Version 1.9. We ported the SyD Middleware code and

calendar application code on the iPAQ using Microsoft

ActiveSync version 3.5 [18] and set the classpath

appropriately.

 Step 3: After downloading the SyD Middleware, we

installed and ran the middleware components on the

iPAQ. This involves: (i) running a directory server

(Oracle server) on a PC connected via a wireless

network with the base iPAQ and (ii) running

listener.lnk file (located in /syd/sydlistener path),

which continuously listens for incoming method calls.

 Step 4: We then installed the calendar application

code itself. To do this, we executed the

CalRegistrar.lnk file, which registers the application

with SyDDirectory, followed by the application GUI to

implement the various scenarios (set up meeting,

cancel meeting and reschedule meeting).

4. Experiments and Performance Metrics

 Here, we report experiments and performance

metrics we obtained on the calendar application.

4.1. Experimental Hardware/Software Setup

 We ran our experiments on a high performance/low

power SA-1110 (206 MHz) Compaq iPAQ H 3600 and

3700 series, with 32 MB of SD RAM and 32MB of

Flash ROM. We had three 3600 series and seven 3700

series iPAQ running middleware and calendar

applications connected through a wireless network

using a 2.4GHz wireless router. The operating system

was Windows CE. We used JDK version 1.3 to code

our programs and JVM for iPAQ was Jeode EVM

Version 1.9. The DBMS of the directory server was

Oracle 8i.

 In Section 3 we have shown that SyD middleware

enables structured, streamlined and rapid application

development on mobile devices backed with

theoretical and proven case study implementations of

the calendar application. However, in a mobile setting,

it is also significant that the applications developed

scale well in terms of bandwidth, memory storage and

response time parameters, as these resources are scarce

for mobile devices. The motivations for considering

aforementioned parameters are as follows: 1) Mobile

devices cannot afford large amounts of message

transfers, as the network bandwidth is limited; hence,

we measured message size transferred. 2) Storage size

on iPAQ is scarce and larger storage size for

applications is not desired; hence, we measured storage

requirements; 3) Response time for executing method

calls on mobile devices is critical, as higher response

times are possible when applications (a) consume more

storage space, (b) transfer larger message sizes, and (c)

require higher memory; hence we measured response

time. We carried out experiments on calendar

application for three scenarios: set up meeting, cancel

meeting, and reschedule meeting. Our experiment

results have been encouraging, as the application has

shown to scale well in terms of all the parameters.

4.2. Setup Meeting Scenario

A constant message size of 50 bytes is transferred

for each participant in a meeting consisting of meeting

details. The storage size for group sizes of 2, 3, and 4

are: 120, 146, and 170 bytes respectively. For group

sizes of more than 3, the storage size does not increase

linearly as we associated a meeting id for each

meeting, which avoids repetitive information such as

start times, end times and comments.

Response time: Response time is the time required

to execute set up meeting method call. A set up

meeting method call includes time required to execute

a get available time method returning the available

times of all the participants, time required to execute

the set up meeting for all involved meeting

participants, and time to write the meeting details of all

the participants to a file. It should also be noted that

any method call must go through SyD middleware

components. More specifically, it includes time

required for (i) SyDEngine to contact SyDDirectory to

get other user url information, (ii) SyDDoc to create a

request document, and (iii) SyDEngine to invoke

SyDListener remotely and get back the results.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8 9 10

Group size

R
es

p
o

n
se

 t
im

e
(m

se
c)

Set up meeting Cancel meeting
Reschedule meeting

Figure 4: Response time for three scenarios

In Figure 4, we show the response time for all three

scenarios based on varying number of group sizes. We

observe that response time scales well (does not

increase rapidly) for increasing group size through

parallelism in processing and this behavior can be

explained by analyzing different middleware

component timings that make up response time as can

be seen from Figure 5. The different components and

their timing analysis are given below:

The “Engine to Directory Service” takes around 47-

60 msec for group sizes of 2-10, which is less than 1%

of total time. The “Create SyDDoc” value ranges from

13-90 msec for group sizes of 2-10, which is again less

than 1% of response time. Now, we go in details on the

components that make up a large share of the total

response time.

Engine to Remote Listener: SyDEngine invokes

remote listener for executing method call on remote

devices by using the request document generated from

the above step. This involves sending the request

document to the remote listener, parsing the request

document at the remote listener end, invoking the

method call on the remote listener and writing the

meeting details of each individual participant to a file.

For increased group sizes, we achieve some

concurrency as multiple remote listener calls are made

to participant devices and results are collected. This

value ranges from 1725-2900 msec for group sizes of

2-10 (takes around 48% of total time).

Server Processing: This refers to all other

miscellaneous processing times such as, opening,

writing and closing of file at initiator side,

initializations for middleware components

(SyDEngine, client side RMI registry components of

directory server), and different application specific

objects such as vectors. Here, we achieve concurrency

for increased group sizes. This value ranges from

1995-2100 msec for group sizes of 2-10 (takes around

50 % of total time).

Set Up Meeting (Component Chart)

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7 8 9 10

Group size

R
es

p
o

n
se

 t
im

e
(m

se
c)

Engine to Directory(round trip) Create SyDDoc

Engine to Remote Listener Server Processing

Figure 5: Set up meeting response time for
components

Other Meeting Scenarios: In a reschedule meeting

scenario, from the initiator point of view, size of

message transferred is the message size transferred to

convey the information that meeting has been

cancelled to the other participants, and another

message to send a confirmation of the meeting set up

that has been tentative so far. The initiator does not

have to wait on any acknowledgements in either case

as one corresponds to cancel and for the tentative

meeting the timings have been already agreed as

tentative. We assume that only an initiator can cancel

the meeting as he alone knows all the participant

details and the tentative meeting participant details.

This yields in a very small amount of data to be

transferred, two messages containing initiator name,

start time, end time and date (around 20 bytes each).

Similarly, cancel meeting takes also takes around 20

bytes of data transfer.

5. Conclusions

We have described the high-level programming and

deployment methodology of System on Mobile

Devices (SyD) middleware which is the first working

middleware prototype supporting an efficient

collaborative application development environment for

deployment on a collection of mobile devices. One of

the main advantages of SyD is a modular architecture

that hides inherent heterogeneity among devices, data

stores, and networks by presenting a uniform and

persistent object view of mobile server applications

and data-stores interacting through XML/SOAP

requests and responses.

The paper has demonstrated the systematic and

streamlined application development and deployment

capability of SyD for collaborative applications

composed over mobile web objects. We detailed this

process for the design of a system of calendars, a

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

representative application. We also presented

implementation details and performance metrics for

this particular application. Specifically, we measured

the bandwidth required, the storage requirements, and

the response timings. The results we obtained show

that the application scales well as we increase the

group size and fits well within the framework of

mobile devices. Therefore, SyD objects, their

interactions, and the underlying techniques discussed

in this paper provide a direct benefit to web services

and their compositions and coordination.

6. References

[1] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha.

"Service Composition for Mobile Environments", J. on

Mobile Networking and Applications, Feb., 2004.

[2] Gianpaolo Cugola, Gian Pietro Picco. "Peer-to-Peer for

Collaborative Applications", 22nd Intl. Conf. on Distributed

Computing Systems Workshops (ICDCSW), July, 2002.

[3] Chef (2004). Chef Project Website available from

http://www.chefproject.org/index.htm

[4] W. Keith Edwards, Mark W. Newman, Jana Sedivy,

Trevor Smith, Shahram Izadi, "Recombinant computing and

Speakeasy Approach," in Proceedings of MobiCom 2002,

Atlanta, GA. USA, September 23-28, pp. 279-286.

[5] Aarthi Hariharan, Sushil K. Prasad, et al. “A Framework

for Constraint-Based Collaborative Web Service

Applications and a Travel Application Case Study”, Proc.

Intl.. Symp. on Web Services and Applns., Nevada, 2004.

[6] E. Kirda, P. Fenkam, G. Reif, and H. Gall. "A service

architecture for mobile teamwork", Intl. Conf. on Software

engineering and knowledge engineering, Ischia, Italy,2002.

[7] Allan Meng Krebs, Mihail F. Ionescu, Bogdan

Dorohonceanu, Ivan Marsic: The DISCIPLE System for

Collaboration over the Heterogeneous Web. HICSS 2003.

[8] Gerd Kortuem. Proem: A Middleware Platform for

Mobile Peer-to-Peer Computing. ACM SIGMOBILE Mobile

Computing and Communications Review (MC2R), Vol. 6,

No 4, October 2002.

[9] Oliver Krone, Fabrice Chantemargue, Thierry Dagaeff,

Michael Schumacher, Béat Hirsbrunner, "Coordinating

autonomous entities," The Applied Computing Review,

Special issue on Coordination Models Languages and

Applications (SAC),1998.

[10] S. Lee, S. Ko, G. Fox, K. Kim, S. Oh. “A Web Service

Approach to Universal Accessibility in Collaboration

Services”, ICWS03, Las Vegas.

[11] Craig Neable."The .NET Compact Framework", IEEE

Pervasive Computing Magazine, October-December 2002.

[12] Thomas Phan, Lloyd Huang, Chirs Dulan , "Integrating

Mobile Wireless Devices Into the Computational Grid", in

Proc. of MobiCom , Atlanta, September 2002.

[13] Sushil K. Prasad and Janaka Balasoorya, “Web

Coordination Bonds: A Simple Enhancement to Web

Services Infrastructure for Effective Collaboration”, Proc.

37th HICSS, 2004.

[14] Sushil K. Prasad and J. Balasooriya, "Fundamental

Capabilities of Web Coordination Bonds: Modeling Petri

Nets and Expressing Workflow and Communication Patterns

over Web Services", 38th HICSS, 2005.

[15] Sushil K. Prasad, V. Madisetti, S. Navathe, et al.

"System on Mobile Devices (SyD): A Middleware Testbed

for collaborative Applications over Small Heterogeneous

Devices and Data Stores”, Proc. ACM/IFIP/USENIX 5th

International Middleware Conference, Toronto, Oct. 2004.

[16] Sushil K. Prasad, Anu Bourgeois, et al. "Implementation

of a Calendar Application Based on SyD Coordination

Links," Proc. 3rd Intl. Workshop Internet Computing and E-

Commerce in conjunction with IPDPS, April, 2003.

[17] R.S. Pressman, Software engineering: A practitioner's

approach, 4th ed., New York: McGraw-Hill, 1997.

[18] Microsoft ActiveSync Version.
www.microsoft.com/windowsmobile/downloads/pocketpc.mspx

[19] Martin Fowler, Kendall Scott, UML Distilled: A Brief

Guide to the Standard Object Modeling Language (2nd

Edition), Addison - Wisley publication

[20] Wenjun Wu, Ahmet Uyar, Hasan Bulut, Geoffrey Fox.

Integration of SIP VoIP and Messaging Systems with

AccessGrid and H.323, ICWS 2003.

[21] Adenauer Yamin, et al. "Collaborative Multilevel

Adaptation in Distributed Mobile Applications", XII

International Conference of the Chilean Computer Science

Society (SCCC'02), November 2002.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

