
A Framework for Constraint-based Collaborative Web Service Applications
and a Travel Application Case Study

A. Hariharan*
 E. Dogdu*

S. K. Prasad*
S. Navathe**

Y. Pan*

A.G. Bourgeois*
 R. Sunderraman*

*Department of Computer Science,Georgia State University, Atlanta
** College of Computing,Georgia Institute of Technology, Atlanta

E-mail: {sprasad, abourgeois, edogdu, rsunderraman, ypan}@cs.gsu.edu

Abstract

Future Web applications will be more
collaborative, and will use the standard and
ubiquitous Internet protocols. Independently developed
applications will have to be integrated seamlessly
despite their heterogeneous origins. Heterogeneity
stems from programming languages, development
environments, operating systems, and host devices. It
can be addressed by providing means of composing
(or reusing) existing application functionalities in the
form of Web services. This works toward the goal of
developing new Web applications and processes with
limited programming effort. We have developed
System on Mobile Devices (SyD) middleware for
rapidly developing and deploying collaborative
applications over heterogeneous and possibly mobile
devices. SyDLink is a key module of SyD; it enables
creation of coordination links (Web bonds) between
Web services (independently developed applications
and application components). SyDLink-enabled
entities allow high-level description and enforcement
of application constraints among application
components. Using such entities, a collaborative
application can be created rapidly with limited coding.
To illustrate the concepts and implementation of
SydLink-enabled collaborative applications, we
present a travel reservation system as a case study to
show how such an application can be developed and
deployed quickly. The travel reservation system is put
together by creating SyD coordination links between
the independent flight, car, and hotel reservation Web
services.

1. Introduction

A typical application is no longer a stand-alone
component as there is usually a need to access other
applications and to modify data held by other
applications. Enabling non-technical users to be able to
easily and rapidly compose and link existing Web
services to create ad-hoc applications is a long-term
goal [1]. This paper addresses this crucial issue for
technical users and presents a novel way to integrate
existing Web services. We leverage off of legacy Web
services and enable them to coordinate with each other
to perform seamless transactions across the various
entities. The current technology available to develop
such collaborative applications over a set of wired or
wireless devices and networks has several limitations
[2]. System on Mobile Devices (SyD) is a middleware
technology that addresses the key problems of
heterogeneity of device, data format and network, and
that of mobility [3, 10]. We employ this middleware
and expand the capabilities of its coordination module,
namely, the SyDLink module, and demonstrate the
development of a new collaborative Web service
application for travel reservations. A key module of
the SyD middleware, SyDLink enables an application
to create and enforce interdependencies, constraints
and automatic updates among entities.

We also provide a Java Application Programming
Interface (API) employing which developers can create
domain-specific collaborative applications based on
Web services without much effort. The API not only
provides methods to integrate independent Web
services, but also to preserve business rules across
them. We achieve this by forming and maintaining
“live” SyD coordination links among the various
entities. By “live”, we mean that any change made in

any one of the entities involved in the link would
automatically trigger events to handle
interdependencies among the rest of the entities. In the
current prototype of SyDLink module, a coordination
link is specified by embedding triggers originating
from a particular method invocation of a source Web
service to specific methods on a target set of Web
services, along with a global logic/constraint to be
enforced among these services. The API and the
associated development environment that we
developed provides methods and functions to: (i) read
in a WSDL link and parse it, (ii) list methods (or Web
services) that the application developer can have
access to, (iii) set business rules (like constraints, such
as budget, deadlines, etc), (iv) maintain global
constraints, and (v) automatically trigger events based
on certain conditions. As we demonstrate, by using
this API, the application developer is left with minimal
coding. The necessary coding would involve
application logic that cannot be expressed by SyD
coordination links (also referred to as Web
coordination bonds in the context of Web services [1])
and the necessary GUI needed for the applications. We
also provide simple GUIs with which the developer
can establish the database and tables for SyD links.
The developer is also be able to specify global
constraints and other relevant details for the initial set
up.

The rest of the paper provides a brief introduction
to the SyD middleware and the advantages of using
this middleware in the next section. Section 3 contains
an overview of our Web service coordination
architecture by using a travel application as an
example. Section 4 discusses the SyDLink module and
demonstrates how Web services can be integrated.
Section 5 discusses some related work and Section 6
includes the conclusion and future work.

2. Overview of SyD Middleware
Technology

System on Mobile Devices (SyD) middleware
[3,9,10,12,13] for collaborative applications is a new
technology that addresses the key problems of
heterogeneity of device, data format and network, and
that of mobility. SyD combines ease of application
development, mobility of code, application, data and
users, independence from network and geographical
location, and the scalability required of large enterprise
applications, concurrently with the small footprint
required by handheld devices. SyD uses the simple yet
powerful idea of separating device management from
management of groups of users and/or data stores.

Each device is managed by a SyD deviceware that
encapsulates it to present a uniform and persistent
object view of the device data and methods. Groups of
SyD devices are managed by the SyD groupware that
brokers all inter-device activities, and presents a
uniform world-view to the SyD application to be
developed and executed on. All objects hosted by
each device are published with the SyD groupware
directory service that enables SyD applications to
dynamically form groups of objects hosted by devices,
and operate on them in a manner independent of
devices, data, and underlying networks. The SyD
groupware hosts the application and other middleware
objects, and provides a powerful set of services for
directory and group management, and for performing
group communication and other functionalities across
multiple devices.

Figure 1: Interactions among modules of SyD

kernel

The SyD Kernel includes the following five modules:

1. SyDDirectory: Provides user/group/service
publishing, management, and lookup services
to SyD users and device objects. Also
supports intelligent proxy maintenance for
users/devices.

2. SyDListener: It provides a uniform object
view of device services, and receives and
responds to clients’ synchronous or
asynchronous XML-based remote invocations
of those services [14]. It also allows SyD

device objects to publish their services locally
to the listener and also globally through the
directory service.

3. SyDEngine: Allows users/clients to invoke
individual or group services remotely via
XML-based messaging and aggregates
responses. This yields a basic composer of
mobile Web services.

4. SyDLink: Enables an application to create
and enforce interdependencies, constraints
and automatic updates among groups of SyD
entities and Web Services [1,2,9].

5. SyDEventHandler: This module handles
local and global event registration,
monitoring, and triggering.

3. Overview of Web Service Coordination
Architecture and a Travel Application

A coordination framework over Web services should
allow integration of Web services’ methods and
embedding of interdependencies among various
entities, and provide the user with the appearance of
one seamless transaction that may actually consist of
several sub-transactions. Figure 2 depicts the overview
of our Web service coordination architecture. The user
will see a single application that will invoke methods
across multiple Web services and provide a single
result. Bridging the gap between the user’s
collaborative applications and the legacy Web services
and similar atomic applications is the SyDLink module
and its infrastructure including its coordination link
database. The architecture shown in Figure 2 is
specific to a travel application that we have developed,
and we will use it here on as a running example.

The travel application allows for automatic
rescheduling and cancellation of itineraries. Once an
itinerary is decided and the trip is planned for the user,
links that are created are maintained in the user’s
SyDLink database. This way, the itinerary is still
“alive,” meaning a global relationship is maintained
over these Web services. The links are maintained
among the services until the itinerary expires. Any
changes made in any one of the Web services will
affect the other Web services associated with that
current service. For example, if the itinerary involves a
flight reservation, car rental, and hotel reservation, the
user’s database will have links among the three
entities. If the flight is cancelled, then automatic
cancellation of car and hotel reservations will be
triggered, thus easing the burden on the user to
manually cancel all associated reservations.

The travel application that we have prototyped is
very lightweight and could be developed with great
ease and speed. Harnessing the advantages of SyDLink
infrastructure, the developer is left with developing
just the menu and GUI. The rest is taken care of by
SyDLink.

Figure 2. Overview of web service

coordination architecture (Travel reservation
scenario)

Initial Set Up: SyDLink parses the WSDL URL for
all the Web services that are to be integrated. This is
internally done by executing the method parseWsdl
(See Appendix for more detail). The list of services
and their methods are available for the application
developer after the parsing. The application developer
can then choose the services to be integrated, specify
the methods that will have constraints, set automatic
triggers, etc.

Reservation Scenario Using Global Constraints:
Consider a typical travel reservation scenario. A
traveler wishes to book flight tickets and make hotel
and car reservations. These services are existing Web
services. He specifies the necessary details for his trip,
and also specifies budget constraints, if any. The
application gathers these details and invokes the
method packAndSendWithConstraints passing the list
of methods, their associated parameters, and budget
constraints (if any) to SyDLink module. SyDLink,
upon receiving this request, invokes the methods on
each Web service, aggregates the results, and returns
those results that conform to the constraints back to the
application. Thus the issues of invoking the services,
collecting the results and filtering them are completely
taken care of by SyDLink. This scenario is depicted in
Figures 2 and 3.

Figure 3. Global constraints within the travel
application

Automatic Cancellation Scenario: Links are formed
once a traveler has decided on his itinerary. If he
chooses to delete any one part of his itinerary, say his
flight, then the rest of the trip reservation is also
automatically cancelled. This is achieved by SyDLink
module. It checks for any associated services
pertaining to that link and automatically executes the
cancellation requests to other Web services. Figure 4
shows the cancellation ripple effect. Upon canceling
the flight schedule, SyDLink automatically triggers
cancellations on the corresponding car and hotel
reservations.

Figure 4. Automatic triggering of events

Developer’s Nook: We provide a simple GUI-based
interface for the application developer to initially set
up and develop SyDLink-enabled collaborative
applications. SyD developer’s nook provides a
separate working area for the application developer.
The goal of SyD is to make things as automated as
possible. The developer needs to initialize certain
entities based on the business logic. He is given access
to different Java servlets to perform such functions as
setting up of link tables, populating of those tables,
specifying constraints, methods that qualify for auto-
trigger, etc.

Once the initial set up of the link database is
complete, he is in position to develop an ad hoc
application. The developer can give the WSDL URL.
SyD’s development environment parses this URL and
identifies the methods available with each Web
service. The developer can then choose methods across
different Web services that are to be linked in order to
maintain global constraints such as overall budget, etc.
Once the choice is made, a global logic is maintained
across these Web services. Any change in one of the

associated methods causes an automatic triggering of
the associated methods. The important methods of the
SyDLink API are discussed in the Appendix.

4. Implementation of SyDLink Module

The SyDLink module is a significant component of the
SyD framework as forming and managing dynamic
groups of objects is one key aspect of SyD technology
[3]. SyD coordination links enable applications to
create a relationship between entities and enforce
interdependencies and constraints. Entities here
include objects and databases. When specifically
applied for Web service entities, coordination links are
also called Web Coordination bonds [1]. Within this
section we provide details of the existing SyDLink
module and also the extensions we performed in order
to develop the current methodology to integrate
existing Web services.

There are two types of coordination links:
subscription links and negotiation links. A subscription
link is used for automatic flow of information from a
source entity to other entities that subscribe to it. This
can be employed for synchronization as well as more
complex changes. Negotiation links enforce
dependencies and constraints among entities and
trigger changes based on constraint satisfaction.

A coordination link is specified by its type
(subscription / negotiation), subtype (permanent /
tentative), references to one or more entities, triggers
associated with each reference (event-condition-action,
ECA, rules), a priority, a logical group constraint
(AND, OR, XOR) or other constraints, and link
creation link expiry times. The permanent links act as
acquired locks or reservations that are released at the
expiry time; the tentative links are essentially queued
requests for a semaphore-like prioritized reservation or
lock [2, 3].

Automatic triggering of events: List of methods
associated with a particular method can be
automatically triggered by the SyDLink module.
Figure 5 shows an example of how invocation of one
Web service (“cancel” method) automatically triggers
the “cancel” methods on other services. The steps are
as follows:

Step 1: A method, say, cancel, is invoked on
service #1 through SyDLink.
Step 2: SyDLink checks to see if there are any
associated methods to be invoked upon this
invocation of cancel method on service #1.

Step 3: Then cancel method on service #1
along with its associated methods (cancel on
service #2, cancel on service #3) are invoked.
Step 4: An optional confirmation of the
method is returned back.
Step 5: Final result is then sent back to the
user.

Figure 5. Automatic triggering of

methods

SyDLink, thus, automatically triggers requests to Web
services that are interlinked. It is therefore in-charge of
wrapping the method invocation into XML/SOAP
requests receiving the responses and returning only
the appropriate result back to the user.

Link Constraint Check: This is one of the important
highlights of SyDLink as it facilitates maintaining
global constraints across autonomous Web services.
Constraints such as budgets or deadlines are
maintained across heterogeneous legacy entities that
are not self-coordinating and not related to each other
in other ways. In such cases, a group of methods are
initially selected which are tied together by some
constraint. Upon invocation of these methods, the
results are not immediately returned, but they are
aggregated and checked. Those results that satisfy the
constraint are communicated back to the user. Thus,
SyDLink enforces global relationships among
unrelated entities.

5. Related Work

There has been some research in transaction support
for Web services such as the W3C tentative hold
protocol [4], and the OASIS Business Protocol (BTP)
[5]. These protocols define models for coordinating the
transaction execution of Web services based on a
predefined set of transaction messages. While these
works provide support for distributed transactions on
the Web environment through enforcing a predefined

set of transaction messages, our work provides a
means of coordinating Web services without requiring
of all Web services to support a unique and standard
transaction protocol. This way, SyDLinks provides
more flexibility while preserving the autonomy of Web
services.

The present work in the area of e-service
composition (WSFL [6], XLANG [7], WSCL [8],
WSCI [15], WS-Coordination [16], WS-Conversation
[17], BPML [18], XLANG [19], and BPEL4WS [20])
define primitives for composing services and
automating service coordination. Most of these
consider XML-based standards for Web service
technology. However, the primitives for composition
proposed by these works do not directly address the
problems associated with the necessary
homogenization of Web services. And many do not
consider the actual coordination and interaction of
Web services with dissimilar transaction support. A
key differentiation of our effort from others is the
focus on high-level specification of coordination
primitives as opposed to low level language details,
and an enabling development and run-time middleware
environment, all geared to ease program development
and deployment.

6. Conclusion

Future Internet applications will be collaborative
applications among heterogeneous, self-governing,
entities. A lot of research is being conducted to
leverage off existing transactional concepts and
adjusting them to work within a Web services
framework. In this paper, we have introduced the
architecture and implementation of SyDLinks module,
a component of SyD middleware platform, to enable
collaborative applications over Web services. This
module enables collaborative applications to create and
enforce interdependencies and constraints across a
group of Web entities using high-level logic. The
proposed SyDLink Application Programming Interface
enables rapid development and deployment of
collaborative applications. Currently, we employ
simple time outs for sessions and method invocations
and post appropriate error messages to tackle the basic
issues of fault tolerance. Possible future work involves
allowing distributed coordination among legacy Web
services (as opposed to the current centralized
coordinator applications) possibly by enhancing the
Web service infrastructure [1].

References

[1] S. K. Prasad and J. Balasooriya, Web Coordination
Bonds: A Simple Enhancement to Web Services
Infrastructure for Effective Collaboration, To appear in the
Proceedings of the 37th Hawaii International Conference on
System Sciences, January 5-8, 2004, Big Island, Hawaii

[2] S. K. Prasad, A. G. Bourgeois, E. Dogdu, R.
Sunderraman, Y. Pan, S. Navathe, and V. Madisetti,
“Enforcing Interdependencies and Executing Transactions
Atomically Over Autonomous Mobile Data Stores Using
SyD Link Technology,” Proc. International Workshop on
Mobile and Wireless Networks, ICDCS, (2003), pp. 803–
809.

[3] S. K. Prasad, V. Madisetti, et al. 2003. A Middleware for
Collaborative Applications over a System of Mobile Devices
(SyD): An Implementation Case Study. Technical Report
CS-TR-03-01, Dept. of Computer Science, Georgia State
University.

[4] W3C (World Wide Web Consortium) Note, "Tentative
Hold Protocol Part 1: White Paper”.
[http://www.w3.org/TR/tenthold-1/], November 2001.

[5] Potts, M., Cox, B., Pope, B., “Business Transaction
Protocol Primer”. OASIS Committee [https://www.oasis-
open.org/committees/businesstransactions/documents/primer/
Primerhtml/BTP%20Primer%20D1%2020020602.html]

[6] Leymann, F., "Web Services Flow Language (WSFL
1.0)”. [http://www-
4.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf],
May 2001.
[7] Thatte, S., “XLANG: Web Services for Business Process
Design”.
[http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm], Microsoft Corporation, 2001

[8] W3C (World Wide Web Consortium) Note, "Web
Services Conversation Language (WSCL) 1.0”.
[http://www.w3.org/ TR/2002/NOTE-wscl10-20020314/],
March 2001.

[9] S. K. Prasad, A. G. Bourgeois, E. Dogdu, R.
Sunderraman, Y. Pan, S. Navathe, and V. Madisetti,
“Implementation of a Calendar Application Based on SyD
Coordination Links,” Proc. 3rd International Workshop on
Internet Computing and E-Commerce, IPDPS, (2003).

[10] S. K. Prasad, et al. 2003. System on Mobile Devices
(SyD): Kernel Design and Implementation, MobiSys '03:
First International Conference on Mobile Systems,
Applications, and Services, Poster and Demo Presentation,
May 5-8, 2003, San Francisco.

[11] Transaction over services
[http://www.Webservices.org/index.php/article/articleview/3
81/]

[12] V. Madisetti, “SyD: A middleware infrastructure for
mobile iAppliance devices," EE Times Network,
[http://www. iapplianceWeb.
com/story/OEG20021105S0031], November 5, 2002.

[13] S. K. Prasad, M. Weeks, et al. 2003. Toward an Easy
Programming Environment for Implementing Mobile
Applications: A Fleet Application Case Study using SyD
Middleware, IEEE Intl Wksp on Web Based Syst. and Applns
(WEBSA), at 27th Ann Intl Comp. Softw and Applns Conf
(COMPSAC 2003), Dallas, Nov 3-6.

[14] S. K. Prasad, Erdogan Dogdu, Raj Sunderraman, Bing
Liu and Vijay Madisetti. Design and Implementation of a
listener module for handheld mobile devices. Proceedings of
41st Annual ACM Southeast Conf., Savannah, Georgia, 2003
March 7-9

[15] W3C “Web Service Choreography Interface (WSCI)
1.0,” http:// www.w3.org/TR/wsci/, November 2002.

[16] “Web Services Coordination” (WS-Coordination 1.0),
2002, [http://www.106.ibm.com/developerworks library/ws-
coor/]
[17] “Web Service Conversation Language” (WSCL) , HP
Submission to W3C, http://www.w3c.org, 2002.

[18] A. Ankolekar , et al., "DAML-S: Web Service
Description for the Semantic Web," Proc. Int'l Semantic Web
Conf., Springer-Verlag, Berlin/Heidelberg, 2002, pp. 348-
363.

[19] S. Thatte, “XLANG: Web Services for Business Process
Design,” Microsoft, Redmond, Wash., 2001,
[http://www.gotdotnet. com/team/xml_wsspecs/xlang-
c/default.htm].

[20] P. Wohed, W.M.P. van der Aalst, M. Dumas, and
A.H.M. ter Hofstede, “ Pattern based analysis of
BPEL4WS”, Technical Report FIT-TR-2002-04, QUT,
Queensland University of Technology, 2002.

Appendix: Important Methods of SyDLink API

• boolean createSyDLinkDatabase
(String sourceusername): This method is
invoked to create all the necessary tables of
SyDLink. This call is done initially when the
application developer needs to make an
application SyDLink- enabled.

• boolean parseWsdl(String wsdladdr): This

method parses the WSDL file of the Web
service, lists out the methods that can be
invoked, parameters to be used etc. The
application developer initially, gives the URL
location of the Web services that he desires to
integrate. This method is then invoked to
parse the WSDL. A DOM parser is used in

this method to parse the XML document.
Methods names (and their parameter types) of
the given Web service are then extracted and
placed in a table for further reference.

• String packAndSend(String servicename,
String method, Enumeration enum): This
method is used to invoke methods of Web
services. This creates the SOAP envelope by
packing the necessary parameters and sends
the request to the Web services. When a
SOAP response it obtained, it then returns the
desired output back to the user.

• String packAndSendWithConstraints
(String[] servicenames, String[] methods,
Enumeration[] enums, String constraintval):

This method is also used to invoke methods
of Web services. This creates the SOAP
envelope by packing the necessary
parameters and sends the request to the Web
services. However, methods that are
associated with constraints like budget are
executed through this method of SyDLink.
The resulting response is aggregated and the
only results that satisfy the constraints are
returned.

• Vector viewLinks(String dbusername,

String dbpassword, String dburl,
String starttime): This method is used to
view all the links associated with a
particular user. This is a simple yet useful
method of SyDLink. In case of a travel
reservation application, upon invocation, it
would result in the itineraries being
displayed.

• boolean deleteLinks(String linkid): This

method is invoked upon any link deletion. A
check is done to see if there are any
associated links to be deleted and the links
are physically removed from the database.

• String checkConstraintMethod

(String servicename,
String methodname): This is a private
method used to see for associated methods.
This is used by the packandsend method of
SyDLink.

