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A continuum is a connected compactum (=compact Haus-

dorff space).

In this talk we concentrate on constructing “large” con-

tinua; in particular we consider results of the following

form:

For each continuum X there is a “special” continuum Y

and a “special” surjective mapping f : Y → X.

Here are some classic examples.



Theorem 1A (G. R. Gordh, Jr., 1972). The map f : Y → X

may be chosen so that Y is indecomposable, with ≥ 2 com-

posants, and f is a retraction.

Theorem 1B (Michel Smith, 1976). For any cardinal α,

f : Y → X may be chosen so that Y is indecomposable,

with ≥ α composants, and f is a retraction.

Theorem 1C (Smith, 1980). The map f : Y → X may

be chosen so that Y is indecomposable, with exactly one

composant (or exactly two composants), and f is a retrac-

tion.



Some terminology re Theorems 1A, 1B, 1C:

• A continuum Y is decomposable if it is the union of

two proper subcontinua; indecomposable otherwise.

• A composant of Y is the union of all proper subcon-

tinua of Y that contain a given point of Y . (Any two

composants of an indecomposable continuum are dis-

joint.)

• f : Y → X is a retraction if there is a continuous

g : X → Y such that f ◦ g : X → X is the identity map.



In a somewhat different vein, we also have the following.

Theorem 2 (K. P. Hart, Jan van Mill, Roman Pol, 2000).

The map f : Y → X may be chosen so that Y is hereditarily

indecomposable, of covering dimension one, of weight =

w(X), and f is weakly confluent.

(Note: w(X) is the least infinite cardinal γ such that X

has an open base of cardinality ≤ γ. Thus even degenerate

continua have weight ℵ0.)

In this talk we concentrate on possible variants of Theorem

2.



Some terminology re Theorem 2:

• Y is hereditarily indecomposable if no nondegenerate

subcontinuum is decomposable.

• Y is of covering dimension one if Y is nondegenerate,

and every open cover of Y has a finite open refinement

so that no point of Y lies in more than two members

of the refinement.

• f : Y → X is weakly confluent if each subcontinuum

of X is the image, under f , of a subcontinuum of Y .

(Retraction maps are weakly confluent.)



Theorem 1A uses a clever ad hoc construction, but both

its successors (Theorems 1B and 1C) use the limit of an

inverse system of uncountably many indecomposable con-

tinua.

Theorem 2 uses a mix of topological and model-theoretic

methods.

Notice we’ve got a stronger condition on Y , but a weaker

one on f : Y → X. We can’t strengthen weakly confluent

to retraction or confluent because these function proper-

ties preserve hereditary indecomposability.



In this talk we use the ultracoproduct construction to tweak

Theorem 2 so that it looks more like Theorem 1B.

This method is apparantly useless for placing reasonable

upper bounds on the composant number, however, and so

is not appropriate for obtaining an analogue of Theorem

1C.

We do not know whether you can place a reasonable upper

bound on the number of composants of Y in Theorem 2.

Indeed, it is unknown whether there exists a nondegenerate

hereditarily indecomposable continuum with just one com-

posant (although M. Smith has shown it can have exactly

two).



Theorem 3. For any cardinal α, f : Y → X may be cho-

sen so that Y is hereditarily indecomposable, of covering

dimension one, with ≥ α composants, and f is weakly con-

fluent.

The proof of Theorem 3 uses Theorem 2 as a lemma. The

first step is to fix g : Z → X so that Z is hereditarily in-

decomposable, of covering dimension one, and g is weakly

confluent. (We don’t really care about w(Z) at this point.)

Our continuum Y is going to be an ultracopower of Z.

And now for a quick review of ultracopwers.



Recall that if Z is any compactum, I is a discrete infinite
set, and D is an ultrafilter on I (i.e., D ∈ β(I)), then the
D-ultracopower ZD is obtained as follows:

• Let p : Z × I → Z and q : Z × I → I be the coordinate
projections.

• Apply the Stone-Čech functor to obtain pβ : β(Z×I) → Z

and qβ : β(Z × I) → β(I).

• ZD is defined to be the inverse image, under qβ, of the
point D ∈ β(I). The mapping pD : ZD → Z is the restriction
of pβ to ZD ⊆ β(Z× I); it is a continuous surjection known
as the D-codiagonal map, and is well known to be weakly
confluent.

It is a basic fact that ZD is a continuum (totally discon-
nected compactum) iff the same is true of Z.



Lemma 1. Let Z be a continuum, D an ultrafilter on

discrete infinite set I.

(1) ZD and Z share the same covering dimension.

(2) ZD is (hereditarily) indecomposable iff the same is true

of Z.

The following uses some model theory; i.e., the Löwenheim-

Skolem theorem and the Keisler-Shelah isomorphism the-

orem.

Lemma 2. Let Z be a continuum. Then there is a metriz-

able continuum M and an ultrafilter D such that the ultra-

copowers ZD and MD are homeomorphic.



Remark re Lemma 2. In the original GCH-fueled version,

due to H.J. Keisler, any good ultrafilter on an index set of

cardinality ≥ w(X) will do. In the GCH-free version, due to

S. Shelah, D may be constructed by transfinite induction

on any index set of cardinality ≥ 2w(X).



Lemma 3. Let Z be an indecomposable continuum. Then

there is an ultrafilter D such that ZD is an indecomposable

continuum with infinitely many (pairwise disjoint) com-

posants.

By Lemmas 1 and 2, ZD ' MD for some metrizable inde-

composable continuum M . It is a well-known fact that any

nondegenerate indecomposable metrizable continuum has

infinitely many (indeed 2ℵ0) composants. If T ⊆ M is an

infinite transversal for the “being-in-the-same-composant”

equivalence relation for M (i.e., T intersects each com-

posant of M in at most one point), then the D-ultrapower

TD is infinite, and with a little work, can be shown to be

a transversal for MD. Thus ZD has infinitely many com-

posants.



Recall that an ultrafilter D ∈ β(I) is regular if there is a

subfamily S ⊆ D, of cardinality |I|, such that each i ∈ I lies

in just finitely many sets in S.

The following is a classic result, much used in model theory.

Lemma 4. Suppose D is a regular ultrafilter on a set of infi-

nite cardinality λ. If S is an infinite set, then the cardinality

of the ultrapower SD is |S|λ.



So recapping: Let X be a nondegenerate continuum. Us-

ing Theorem 2, fix g : Z → X so that Z is hereditarily in-

decomposable, of covering dimension one, and g is weakly

confluent.

From Lemmas 1, 3, we may find an ultrafilter E so that

ZE is hereditarily indecomposable, of covering dimension

one, with infinitely many composants. Let T ⊆ ZE be a

countably infinite transversal. Given our infinite cardinal

α, we let D be a regular ultrafilter on a set of cardinality

α, and set Y = (ZE)D. Then TD ⊆ Y has cardinality 2α,

by Lemma 4, and is also a transversal. (BTW, Y is an

ultracopower of X via the Fubini product D · E.) Letting

pD : Y → ZE and pE : ZE → Z be the respective codiagonal

maps, the map f = g ◦ pE ◦ pD : Y → X is weakly confluent.



We now want to obtain a version of Theorem 2 where

the number of composants of Y is “large” in two different

ways: not only does it have an arbitrarily large number of

composants, but it has as many composants as possible,

for its size.

Let us call a continuum X replete if it has as many com-

posants as points; i.e., it has a transversal T such that

|T | = |X|.

Since decomposable continua contain either one or three

composants, any replete continuum must be indecompos-

able (including the degenerate case).



It is well known (S. Mazurkiewicz, 1927) that all indecom-

posable metrizable continua are replete, but (D. Bellamy,

1978) nonmetrizable indecomposable continua can have

exactly one composant (or two composants).

As for axiom-sensitivity, the Stone-Čech remainder [0,∞)∗

of the half-line−well known to be indecomposable−is re-

plete when the continuum hypothesis (CH) is assumed

(M. E. Rudin, 1970) and has just one composant un-

der the near coherence of filters axiom (J. Mioduszewski,

1974). (Given two ultrafilters D, E ∈ β(ω), there is a non-

decreasing f : ω → ω such that fβ(D) = fβ(E).)



Our argument for Theorem 3 doesn’t ensure that Y has

enough composants to be replete: indeed, even assuming

that α ≥ w(ZE), we obtain w(Y ) ≤ 2α; so the smallest

upper bound we can get for |Y | is 2(2α) (while Y is only

guaranteed to have 2α composants).



This brings us to a totally different approach, where the

generalized continuum hypothesis (GCH) seems to play an

essential role. (It’s useless in the previous argument, as it

stands.)

For an infinite cardinal α, let GCHα be the statement, 2α =

α+; so that the CH is GCHℵ0
and the GCH is ∀αGCHα.

Each assertion “GCHα” is called an instance of the GCH.

Theorem 4. (GCH) (1) The map f : Y → X may be cho-

sen so that Y is hereditarily indecomposable, of covering

dimension one, replete, of weight ≤ 2w(X), and f is weakly

confluent.

(GCH) (2) For any cardinal α, f : Y → X may be chosen so

that Y is hereditarily indecomposable, of covering dimen-

sion one, replete, with ≥ α composants, and f is weakly

confluent.



Our proof sketch requires a discussion of ultracopowers

using good ultrafilters.

An ultrafilter D on an infinite set I is good if: (1) D is

countably incomplete; and (2) if f : ℘ω(I) → D is monotone

(i.e., s ⊆ t ⇒ f(s) ⊇ f(t)), there is a g : ℘ω(I) → D such

that g(s) ⊆ f(s), for s ∈ ℘ω(I), and g is multiplicative (i.e.,

g(s ∪ t) = g(s) ∩ g(t), for s, t ∈ ℘ω(I)).

Good ultrafilters are regular, which are in turn countably

incomplete, hence free. When the index set is countable,

all four concepts coincide. Keisler originally conceived of

the notion of goodness in order to achieve high degrees of

saturatedness in ultraproducts, and proved the existence

of good ultrafilters using the GCH. K. Kunen later proved

that, in ZFC, each set of α elements supports 2(2α) distinct

good ultrafilters.



Now for some key cardinality properties of spaces.

For an infinite cardinal α, a point a in a topological space

X is a Pα-point if whenever U is a family of ≤ α open

neighborhoods of a, there is an open set V with

a ∈ V ⊆
⋂
U.

X is a Pα-space if each point of X is a Pα-point. This

is equivalent to saying that intersections of ≤ α open sets

are open.

The space X is an almost Pα-space if whenever U is a

family of ≤ α open sets and
⋂
U 6= ∅, it follows that

⋂
U

has nonempty interior.



Lemma 5. Let Z be a compactum, with D a regular ul-

trafilter on a set of infinite cardinality α. Then ZD has a

dense set of Pα-points. If D is also good, then ZD is an

almost Pα-space.

A space is α-Baire if the intersection of any family of ≤ α

dense open sets is dense. By the Baire category theorem,

all compacta are ℵ0-Baire.

Lemma 6. Every almost Pα-compactum is α+-Baire.

The proof of this is quite like that of the classic Baire

category theorem.

The following is well known for metrizable continua; the

proof in that case readily generalizes.



Lemma 7. Let X be a continuum of weight ≤ α. Then

each composant of X is a union of ≤ α proper subcontinua

of X.

To see this, let κ(a) be the composant of a ∈ X, and let

U be an open base for X \ {a}, consisting of ≤ α sets. For

each U ∈ U, let CU be the component of X\U containing a.

Then each CU is a proper subcontinuum of X containing a;

so
⋃
{CU : U ∈ U} ⊆ κ(a). On the other hand, if x ∈ κ(a),

let K be a proper subcontinuum of X containing {a, x}.
Since U is an open base for X \ {a}, there is some U ∈ U
with U ⊆ X \K. Both K and CU are subcontinua of X \U

containing a; hence K ⊆ CU . Thus

κ(a) =
⋃
{CU : U ∈ U},

a union of ≤ α proper subcontinua of X.



To complete the proof of Theorem 4, let X be an arbitrary

continuum, As with the proof of Theorem 3, use Theorem

2 to obtain a weakly confluent g : Z → X, where Z is hered-

itarily indecomposable, of covering dimension one, and of

weight γ = w(X).

Let D be a good ultrafilter on a set of cardinality γ, and

let Y = ZD, with

f = g ◦ pD : Y → X.

Then Y is hereditarily indecomposable, of covering dimen-

sion one, f is weakly confluent, and w(Y ) ≤ 2γ. (Actually

equality holds because D is regular.)

Since the weight of Y is at most 2γ, we have |Y | ≤ 2(2γ).



Now assume GCHγ, and−for the sake of contradiction−that

Y has ≤ γ+ = 2γ composants. Because Y has weight

≤ γ+, we apply Lemma 7 and conclude that Y is a union

of ≤ γ+ proper subcontinua. Each proper subcontinuum

of an indecomposable continuum is nowhere dense; and,

by Lemma 6, Y is γ+-Baire. This is our contradiction;

hence we infer that Y has at least γ++ composants.

At this point we know |Y | ≤ 2(γ+) only; so we seem to

need another instance of the GCH, namely GCHγ+. Then

|Y | ≤ γ++, and is therefore replete.

This proves Theorem 4 (1). To obtain (2), suppose we’re

given α. WLOG, we may assume α ≥ w(X) and take

our index set to have cardinality α. Then invoke GCHα ∧
GCHα+.



Parting remark: If Z is an indecomposable metrizable con-

tinuum and D is a free ultrafilter on a countable set, then

D is also good; hence Y = ZD is ℵ1-Baire. Thus, assuming

the CH, Y has at least ℵ2 composants, while having cardi-

nality ≤ 2ℵ1. So in order to get Y to be replete, we seem

to need 2ℵ1 = ℵ2 also; i.e., more than just the CH. In 1970,

M. E. Rudin proved that [0,1)∗ has 2ℵ1 composants using

the CH alone; so perhaps we’re missing an argument that

possibly gets us 2(γ+) composants in the proof of Theorem

4, under the assumption GCHγ.



THANK YOU!


