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THE TOTAL NEGATION OF A TOPOLOGICAL PROPERTY
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0. Introduction

The central theme in this paper is the uniform generation of new topologi-
cal properties from old. Two of the best known properties obtained in this
way are total disconnectedness (deriving from connectedness) and scattered-
ness (deriving from perfectness, i.e. having no isolated points). A third
property, lesser known but interesting in its own right, is pseudofiniteness
(the cf-spaces studied in [8], [9], [10], [12]) or the class of spaces whose
compact subsets are finite. This last-mentioned property derives from com-
pactness in the manner we will explore here.

In general, given a class K of topological spaces (K is closed under
homeomorphism) we define the class Anti (K) in such a way that "totally
disconnected" is co-extensive with "Anti (connected)" and so on. The
"anti-property" of most interest to us here is pseudofiniteness which we
henceforth relabel "anticompactness". We will also be interested in related
anti-properties (Anti (sequentially compact), Anti (LindelSf), etc.) but they
will recieve secondary emphasis. The general behavior of the operation
Anti (.) itself will occupy some of our attention. However at this stage there
are many more questions than answers, so our general treatment will be
sketchy, serving mainly to tie together ideas which otherwise may appear to
be unrelated.
Our set-theoretic conventions are as follows: (i) o denotes the ath

infinite initial ordinal, where a is any ordinal. Since we assume the Axiom of
Choice throughout, we identify % with the cardinal I. o o0. (ii) An
ordinal a is the set of its predecessors. Greek letters near the beginning of
the alphabet will usually denote ordinals, while the letters K, A, t will be
reserved for cardinals. (iii) The ordinal successor of a is a + 1 a tO {a}, the
cardinal successor of K is /. (iv) If A is any set P(A) denotes the power set
of A. (v) BA is the set of all maps f: A --* B. The cardinality of A is written

IAI. (vi) If is a cardinal then exp()=12Kl=lP()l, exp(o)is usually
denoted by c. (vii) The cartesian product of a family (Ai: i I) of sets is
denoted 1-I Ai. If Ai A for all i I then the set A will also at times be
denoted 1-I (A). Further notations will be introduced as they arise in the
discussion. The referee’s kind suggestions regarding exposition are gratefully
acknowledged.
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1. A Description of the process

Let K be a topological class. The spectrum Spec (K) of K is the class of
cardinal numbers K such that any topology on a set of power K lies in K. For
example, any topology on a finite set must be compact; and any infinite set
supports noncompact topologies. Thus Spec ({compact spaces})= to. Other
spectra can be computed quite readily, such as Spec ({connected spaces})=
2(= {0, 1}), and Spec ({perfect spaces})= 1.
Now let K be a class of spaces and define Anti (K) to be the class of

spaces X such that whenever Yc X, Y K ifflYI Spec (K). Thus X
Anti (K) iff the only subspaces of X which are in K are those which "have to
be" on account of their cardinalities. Clearly Anti (K) is always hereditary.

1.1 PROPOSITION. Anti (K) is never empty.

Proof. If Anti (K) were empty for some K then for every X there would
be a subspace Y with Y K and YI Spec (K). Pick X . Then 0 K but
0 Spec (K). This is nonsense since there is only one topology on the empty
set.

Remark. (1.1) shows that not every hereditary class need be of the form
Anti (K). In a private communication, B. Scott has proved the following (the
proof to appear elsewhere) Theorem: Let L be a hereditary class. Then L is
not of the form Anti (K) iff there is an n < to with n Spec (L) and XL for
all spaces X of power at least n + 1. Moreover if L is of the form Anti (K)
then K can be chosen to have empty spectrum; and if L contains spaces of
all cardinalities then K can be taken to be the complement of L.

The reader can easily check that Anti ({connected spaces}) {totally
disconnected spaces}, Anti ({perfect spaces}) {scattered spaces}, and
Anti ({compact spaces})={pseudofinite spaces}. Other "anti-classes" are
easy to compute as well.
We mention some of the general properties of the operation Anti (.). The

proofs are straightforward.

1.2 PROPOSITION. (i) If K L then Spec (K) Spec (L).
(ii) If K L and Spec (K) Spec (L) then Anti (K) Anti (L). Anti (K)

and Anti (L) can be unrelated, however.
(iii) Anti (.) is not idempotent.
(iv) If K is hereditary then K Anti (Anti (K)).
(v) Anti (K)c Anti (Anti (Anti (K))) for all K.

Proof. (i) This is obvious.
(ii) Let K, L be as in the hypothesis, with X Anti (K). Let Y X be

such that Y K but YI Spec (K). Then Y L but YI Spec (L); whence
XAnti (L).

Let K {compact spaces}, L {Lindel6f spaces}. Then K c L but
Anti (K)5t Anti (L) and Anti (L) Anti (K) by (1.3(iii)).
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(iii) Let K {compact spaces} again. Then X Anti (Anti (K)) iff every
infinite subset of X contains an infinite compact set. The ordinal space
[0, o] (= o + 1 with the order topology) is in K but not in Anti (Anti (K)).

(iv) Let K be hereditary, with XAnti (Anti (K)). Then for some Yc X,
[YlSpec(Anti(K)) but YAnti(K). Since K is hereditary, we have
Spec (K) c Spec (Anti (K)). Thus 1YI Spec (K). But Y Anti (K); whence
Y K, so XK.

(v) Anti (K) is always hereditary, so use (iv).

In the remainder of this paper we will concentrate on Anti (K) where K is
one of the properties "compact", "sequentially compact", "Lindel6f".

1.3 PROPOSITION. (i) If X is anti-Lindel6f, anti-(sequentially compact),
and T2 then X is anticompact.

(ii) If X is anticompact and T1 then X is anti-(path connected).
(iii) Anticompactness and anti-Lindelffness are implicationally unrelated.
(iv) [12] Anticompact spaces are anti-(sequentially compact). The con-

verse is false.
(v) A T2 space is discrete if[ it is an anticompact k-space.

Proof. (i) A T2 space is anti-(sequentially compact) iff it contains no
embedded copies of the compact ordinal space [0, o]. To see this, suppose
first that [0, o] is embedded in X. Then X would contain an infinite
sequentially compact subspace. On the other hand suppose X fails to be
anti-(sequentially compact). Let YcX be infinite and sequentially compact.
Since Y is T2, it contains a discrete sequence (Yo, Yl,...). By sequential
compactness there is a convergent subsequence, hence an embedded copy of
[0,,o].
Now suppose X satisfies the hypotheses of (i). If c X is compact then

Y is also Lindel6f, hence countable. Thus, if Y isn’t finite, is infinite
compact metric and must contain a copy of [0, o], an impossibility.

(ii) Let : [0, 1]-- X be a path in X. Since X is anticompact, range
() c X is a connected finite set. Since X is also T, range () must be a
singleton.

(iii) The ordinal space [0, o] is anti-Lindel6f but not anticompact. To get
a space which is anticompact but not anti-Lindel6f, let R# denote the real
numbers with the topology basically generated by sets of the form (open
interval)-(countable set). This is-the classical example of a hereditarily
Lindel6f nonseparable T2 space. Since IR#I- c, this space cannot be anti-
Lindel6f. However let K c R# be compact. If K is infinite then K contains a
countable subset. But such sets are dosed discrete in R#. Thus K is finite
and R# is anticompact.

(iv) This is proved in [12] (c.f. the observation after their Theorem 5).
(v) Let X be T2. If X is discrete it is dearly anti-compact as well as

compactly generated. Conversely if X is an anticompact k-space and YcX
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then Y fq K is dosed in K whenever K is compact (hence finite discrete) in
X. Thus is dosed in X, whence X is discrete.

Remark. The class of k-spaces is quite large, including the first counta-
ble spaces as well as the p-spaces of Archangel’skil. Thus it doesn’t take
much to force an anticompact space to be discrete. We will see in 2,
however, that nondiscrete anticompact spaces abound.

2. Anticompactness and connectedness

In view of the fact that anticompact T1 spaces have trivial path compo-
nents, one might suspect that connectedness and anticompactness are mutu-
ally inconsistent properties for reasonably nice (with regard to separation
axioms) spaces. However our only nontrivial example, up to this point, of an
anticompact space turns out also to be connected T2 (but not regular). The
space R#, originally suggested to me by F. Galvin, is connected for the
following reason. Let ll=(U,-A,’a <K) be a basic open cover of R#.
That is, U is a nonempty open interval and A is countable for each a < K.

It will suffice to show that 1I is "connected" in the sense that whenever V,
WII there is a "simple chain" M1,...,MnII with Vf3MO,
M, f3 W# , and M (3M/1 # for 1 --< --< n 1. But this is clearly true for
1I since R is connected in its usual topology and the overlap of two open
intervals is either empty or uncountable.

Let us now look at two important sources of anticompact examples, the
P-spaces and the MI-spaces. X is a P-space if intersections of countably
many open sets are open. A P-space which is also T must be anticompact
since countable subsets are always dosed discrete. As far as existence is
concerned, these spaces are quite common and there are many ways of
systematically constructing them (see [2], [3], [4], [11], [13], [14], also 3).
In [11] Misra constructs a connected T2 P-space, so again connectedness and
anticompactness co-occur in the presence of the Hausdorff axiom. The
inevitable question then is whether there are any regular connected an-
ticompact spaces. R# is well-known to be nonregular. Moreover no regular
P-space with more than one point is connected since, as can be seen in [2],
[11], such spaces are always strongly zero-dimensional.

This brings us to our second source, namely the MI-spaces of Hewitt [7].
X is an MI-space if it is perfect, Hausdorff, and "sub-maximal" in the sense
of [5], i.e. every dense subset is open. There are several ways of constructing
these spaces (see [1], [5], [7], [9], [10]); and in [1] Anderson gives a uniform
way of constructing connected examples. To complete the picture, Kirch [9]
shows that MI-spaces are anticompact. To the best of our knowledge,
however, it is an open question whether a connected MI-space can be
regular.
As a side remark, the space R# is neither a P-space nor an MI-space. For
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on the one hand each of its points is a Gs; and on the other hand, R# is
"resolvable" into a disjoint union of two dense subsets (see [7]).
With the above ample introduction aside, we now answer our "inevitable"

question in the affirmative with the following offering. This example owes its
beginnings to an elightening conversation with E. K. van Douwen and M. E.
Rudin.

2.1 Example. A connected anticompact Tichonov space which is resolva-
ble, hence neither an MI-space nor a P-Space.

Construction. Let A =[0, 1) be the half-open unit interval with A*=
/3A-A its Stone-tech remainder. We construct a subspace E of A* and
show that E, automatically a Tichonov space, satisfies the remaining condi-
tions. The basic facts we use are the following:

(i) A* is an indecomposable continuum (see Walker [15]).
(ii) There are exp (c) infinite closed subsets of A*, and each has exp (c)

points (again, see [15]).
(iii) If X is any connected T1 space and p X is a cutpoint of X then

there are disjoint nonempty open sets U, V in X with U to V X-{p} and
U to {p}, V tO {p} connected (see Ward [16]).

We first prove the claim that if X is a nondegenerate indecomposable
continuum and FcX is finite then X-F is connected. Induct on IF[. If
IFI 0 there’s nothing to prove, so suppose X-F is connected with p
X-F. We show X-(FtO{p}) is connected by proving that p isn’t a cutpoint
of X-F. For if it were then (since finite sets are closed) there would be
disjoint nonempty open sets U, V of X with U to V= X-(Fto{p}) and
U tO {p}, V tO {p} connected. Now X- (F tO {p}) is dense in X. Thus

C1 U tO {p}) tO C1 (V tO {p}) X.

But neither subcontinuum is all of X. This contradicts indecomposability.
Now, using (ii) above, let (F,’a <exp (c)) be a well ordering in type

exp (c) of the infinite closed subsets of A*. By induction we can pick distinct
points

x(2) F, {x1, xz), x3)}, i= 1, 2, 3, c < exp (c).
13<o

Let X() {x)" a < exp (c)}, 1, 2, 3, and set E X() tO X2). We check that
2; has the properties we want.
Let U be nonempty open in A*, x U. Let V be open in A* with

x Vc C1 (V) U. Then C1 (V) is infinite closed in A* so hits each X),
i-1, 2, 3; whence each X(i) is dense in A*. Thus is resolvable into the
disjoint union of the dense subsets X), X(2), so isn’t an MI-space. E is
anticompact since iI K is a compact subset then K is closed in A*. Since
infinite closed sets share points with X(s) = A*-2;, K must be finite. To see
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that E is connected let 1I be a collection of open subsets of A* which covers
E. We show the relativized cover 1I E to be connected. Since E is dense in
A*, it will suffice to show that 1I itself is connected. But A*- 1I is finite;
and hence by (i), (iii) above, 1I is a connected set. The argument is
completed by noting that 5; is not a P-space since it is regular and not
zero-dimensional.

We end this section with some open questions.

2.2 Problems. (i) Are there nontrivial examples of connected anticom-
pact spaces which are normal? paracompact? We don’t know whether E
above is normal.

(ii) Are there regular connected anticompact spaces of power c? Our
space E has power exp (c).

(iii) Are regular anticompact spaces always Tichonov? We know an-
ticompactness fails to collapse any of the other pairs of well-known separa-
tion axioms.

(iv) Find an interesting class of spaces (not contained in the class of
k-spaces) whose intersection with the anticompact spaces is contained within
the totally disconnected spaces.

3. Preservation of anticompactness

In this section we consider questions involving the preservation of an-
ticompactness under topological operations. For instance anticompactness is
trivially preserved by open bijections (e.g. expansion of topologies). Also
anticompactness is preserved by "compact covering maps" (i.e. continuous
maps such that compact sets in the range are images of compact sets in the
domain).
We next turn our attention to the preservation of anticompactness under

various topological product formations. The following is stated in [12].

3.1 PROPOSITION. The Tichonov product of topological spaces is anticom-
pact iff all of the factors are anticompact and all but finitely many of them are
singletons.

A generalization of the Tichonov product is the "X-box product" where X
is an infinite cardinal. Specifically let (X: e I) be a collection of spaces with
l-It Xi denoting the cartesian product of the underlying sets of the Xi’s. An
open X-box is a product lit U where U is open in Xi and I{i: U X} I<X.
The X-box product, denoted by l X, is the space with underlying set IX
and topology generated by the open X-boxes. The Tichonov product is then
1-I Xi; and the full box product is 1t+ X, denoted I-I] X.

3.2 THEOREM. Let (X: I) be a collection of T1 spaces with tOl <-X <-oo.
Then [-[i X is anticompact iff each X is anticompact.
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Proof. Suppose 1-I X is anticompact, j L Then X embeds in I-I xi and
is thus anticompact.

Conversely suppose each Xi is anticompact. Since h >-to1 and anticom-
pactness is preserved under expansion of topologies, we need only prove the
assertion for h =601 So let K be compact in I-I71X with Kj the ]th
projection of K. Then each K is compact, hence finite; and is therefore
discrete since X is T1. So K c I-LrI K, an tox-box product of discrete spaces.
But such spaces are deafly P-spaces. Since they are also Ta, they are
therefore anticompact. Thus K is finite.

Another generalized product (generalizing not the Tichonov product but
the box product) is the topological reduced product. This construction,
borrowed from model theory, is studied in [2], [3], [4] and is defined as
follows. Let (X: I) be a collection of spaces with D a filter of subsets of I.
In I-Lr x define the equivalence relation x "-o Y if {i: x yi} D. Let I-[o X
be the resulting quotient space. This space is the D-reduced product of the
X’s. Clearly 1-Ir X 1-I7 X; and if D is an ultrafilter on I then I-[o X is
called the D-ultraproduct of the X’s. We consider the preservation of
anticompactness under reduced products. The reader is assumed to have a
nodding acquaintance with some of the lore of measurable cardinals and of
the set-theoretic properties of filters. In particular a filter D is h-complete if
D is closed under < h intersections. D is h-regular if there is a set E c D of
power h such that each i I is contained in only finitely many members of
E. An ultrafilter D is to-regular iff it is to -incomplete (i.e. countably
incomplete). This is an important property of ultrafilters.

3.3 LEMMA. Let (X:i I) be a collection of spaces with D a h-regular
filter on L Then l-Io x is a Px+-space (i.e. intersections of <-h open sets are
open).

Proof. This is proved in [2] for D a h-regular ultrafilter. The proof for
arbitrary h-regular D is identical.

3.4 THEOREM. Let (X: I) be a collection of T spaces, with D an
to-regular filter on I. Then I-Io x is anticompact.

Proof. Clearly 1-IoX is T1. By (3.3) it is also a Po,-space (= P-space);
and is hence anticompact.
Thus the to-regular reduced product formation not only preserves an-

ticompactness of T spaces, it confers the property for free. We next
consider the behavior of countably complete filters.

3.5 THEOREM. Let (X: I) be a collection of anticompact T2 spaces with
D a countably complete ultrafilter on I. Then [Io X is anticompact.

Proof. D is either fixed, in which case we’re done, or free and
complete where t is a measurable cardinal (see [6]). Let C be compact in
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]-IDX and assume C is infinite. If K c C is countable then of course
C1 (K)c C is compact. We show first that IC1 (K)I<IX. Indeed reduced
products preserve the Hausdorff axiom so C1 (K) is a separable T2 space;
and its cardinal therefore is <-exp(c). "This follows from a well-known
general fact about T2 spaces; for let X be T2, let S c X be dense, and let

llx {U N S: U is an open neighborhood of x X}

Then llx 1I whenever x y, so we obtain a one-one map of X into

P({U q S: U open in X});

whence IXl-<exp (exp (d(X))), where d(X) is the density character of X.
Since measurable cardinals are inaccessible, we have IC1 (K)I < IX. Now let

Ki {xi: there is a [fib C1 (K) with f xi}.

We show C1 (K)=0 Ki. First it is dear that CL (K)cI-ID Ki so suppose
that [rio lid K, -C1 (K). Then {i: fi K,} D; and for each [g]o C1 (K),
{i: f g,} D. Since IC1 (K)II< tz and D is ix-complete we know

{i: f K, and for all [g]o C1 (K), f # g} D.

In particular there is an I with f K, and f gi for any [g]D C1 (K),
contradicting the definition of K,.
Now since C1 (K)= lid K, is compact, it is a basic fact about topological

ultraproducts (see [2]) that {i: K is compact} D. Since each X is anticom-
pact, {i: K is finite} D. Finally, since D is countably complete, it follows
that I-[D K is finite, a contradiction. Thus C must have been finite to begin
with.
Now ultrafilters are either countably complete or o-regular. Thus combin-

ing (3.4) and (3.5) gives:

3.6 COROLLARY. Topological ultraproducts of anticompact T2 spaces are
anticompact.

Remark. The argument in (3.5) deafly requires that the countably
complete filter D be an ultrafilter and that the spaces X be Hausdorff (as
opposed to Ta for -box products and w-regular reduced products). The
inequality IXl-<exp (exp (d(X))) fails for T spaces since the cofinite topol-
ogy on any set is separable T.

3.7 Problem. Do all reduced products preserve anticompactness? An
interesting special case to consider might be whether the countably complete
filter generated by the dosed unbounded subsets of [0, tOl) preserves an-
ticompactness. Judging by the special properties of countably complete
ultrafilters which we had to use in proving (3.5), it seems likely that a
counterexample awaits discovery here.
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4. The anti-Lindel6f property

Let r be a cardinal, X a space. X is r-compact if every open cover of X
has a subcover of power <r. Thus X is anti-r-compact iff the only subsets of
X which are r-compact are those of power < r. Of course compact o-

compact and Lindel6f=ol-compact. We concern ourselves here with
generalizing the results of Sections 2 and 3. Unfortunately many of these
results have proved highly resistant to generalization, so there is no shortage
of open questions in this connection. Since many of the difficulties which
arise for general r evidence themselves already in the case r to1, this is the
case which will receive most of our attention.

Let us first examine the existence question. The space consisting of
I t.l{}, where I is uncountable discrete, /, and the neighborhoods of
are of the form J t3{} where I-J is countable, is Lindel6f and not
anti-Lindel6f, as well as a paracompact P-space. So, not surprisingly,
P-spaces do not provide us automatically with anti-Lindel6f examples. As
regards the MI-spaces, less is known.

4.1 Problem. Can uncountable MI-spaces be Lindel6f?

4.2 PROPOSITION. If X is a Tx Px+-space then X is anti-r-compact for

Proof. Every subset of X of power <-- is closed discrete.

As we saw in (3.3), -regular reduced products of T spaces provide an
excellent source of anti-A-compact examples.

4.3 Example. For each infinite cardinal A, a space of power A which is
nondiscrete, paracompact, and anti-r-compact for each r < A.

Construction. Let I be discrete of power and let p /31-I. Let X
I t3{p}/31. This space clearly has the desired properties.

The space R# introduced in the proof of (1.3iii) motivates the next
example.

4.4 Example. For each infinite cardinal A, a connected exp (A)-compact
Ta space of power exp (A) which is anti-r-compact for r < exp ().

Construction. Let X be the cube [0, 1]x where we allow sets of the form
(open Tichonov box)-(set of power <exp ()t)) to form a topological basis.
Thus sets of power <exp (A) are automatically closed. Clearly X is T2 and of
power exp (A). Also since sets of power <exp () are discrete in X, this
space is clearly anti-r-compact for r <exp (). X is connected for almost
exactly the same reason that R# is connected. X is exp ()-compact by a
straightforward argument using the fact that [0, 1]x with the Tichonov
topology is compact.
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4.5 Problem. Are there any regular (Tichonov) connected anti-Lindel6f
spaces?
We next look for analogues of the theorems in 3 regarding preservation

of anti-Lindel6fness. For example it is easy to see that this property is
preserved under open bijections as well as "Lindel/Sf covering maps".
Nonetheless it turns out that anti-Lindel/Sfness is generally a more difficult
property to work with than is anticompactness.
The proof of the following is identical to that of (3.1) [12].

4.6 PROPOSITION. The Tichonov product of topological spaces is anti-

Lindel6f iff all of the factors are anti-Lindel6f and all but finitely many of
them are singletons.

In analogy with (3.2) we have:

4.7 THEOREM. Let (X:
oo. Then I-[ X is anti-Lindelbf iff each Xi is anti-Lindelbf.

Proof. Mimic the proof of (3.2). At the stage where K c 1-It’2 Ki (i.e. K is
Lindel6f, Ki is the ith projection of K, and each Ki is discrete, owing to the
fact that X is a T P-space with Ki countable), we use the fact that to2-box
products of discrete spaces are P,o2-spaces which in turn are anti-Lindelof.
Thus K is countable.

Concerning tol-box products of anti-Lindel6f spaces, the "real" analogue
of (3.1) is:

4.8 THEOREM. Suppose (X:i I) is a collection of TI spaces.
(i) If I{i: IXl->2}l->tol then I-It0"1X is not anti-Lindel6f.
(ii) If I{i:lXl>-2}l<-to and each X is an anti-Lindel6f P-space then

1-I7 x is anti-Lindel6f.
Proof. (i) If each X is T and uncountably many X’s have more than

one point then 1-’ X contains a copy of 1-Il (2) which, while not Lindel6f
itself (it further contains a copy of [I, (2), an uncountable closed discrete
subset), fails to be anti-Lindel6f. To see this, let (X)x denote the space
obtained from X 15y closing up the topology of X under intersections of <
open sets. It is a straightforward matter to prove that if X is discrete and )t

is a regular cardinal then for any index set J, 1- (X) is homeomorphic to
(I-L7 (x))x. Thus I-Il (2) (I-L (2))0,. Let F: to 2" be defined by

if
F(a)([3)

if / --> a

Then range (F) is a discrete subset of l-Il (2) (i.e. F is an "tOl-Cauchy
sequence" in the sense of Sikorski (see [13], [14])), and it has precisely one
limit point, namely the zero sequence. Thus range (F)tA {zero sequence} is a
copy of the modified ordinal space ([0, to]),, which itself is uncountable
Lindel6f.
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(ii) A box product of countably many anti-Lindel/Sf P-spaces is anti-
Lindel6f. For again look at the proof of (3.2). When we get to the stage
K c I-[tl Ki (where I is countable), each Ki is discrete and box products of
discrete spaces are discrete. Thus K is countable.

4.9 Problem. Is the box product of countably many copies of [0, to]
anti-LindelSf?
We now move to consider reduced products of anti-Lindel6f spaces. By

(3.3) and (4.2), an tol-regular reduced product of T1 spaces is anti-Lindel/Sf
as well as anticompact. Moreover the analogy of (3.5) goes through intact.
The proof is virtually the same (with the obvious minor adjustments).

4.10 THEOREM. Let (X: I) be a collection of anti-Lindel;6f T2 spaces
with D a countably complete ultrafilter on L Then IIo X is anti-Lindelbf.

4.11 COROLLARY. Topological ultraproducts of anti-LindeliSf T2 spaces are
anti-LindeliJf, provided the ultrafilters are either countably complete or
regular.

We leave the subject with the obvious question implied by (4.11), namely:

4.12 Problem. Decide whether free ultrafilters on the integers (as exam-
ples of to-regular but not to-regular ultrafilters) yield preservation of
anti-Lindel6fness for T2 spaces.
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