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A SURVEY OF ULTRAPRODUCT CONSTRUCTIONS IN
GENERAL TOPOLOGY
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E. Nelson and M. E. Rudin.

Abstract. We survey various attempts to transport the ultraproduct con-
struction from the realm of model theory to that of general topology. The
category-theoretic perspective has played a key role in many of these attempts.

1. Introduction

The ultraproduct construction has a long and distinguished history. While its
beginnings go back to the 1930s with K. Gödel (who was proving his completeness
theorem) and T. Skolem (who was building nonstandard models of arithmetic), it
was not until 1955, when J.  Loś published his fundamental theorem of ultraprod-
ucts, that the construction was described explicitly, and its importance to first-order
logic became apparent. The understanding of the structure and use of ultraproducts
developed rapidly during the next fifteen years or so, culminating in the ultrapower
theorem of H. J. Keisler and S. Shelah. (The gist of the theorem is that two rela-
tional structures have the same first-order properties if and only if an ultrapower of
one is isomorphic to an ultrapower of the other. Keisler established a much stronger
statement in the early 1960s using the generalized continuum hypothesis (GCH);
and toward the end of the decade, Shelah provided a GCH-free proof of a second
stronger statement that is somewhat weaker than Keisler’s.) By the late 1960s, the
theory of ultraproducts had matured into a major area of investigation in its own
right (see [24, 28, 34, 50] for a vastly more detailed account than is possible here),
and was ready for export beyond the confines of classical model theory.

Actually the exportation process had already begun by the early 1960s, when I.
Fleischer [36] observed that classic ultrapowers are directed limits of powers (and,
by implication, that classic ultraproducts are directed limits of products). This
observation, illustrating a major strength of category theory (see [61]), provides
an abstract reformulation of a concrete construction. One may now start with
a category C endowed with products (which construction being itself an abstract
reformulation of the cartesian product) and directed limits, and define ultraproducts
within that category. Going further, any bridging theorem, i.e., one that translates
a concrete notion into abstract terms involving the ultraproduct (or some other
mechanism), becomes available as a definitional vehicle to recast that notion in a
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suitably rich category. T. Ohkuma [71] (and A. Day and D. Higgs [32] a bit later)
made good use of this idea, introducing a notion of finiteness in a category by
means of the simple bridging result that says a relational structure is finite if and
only if all diagonal maps from that structure into its ultrapowers are isomorphisms.
An object A in a category C equipped with ultraproducts is now defined to be
ultrafinite if the canonical (diagonal) morphism from A to any C-ultrapower of A
is an isomorphism. Similarly, if Cop is the opposite of the category C (i.e., same
objects, arrows reversed), and if Cop is equipped with ultraproducts, then an object
of C is called ultracofinite if it is ultrafinite in Cop.

In the setting of concrete categories; i.e., those suitably endowed with forgetful
functors to the category of sets and functions, the notion of ultrafiniteness can eas-
ily fail to coincide with that of having finite underlying set. For example, consider
C = CH, the category of compacta (i.e., compact Hausdorff spaces) and contin-
uous maps. Then ultrafinite in this setting means having at most one point. (It
is ultracofinite that actually coincides with having finitely many points.) Another
example is C = BAN, the category of real Banach spaces and nonexpansive homo-
morphisms. Then ultrafinite here means having finite dimension, while ultracofinite
means being the trivial Banach space.

I became aware of Fleischer’s limit approach to ultraproducts in 1974, late in
my career as a graduate student. I was on a visit to McMaster University, and it
was there that I became aware of Ohkuma’s use of the ultrapower characterization
of finiteness. Soon afterward I came to the idea of using the ultrapower theorem in
a similar way. My aim was not the abstract reformulation of set-theoretic notions,
however, but model-theoretic ones; namely elementary equivalence and elementary
embedding (as well as their various derivative notions). I can attribute much of my
own development as a mathematician to enlightening talks I had with the universal
algebra group at McMaster at that time (namely B. Banaschewski, G. Bruns and
E. Nelson), and the papers [9, 11, 23] extend and develop the ideas introduced
in [32, 71]. Moreover, my coinage of the term ultracoproduct, along with my own
investigations of how ultraproducts behave in the opposite of the concrete category
CH (to be discussed in Section 5) can also be traced to Fleischer’s approach.

What Fleischer started in 1963 might be regarded as the beginning of the idea
of a model-theoretic study of a class (or category) C. This should be immediately
contrasted with what might be called C-based model theory. While the two subject
areas may overlap a great deal, there is a difference in emphasis. In the former,
one perhaps fixes an autonomous notion of ultraproduct in C (hence a mechanism
for generating conjectures that stem from known classical results), then tries to
establish (functorial) links between C and particular classes of models of first-order
theories (hence a mechanism for settling some of those conjectures). In the latter,
one enriches objects of C with extra functions and relations, possibly nonclassical in
nature but recognizable nonetheless, views these enriched objects as models of log-
ical languages, and proceeds to develop new model theories, using more established
model theories for guidance. Our study of compacta in [13] and elsewhere exempli-
fies the former emphasis, while the Banach model theory initiated by C. W. Henson
(see [46, 48, 47]), as well as the approaches to topological model theory found in
[37, 38, 64, 77], exemplify the latter.

In this paper our primary focus is on how classical ultraproducts can be exported
to purely topological contexts, with or without category-theoretic considerations as
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motivation. (So the Banach ultraproduct [31], for example, which is the Fleischer
ultraproduct in BAN, is not directly a subject of our survey.) We begin in the next
section with a quick introduction to ultraproducts in model theory; then on, in Sec-
tion 3, to consider the topological ultraproduct, arguably the most straightforward
and näıve way to view the ultraproduct topologically. The motivation in Section 3
is purely model-theoretic, with no overt use of category-theoretic concepts. This is
also true in Section 4, where we look at a variation of this construction in the special
case of ultrapowers. It is not until Section 5, where ultracoproducts are introduced,
that the Fleischer approach to defining ultraproducts plays a significant role. Al-
though the ultracoproduct may be described in purely concrete (i.e., set-theoretic)
terms, and is of independent interest as a topological construction, the important
point is that category-theoretic language allows one to see this construction as a
natural gateway out of the classical model-theoretic context.

The ultraproduct construction in model theory is a quotient of the direct product,
where an ultrafilter on the index set dictates how to specify the identification. When
we carry out the analogous process in general topology, at least from the viewpoint
of Section 3, the product in question is not the usual (Tychonoff) product, but the
less commonly used (and much worse behaved) box product. (While one could use
the usual product instead of the box product, the result would be an indiscrete
(i.e., trivial) topological space whenever the ultrafilter was countably incomplete.)

The identification process just mentioned does not require the maximality of the
designated ultrafilter in order to be well defined, and may still be carried out using
any filter on the index set. The resulting construction, called the reduced product,
serves as a generalization of both the direct (box) product and the ultraproduct
constructions. In Section 6 we look at some of the recent work on furthering this
generalization to include the usual product and some of its relatives. Selected open
problems are included at the end of some of the sections.

2. Preliminaries from Model Theory

First we recall some familiar notions from model theory, establishing our basic
notation and terminology in the process.

Given a set I, the power set of I is denoted ℘(I), and is viewed as a bounded
lattice under unions and intersections. (The alphabet of bounded lattices consists
of two binary operation symbols, t (join) and u (meet), plus two constant symbols,
> (top) and ⊥ (bottom).) A filter on I is a filter in the lattice ℘(I); i.e., a collection
F of subsets of I satisfying:

(1) I ∈ F ,
(2) any superset of an element of F is also an element of F , and
(3) the intersection of any two elements of F is also an element of F .

A filter F is called proper if ∅ /∈ F ; an ultrafilter I is a proper filter on I that
is not contained in any other proper filter on I; i.e., a maximal proper filter in
the lattice ℘(I). In power set lattices the ultrafilters are precisely the prime ones;
i.e., a proper filter is maximal just in case it contains at least one of two sets if
it contains their union. If S is any family of subsets of I, S is said to satisfy
the finite intersection property if no finite intersection of elements of S is empty.
Our underlying set theory is Zermelo-Fraenkel set theory with the axiom of choice
(ZFC); consequently, any family of subsets of I that satisfies the finite intersection
property must be contained in an ultrafilter on I. (More generally, if a subset of
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a bounded distributive lattice satisfies the finite meet property, then that subset is
contained in a maximal proper filter in the lattice.)

We start with an alphabet L of finitary relation and function symbols, including
equality. An L-structure consists of an underlying set A and an interpretation
of each symbol of L, in the usual way (including the equality symbol ≈ being
interpreted as the equality relation). Like many authors (and unlike many others),
we use the same font to indicate both a relational structure and its underlying set;
being careful to make the distinction clear whenever there is a threat of ambiguity.

If 〈Ai : i ∈ I〉 is an indexed family of L-structures, and F is a filter on I, the
ordinary direct product of the family is denoted

∏
i∈I Ai, with the ith coordinate

of an element a being denoted a(i). (Each symbol of L is interpreted coordinate-
wise.) The binary relation ∼F on the product, given by a ∼F b just in case
{i ∈ I : a(i) = b(i)} ∈ F , is easily seen to be an equivalence relation; and we define
a/F := {b : a ∼F b}. We denote by

∏
F Ai the corresponding reduced product ; i.e.,

the set of ∼F -equivalence classes, with the derived interpretation of each symbol
of L. (So, for example, if R is a binary relation symbol, then a/F R b/F holds
in

∏
F Ai just in case {i ∈ I : a(i) R b(i) holds in Ai} ∈ F .) When Ai = A for

each i ∈ I, we have the reduced power, denoted AI/F . The canonical diagonal
map d : A → AI/F , given by a 7→ (constantly a)/F , is clearly an embedding of
L-structures.

From here on, unless we specify otherwise, we concentrate on reduced products
(powers) in which the filter is an ultrafilter. The corresponding constructions are
called ultraproducts (ultrapowers), and the fundamental theorem of ultraproducts
is the following. (We follow the standard notation regarding satisfaction of substi-
tution instances of first-order formulas. That is, if ϕ(x0, . . . , xn−1) is a first-order
L-formula with free variables from the set {x0, . . . , xn−1}, and if A is an L-structure
with n-tuple 〈a0, . . . , an−1〉 ∈ An, then A |= ϕ[a0, . . . , an−1] means that the sen-
tence got from ϕ by substituting each free occurrence of xi with a new constant
symbol denoting ai, i < n, is true in A. (See also [24, 28, 50].))

Theorem 2.1 ( Loś’ Fundamental Theorem of Ultraproducts: [28]). Let 〈Ai : i ∈ I〉
be a family of L-structures, with D an ultrafilter on I and ϕ(x0, . . . , xn−1) a first-
order L-formula. Given an n-tuple 〈a0/D, . . . , an−1/D〉 from the ultraproduct, then∏

D Ai |= ϕ[a0/D, . . . , an−1/D] if and only if {i ∈ I : Ai |= ϕ[a0(i), . . . , an−1(i)]} ∈
D.

By a level zero formula, we mean a Boolean combination of atomic formulas. If k
is any natural number, define a level k+1 formula to be a level k formula ϕ preceded
by a string Q of quantifiers of like parity (i.e., either all universal or all existential)
such that, if ϕ begins with a quantifier, then the parity of that quantifier is not the
parity of the quantifiers of Q. A level k formula beginning with ∀ (for all) (resp.,
∃ (there exists)) is called a Π0

k formula (resp., Σ0
k formula). Formulas with a well-

defined level are said to be in prenex form, and elementary first-order logic provides
an effective procedure for converting any L-formula to a logically equivalent formula
(with the same free variables) in prenex form. A function f : A → B between L-
structures is an embedding of level ≥ k if for each L-formula ϕ(x0, . . . , xn−1) of level
k, and n-tuple 〈a0, . . . , an−1〉 ∈ An, it is the case that A |= ϕ[a0, . . . , an−1] if and
only if B |= ϕ[f(a0), . . . , f(an−1)]. It is easy to see that the embeddings of level
≥ 0 are precisely the usual model-theoretic embeddings; the embeddings of level
≥ 1 are also called existential embeddings. (Existential embeddings have been of
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considerable interest to algebraists and model theorists alike.) If a function f is of
level ≥ k for all k < ω, we call it an embedding of level ≥ ω. Now an elementary
embedding is one that preserves the truth of all first-order formulas, even those
without an obvious level; so elementary embeddings are clearly of level ≥ ω. The
effective procedure for converting formulas into prenex form, then, assures us of
the converse. We are taking pains to point this out because, as we shall see, the
notion of embedding of level ≥ k can be given a precise abstract meaning, devoid
of reference to first-order formulas (see Theorem 2.3 below). This makes it possible
to speak of morphisms of level ≥ α, where α is an arbitrary ordinal; and there is no
a priori reason why this hierarchy should terminate at level ≥ ω. (See also Section
5.)

Corollary 2.2 (Diagonal Theorem). The canonical diagonal embedding from a
relational structure into an ultrapower of that structure is an elementary embedding.

A first-order formula containing no free variables is called a sentence, and two
L-structures A and B are called elementarily equivalent (denoted A ≡ B) if they
satisfy the same L-sentences. Clearly if there is an elementary embedding from
one L-structure into another, then the two structures are elementary equivalent; in
particular, because of Corollary 2.2, if some ultrapower of A is isomorphic to some
ultrapower of B, then A ≡ B. By the same token, if f : A → B is a map between
L-structures, then f is an elementary embedding as long as there are ultrafilters
D and E (on sets I and J respectively) and an isomorphism h : AI/D → BJ/E
such that the compositions e ◦ f and h ◦ d, with the corresponding diagonal em-
beddings, are equal. The converses of these two statements are also true. (Indeed,
the converse of the second follows from the converse of the first using the method
of expanding the alphabet L by adding constants denoting all the elements of A.)
This fact, called the (Keisler-Shelah) ultrapower theorem, is a milestone in model
theory, with a very interesting history (see, e.g., [28]). Its importance, in part, is
that it allows many basic notions of first-order model theory to be formulated in
abstract terms, i.e., in terms of mapping diagrams; it is what we called a bridging
theorem in the Introduction. The obvious central notions are elementary equiva-
lence and elementary embedding, but there are also derivative notions (e.g., prime
model) readily definable in terms of these. Other derivative notions are less obvi-
ous. For example the following result is stated and used extensively in [82], and is
an application of Keisler’s model extension theorem (see [79]).

Theorem 2.3. A function f : A→ B between L-structures is an embedding of level
≥ k+1 if and only if there is an elementary embedding e : A→ C and an embedding
of level ≥ k g : B → C such that e = g ◦ f .

Theorem 2.3, in conjunction with the ultrapower theorem, is another bridging
theorem; as the elementary embedding e may be taken to be an ultrapower diagonal
embedding. Thus the notion of embedding of level ≥ k has an abstract reformula-
tion. Indeed, because of the inductive flavor of Theorem 2.3, that notion may be
formally extended into the transfinite levels. What is more, because the notion of
existential embedding is now available in abstract form, we can export such notions
as model completeness to the category-theoretic setting.

We begin to see how these ideas may be exploited when we survey the topo-
logical ultracoproduct in Section 5. (We use the infix co because we are dealing
with the opposite of the concrete category CH of compacta and continuous maps.)
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Using the ultrapower theorem as a bridge, abstract model-theoretic notions are
imported, only in dual form, and made concrete once again. In order for this to be
a productive enterprise, however, it is necessary to use more of the theorem than
simply the gist form stated above. We therefore end this section with statements of
both Keisler’s GCH version and Shelah’s subsequent GCH-free version. (We employ
standard notation as regards cardinals and ordinals; see, e.g., [28]. In particular, if
κ and λ are cardinals, then κ+ is the cardinal successor of κ; and κλ is the cardinal
exponential, the cardinality of the set of all functions from λ into κ. If S is any set,
its cardinality is denoted |S|.)

Theorem 2.4 (Keisler’s Ultrapower Theorem: [28, 78]). Let λ be an infinite car-
dinal where the GCH holds (i.e., 2λ = λ+), and let I be a set whose cardinality is
λ. Then there is an ultrafilter D on I such that if L is an alphabet with at most λ
symbols, and if A and B are elementarily equivalent L-structures of cardinality at
most λ+, then AI/D and BI/D are isomorphic.

Theorem 2.5 (Shelah’s Ultrapower Theorem: [78]). Let λ be an infinite cardinal,
with µ := min{α : λα > λ}, and let I be a set whose cardinality is λ. Then there
is an ultrafilter D on I such that if L is an alphabet, and if A and B are elemen-
tarily equivalent L-structures of cardinality less than µ, then AI/D and BI/D are
isomorphic.

3. Topological Ultraproducts

The topological ultraproduct first made a brief appearance in the Soviet math-
ematical literature of the mid 1960s. In [1] N. Š. Al′fiš proved several elementary
results, but the subject lay dormant until ten years later when I rediscovered it
while working on my doctoral dissertation [4].

Following established usage, a topological space consists of an underlying set X
and a family T of subsets of X, called a topology ; members of T being called open
sets. All a family of subsets has to do to be called a topology is to be closed under
arbitrary unions and finite intersections. As with the case of relational structures,
we use the same symbol to indicate both a topological space and its underlying set
(using disambiguating notation, such as 〈X, T 〉, only when necessary). If B is an
open base for a topology T on X (so arbitrary unions of members of B form the
topology T ), then we write T = τ(B), the topology generated by B.

Let 〈〈Xi, Ti〉 : i ∈ I〉 be an indexed family of topological spaces, with F a filter
on I. Then the reduced product

∏
F Ti of the topologies may easily be identified

with a family of subsets of the reduced product
∏

F Xi of the underlying sets, and
this family qualifies as an open base for a topology τ(

∏
F Ti) on

∏
F Xi, which

we call the reduced product topology. The resulting topological reduced product is
denoted (when we can get away with it)

∏
F Xi; and the canonical basic open sets∏

F Ui ∈
∏

F Ti are called open reduced boxes. At the two extremes, we have:

(1) F is minimal, i.e., F = {I}, in which case
∏

F Xi is the box product∏
i∈I Xi (with open boxes for canonical basic open sets); and

(2) F is maximal, i.e., an ultrafilter, in which case
∏

F Xi is the topological
ultraproduct (with open ultraboxes for canonical basic open sets).

Clearly the quotient map x 7→ x/F from
∏

i∈I Xi to
∏

F Xi is a continuous
open map from the box product to the reduced product. (An interesting technical
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question concerns when that map is closed as well. This was originally posed in [6],
and M. S. Kurilić gave a complicated but interesting answer in [57].)

There is a certain amount of flexibility built into the definition of topological
reduced product; in that one may obtain an open base for the reduced product
topology by taking open reduced boxes

∏
F Ui, where, for each i ∈ I, the sets Ui

range over an open base for the topology Ti. This flexibility extends to closed bases
as well, in the case of ultraproducts. Recall that a family C is a closed base for T if T -
closed sets (i.e., complements in X of members of T ) are intersections of subfamilies
taken from C. One may obtain a closed base for the ultraproduct topology by taking
closed ultraboxes

∏
F Ci, where, for each i ∈ I, the sets Ci range over a closed base

for the topology Ti. (The reader interested in nonstandard topology may want to
compare the topological ultrapower topology with A. Robinson’s Q-topology [74].)

The connection between topological ultraproducts and usual ultraproducts should
be rather apparent, but we will find it convenient to spell things out. By the ba-
soid alphabet we mean the alphabet LBAS := {P,B, ε,≈}, where the first two
symbols are unary relation symbols standing for points and basic open sets, respec-
tively, and the third, a binary relation symbol, stands for membership. If X is any
set and S ⊆ ℘(X), then 〈X,S〉 may be naturally viewed as the LBAS-structure
〈X ∪S, X,S,∈〉, where set-theoretic membership is restricted to X ×S. An LBAS-
structure is called a basoid if it is (isomorphic to) such a structure, where S is
an open base for a topology on X. The basoid is called topological if S is itself
a topology. Every basoid has a uniquely associated topological basoid; the second
is said to be generated from the first. It is a routine exercise to show that there
is a first-order LBAS-sentence whose models are precisely the basoids. Thus ultra-
products of basoids are basoids by Theorem 2.1, and we obtain

∏
D〈Xi, Ti〉 as the

topological basoid generated from the usual ultraproduct of the basoids 〈Xi, Ti〉.
The alphabet LBAS is a natural springboard for topological model theory: Al-

low extra relation and function symbols to range over points, and build various
languages from there. This is a one-sorted approach, which is quite sensible, but
which turns out to be somewhat cumbersome in practice for the purposes of ex-
position. Other approaches in the literature start with a first-order alphabet L,
and expand the first-order language over L in various ways. For example, there
is the extra-quantifiers approach, exemplified by J. Sgro’s LQ [77] (patterned af-
ter Keisler’s LQ [53]); also the two-sorted approach, exemplified by the invariant
languages Lt of T.A. McKee [64] and S. Garavaglia [38]. (The two worked indepen-
dently, with McKee confining himself to the case L = {≈}; see also [37].) There is
an extensive model theory for Lt which we cannot possibly survey adequately. (The
interested reader is urged to consult the Flum-Ziegler monograph [37].) However,
since this model theory includes a nice ultrapower theorem, we take a few lines to
describe these languages and state the theorem.

One starts with an ordinary first-order alphabet L, adds new variables to stand
for sets, and then adds the intersorted binary relation symbol ε for membership.
Atomic formulas consist of the first-order atomic formulas from L, plus the inter-
sorted formulas of the form t ε U , where t is a first-order term (from L) and U
is a set variable. The language L2 consists of the closure of the atomic formulas
under the logical connectives ¬ (not), ∨ (or) and ∧ (and), and the quantifiers ∃
(there exists) and ∀ (for all), applied to variables of either sort. A formula ϕ of L2

is positive (resp., negative) in the set variable U if each free occurrence of U in ϕ
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lies within the scope of an even (resp., odd) number of negation symbols. We then
define Lt to be the smallest subset K of L2 satisfying:

(1) the atomic formulas are in K;
(2) K is closed under the logical connectives, as well as quantification over

point variables; and
(3) if t is a first-order term and ϕ ∈ K is positive (resp., negative) in U , then

(∀U(¬(t ε U) ∨ ϕ)) ∈ K (resp., (∃U((t ε U) ∧ ϕ)) ∈ K).
By a basoid L-structure, we mean a pair 〈A,B〉, where A is an L-structure and

B is an open base for some topology on A. It should then be clear what it means
for a basoid L-structure to be a model of a sentence ϕ of L2, as well as what
it means for two basoid L-structures to be isomorphic. If 〈A1,B1〉 and 〈A2,B2〉
are two basoid L-structures, then these structures are homeomorphic just in case
〈A1, τ(B1)〉 and 〈A2, τ(B2)〉 are isomorphic. We may now state the topological
version of the ultrapower theorem, due to Garavaglia, as follows.

Theorem 3.1 (Garavaglia’s Ultrapower Theorem: [37, 38]). Let A and B be two
basoid L-structures. Then A and B satisfy the same Lt-sentences if and only if
some ultrapower of A is homeomorphic to some ultrapower of B.

In [4, 6], two spaces X and Y are said to be power equivalent if some ultrapower
of X is homeomorphic to some ultrapower of Y . It is not hard to show directly
(Theorem A2.3 in [6]) that power equivalence is really an equivalence relation, and
it is of some interest to see just how strong an equivalence relation it is. We use
the well-known Tn-numbering of the separation axioms (à la [87]); but note that,
for the purposes of this paper, we assume the T1 axiom (i.e., singletons are closed)
whenever we talk about separation axioms involving arbitrary closed sets. Thus
regularity (resp., normality), the property of being able to separate a closed set
from a point outside that set (resp., two disjoint closed sets) with disjoint open
sets, presupposes the T1 axiom, and is synonymous with the T3 (resp., T4) axiom.
Similarly, we assume T1 when we define complete regularity (or, the Tychonoff
property, sometimes referred to as the T3.5 axiom) as the property of being able to
separate a closed set from a point outside that set, with a continuous real-valued
function. A space is said to be self-dense if it has no isolated points. The following
tells us that power equivalence is not very discriminating.

Theorem 3.2 (Theorem A2.6 in [6]). Any two nonempty self-dense T3-spaces are
power equivalent.

Remark 3.2.1. The proof of Theorem 3.2 uses a combination of model theory and
topology. In particular, it makes use of the Löwenheim-Skolem theorem and a
result of W. Sierpiński [80], to the effect that any two nonempty, countable, second
countable, self-dense T3-spaces are homeomorphic.

With any apparatus that produces new objects from old, an important issue
concerns the idea of preservation. In the context of the topological ultraproduct
construction, we may phrase the following general problem.

Problem 3.3 (General Preservation Problem). Given topological properties P and
Q, and a property R of ultrafilters, decide the following: For any I-indexed fam-
ily 〈Xi : i ∈ I〉 of topological spaces and any ultrafilter D on I, if {i ∈ I :
Xi has property P} ∈ D (i.e., D-almost every Xi has property P ) and D has prop-
erty R, then

∏
D Xi has property Q.
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Remark 3.3.1. The general problem, as stated in Problem 3.3, is not quite as
general as it could be. The property P could actually be a family P of properties,
and the clause “D-almost every Xi has property P” could read “D-almost every
Xi has property P for all P ∈ P.” The vast majority of instances of this problem
do not require the added generality, however. (One obvious exception: Consider,
for n < ω, the property Pn that says that there are at least n points, and set
P = {Pn : n < ω}. If R is the property of being nonprincipal and Q is the property
of being infinite, then this instance of the more general version of Problem 3.3 has
an affirmative answer.)

In [6] we define a topological property/class P to be closed if Problem 3.3 has
an affirmative answer for Q = P and R nonrestrictive. P is open if its negation is
closed. It is a straightforward exercise to show:

(1) axioms T0 through T3 are closed [1, 6] and open [6]; and
(2) compactness and connectedness are open properties that are not closed

[1, 6].

A little less straightforward to show is the fact that T3.5 is closed. It should come as
no surprise to general topologists that neither T3.5 nor T4 is open, and that T4 is not
closed either. The proofs of these negative facts above are actually of more value
than the facts themselves because they bring in new ideas and engender related
results that take a more positive form. For this reason we take a few paragraphs to
elaborate on some of their key points.

Consider first why T3.5 is a closed class of spaces. Recall the well-known char-
acterization of O. Frink [85] that a T1-space X is completely regular if and only if
it has a normal disjunctive lattice base; that is, if there is a bounded sublattice C
of the bounded lattice of closed subsets of X satisfying:

(1) C is a closed base for the topology on X (i.e., C is meet-dense in the closed-
set lattice);

(2) (normality) for each disjoint pair C,D ∈ C there exist C ′, D′ ∈ C with
C ∩ C ′ = D ∩D′ = ∅ and C ′ ∪D′ = X; and

(3) (disjunctivity) for each two distinct elements of C, there is a nonempty
element of C that is contained in one of the first two elements and is disjoint
from the other.

(A good source on basic distributive lattice theory is [2].) If 〈Xi : i ∈ I〉 is a family
of spaces such that D-almost every Xi is completely regular, then for D-almost
every i ∈ I, there is a normal disjunctive lattice base Ci for Xi. It follows quickly
that

∏
D Ci is a normal disjunctive lattice base for

∏
D Xi.

Of the twelve preservation results above that concern T0–T4, only the first nine
are apparently positive. Nevertheless, it so happens that the last three are corol-
laries of positive results. Indeed, one can show that both T3.5 and T4 are not
open properties in one go, with the help of Theorem 3.2. A space X is linearly
orderable (a LOTS ) if X has a linear ordering whose open intervals constitute
an open base for X. X is linearly uniformizable (a LUTS ) if the topology on
X is induced by a uniformity that has a linearly ordered base under inclusion.
(See, e.g., [87]. For example, if ρ is a metric inducing the topology on X, then
{{〈x, y〉 : ρ(x, y) < ε} : ε > 0} is a linearly ordered uniform base that witnesses
the fact that X is a LUTS.) Suppose D-almost every Xi is a LOTS with inducing
linear order ≤i (resp., a LUTS with inducing linearly ordered uniform base Ui).
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Then
∏

D ≤i (resp.,
∏

D Ui) is a linear ordering (resp., a linearly ordered uniform
base) that induces the ultraproduct topology on

∏
D Xi. (The LOTS part of this

observation also appears in [1].) Now every LOTS is hereditarily normal; indeed
every LUTS is hereditarily paracompact Hausdorff. So let X be any regular space.
Then X × R, the topological product of X with the real line, is self-dense and
regular. By Theorem 3.2, there is an ultrapower (X × R)I/D that is homeomor-
phic to an ultrapower of R, and is hence both a LOTS and a LUTS. It is easy to
show that ultrapowers commute with finite products. Thus the ultrapower XI/D
embeds in an ultrapower of the reals, and is hence hereditarily normal (indeed,
hereditarily paracompact Hausdorff). The following theorem, whose proof we have
just outlined, immediately implies the failure of T3.5 and T4 to be open properties.

Theorem 3.4 (Corollary A2.7 in [6]). Every regular space has a hereditarily para-
compact Hausdorff ultrapower.

We now turn to the problem of showing that normality is not a closed property.
First some notation: If κ and λ are cardinals, we write κλ to indicate the λ-fold usual
topological power of the ordinal space κ (as well as the cardinal exponentiation).
The following positive result clearly implies that normality fails to be closed.

Theorem 3.5 (Corollary of Theorem 8.2 in [6]). Let X be any space that contains
an embedded copy of 2ω2 , and let D be any nonprincipal ultrafilter on a countably
infinite set I. Then XI/D is not normal.

The proof of Theorem 3.5, being interesting in its own right, deserves a bit of
discussion.

Of course, if X fails to be regular, so does any ultrapower; thus it suffices to
confine our attention to regular X. In that case any embedded copy Y of 2ω2 ,
being compact, is closed in the Hausdorff space X; hence Y I/D is closed in XI/D.
It is therefore enough to show that Y I/D is nonnormal.

This brings us to the important class of P -spaces. Following the terminology of
[39, 85], we call a space X a P -space if every countable intersection of open sets
is an open set. More generally, following the Comfort-Negrepontis text [30], let κ
be an infinite cardinal. A point x in a space X is called a Pκ-point if for every
family U of fewer than κ open neighborhoods of x, there is an open neighborhood
of x that is contained in each member of U . X is a Pκ-space if each point of X
is a Pκ-point. In Pκ-spaces, intersections of fewer than κ open sets are open; the
P -spaces/points are just the Pω1-spaces/points. (In [5, 6], the Pκ-spaces are called
κ-open. While it is convenient to have a concise adjectival form of being a Pκ-space,
there was already one in the literature, κ-additive, due to R. Sikorski [81], which
we adopt here.)

It is very hard for a topological ultraproduct not to be a P -space. To be specific,
define an ultrafilter D on I to be κ-regular if there is a family E ⊆ D, of cardinality
κ, such that each member of I is contained in only finitely many members of E . It is
well known [30] that |I|+-regular ultrafilters cannot exist, that |I|-regular ultrafilters
exist in abundance, that ω-regularity is the same as countable incompleteness, and
that nonprincipal ultrafilters on countably infinite sets are countably incomplete.
The following not only says that κ-regularity in ultrafilters produces κ+-additivity
in topological ultraproducts (deciding affirmatively an instance of Problem 3.3), it
actually characterizes this property of ultrafilters.
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Theorem 3.6 (Additivity Lemma: Theorem 4.1 in [6]). An ultrafilter is κ-regular
if and only if all topological ultraproducts via that ultrafilter are κ+-additive (Pκ+-
spaces).

Remark 3.6.1. There is a model-theoretic analogue to Theorem 3.6: Just replace
additive with universal and ultraproduct with ultrapower. (See Theorem 4.3.12 and
Exercise 4.3.32 in [28].)

Given any space X and cardinal κ, we denote by (X)κ the space whose underlying
set is X, and whose topology is the smallest κ-additive topology containing the
original topology of X. If κ is a regular cardinal (so κ is not the supremum of
fewer than κ smaller cardinals; for example κ could be a successor cardinal), then
one may obtain an open base for (X)κ by taking intersections of fewer than κ open
subsets of X. (See, e.g., [30] for an extensive treatment of this kind of topological
operation.)

Remark 3.6.2 (on terminology). The adjective regular, as used in technical mathe-
matics, is probably the most overloaded word in mathematical English. Already in
this paper it has three senses, modifying the nouns space, ultrafilter, and cardinal
in completely unrelated ways. In other areas of mathematics as well, the word
is used with abandon. In algebra, functions, rings, semigroups, permutations and
representations can all be regular; in homotopy theory, fibrations can be regular;
and in analysis, Banach spaces, measures and points can be regular too. (Regular
modifies ring in the same way that it modifies semigroup, but otherwise there are
no apparent similarities in the senses to which it is used.) The list, I am sure, goes
on.

Returning to the proof outline of Theorem 3.5, recall the diagonal map d from a
set X into an ultrapower XI/D of that set. If the ultrapower is a topological one,
d is not necessarily continuous; consider, for example the case where X is the real
line and D is a countably incomplete ultrafilter. The image d[X] of X under d then
carries the discrete topology. The following uses Theorem 3.6.

Theorem 3.7 (Theorem 7.2 in [6]). Let D be a regular ultrafilter on a set of
cardinality κ, with X a topological space. Then the diagonal map, as a map from
(X)κ+ to XI/D, is a topological embedding.

Suppose Y is a compactum and D is an ultrafilter on I. Then for each a/D ∈
XI/D, there is a unique point x ∈ X such that for each open set U containing x, the
open ultracube U I/D contains a/D. Let limD(a/D) denote this unique point. Then
the function limD is continuous (Theorem 7.1 in [6]), and is related to the standard
part map in nonstandard analysis [74]. But more is true, thanks to Theorem 3.7.

Theorem 3.8 (A consequence of Corollary 7.3 of [6]). Let D be a regular ultrafilter
on a set of cardinality κ, with Y a compactum. Then the limit map limD, as a
map from Y I/D to (Y )κ+ , is a continuous left inverse for the diagonal map d. As
a result, the diagonal d[Y ], a homeomorphic copy of (Y )κ+ , is a closed subset of
Y I/D.

We are just about done with Theorem 3.5. In a preliminary version of [56],
K. Kunen shows that (2c+)ω1 is nonnormal, where c := 2ℵ0 is the power of the
continuum; and in [33], E. K. van Douwen uses an earlier result of C. Borges [27] to
replace c with ω1. So let Y now be the compactum 2ω2 , with D any nonprincipal
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ultrafilter on a countably infinite set I. In order to show Y I/D is nonnormal, it
suffices to show some closed subset is nonnormal. This is true, though, since (Y )ω1

is nonnormal and, by Theorem 3.8, sits as a closed subset of Y I/D. This completes
our discussion of Theorem 3.5.

What Borges’ result cited above actually says is that the space (κκ+
)κ is non-

normal whenever κ is a regular cardinal. It is quite easy to show from this that,
for any infinite cardinal κ, (2κ++

)κ+ is not normal either. This, together with the
Additivity Lemma (Theorem 3.6) and some arguments to show how easy it is for
paracompactness to be present in P -spaces, gives rise to a characterization of the
GCH in terms of topological ultraproducts.

Recall that the weight of a space X is the greater of ℵ0 and the least cardinality
of an open base for the topology on X. For each infinite cardinal κ, let UPκ be the
following assertion.

UPκ: If I is a set of cardinality κ, D is a regular ultrafilter on I, and 〈Xi : i ∈ I〉 is
an I-indexed family of spaces, D-almost each of which is regular and of weight at
most 2κ, then

∏
D Xi is paracompact Hausdorff.

The main result of [5] (see also W. W. Comfort’s survey article [29]) is the
following.

Theorem 3.9 (Theorem 1.1 in [5]). UPκ holds if and only if the GCH holds at level
κ (i.e., 2κ = κ+).

Remark 3.9.1. The proof of Theorem 3.9 allows several alternatives to UPκ. In
particular, regular (as the word applies to spaces) may be replaced by normal ; even
by compact Hausdorff. Also paracompact Hausdorff may be replaced by normal.

Remark 3.9.2. Topological ultraproducts are continuous open images of box prod-
ucts, and there are many inevitable comparisons to be made between the two con-
structions. In particular, let BPκ be the statement that the box product of a
κ-indexed family of compact Hausdorff spaces, each of weight at most 2κ, is para-
compact Hausdorff. In [56] it is proved that the CH (i.e., the GCH at level ω) implies
BPω. Since (2ω2)ω1 is nonnormal, the compactum 2ω2 stands as a counterexample
to BPω if the CH fails, and as an absolute counterexample to BPκ for κ > ω.

We now turn to the exhibition of Baire-like properties in topological ultraprod-
ucts. If κ is an infinite cardinal, define a space X to be κ-Baire (or, a Bκ-space) if
intersections of fewer than κ dense open subsets of X are dense. Of course, every
space is a Bω-space, and various forms of the Baire category theorem say that com-
pletely metrizable spaces and compact Hausdorff spaces are ω1-Baire. Finally, one
topological form of Martin’s axiom (MA, see, e.g., [26]) says that if X is compact
Hausdorff and satisfies the countable chain condition (i.e., there is no uncountable
family of pairwise disjoint nonempty open subsets of X), then X is c-Baire.

What we are working toward is an analogue of Theorem 3.6, with P replaced
with B. What has been achieved in this connection is interesting, if imperfect, and
begs for improvement.

For any set S and cardinal λ, let ℘λ(S) be the set of all subsets of S of cardinality
less than λ. If D is an ultrafilter on a set I, a map F : ℘ω(S) → D is monotone
(resp., multiplicative) if F (s) ⊇ F (t) whenever s ⊆ t (resp., F (s∪ t) = F (s)∩F (t)).
The ultrafilter D is called λ-good if:
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(1) D is countably incomplete, and
(2) for every µ < λ and every monotone F : ℘ω(µ) → D, there exists a multi-

plicative G : ℘ω(µ)→ D such that G(s) ⊆ F (s) for all s ∈ ℘ω(µ).
(This notion is due to Keisler.)

Every countably incomplete ultrafilter is ω1-good, and every λ-good ultrafilter
is µ-regular for all µ < λ. Consequently, if |I| = κ, the maximal degree of goodness
an ultrafilter on I could hope to have is κ+. The existence of good ultrafilters (i.e.,
κ+-good ultrafilters on sets of cardinality κ) was first proved by Keisler under the
hypothesis 2κ = κ+, and later by Kunen without this hypothesis. (See [30], where it
is shown that there are as many good ultrafilters on a set as there are ultrafilters.)
Good ultrafilters produce saturated models (see Theorem 6.1.8 in [28]), and the
production of saturated models necessitates goodness (see Exercise 6.1.17 in [28]).
Finally, and most importantly, good ultrafilters play a crucial role in the proofs of
both ultrapower theorems (Theorems 2.4 and 2.5). Our analogue of Theorem 3.6
is the following affirmative answer to the general preservation problem (Problem
3.3).

Theorem 3.10 (Theorem 2.2 in [7]). If an ultrafilter is κ-good, then all topo-
logical ultraproducts via that ultrafilter are κ-Baire (Bκ-spaces) (as well as being
λ+-additive for all λ < κ).

Remark 3.10.1. Theorem 3.6 is actually key to the proof of Theorem 3.10. We do
not know whether producing topological ultraproducts that are κ-Baire as well as
λ+-additive for all λ < κ is sufficient to show an ultrafilter to be κ-good.

Topological ultraproduct methods have proven useful in the study of the ηα-sets
of F. Hausdorff [44]. Recall that, for any infinite cardinal α, a linear ordering 〈A,<〉
is an ηα-set if whenever B and C are subsets of A of cardinality less than α, and
every element of B lies to the left of every element of C, then there is some element
of A lying to the right of every element of B and to the left of every element of C.
The ηω-sets are just the dense linear orderings without endpoints, and Hausdorff
[44] invented the famous back-and-forth method to show that any two ηα-sets of
cardinality α are order isomorphic. He was also able to establish the existence
of ηα+ -sets of cardinality 2α (and L. Gillman showed how to exhibit two distinct
such orderings whenever α+ < 2α). Gillman and B. Jónsson proved that ηα-sets
of cardinality α exist precisely under the condition that α = sup{αλ : λ < α}.
(The interested reader should consult [30, 39].) Denote by Qα the (unique, when
it exists) ηα-set of cardinality α. (Qω is, of course, the rational line Q.) In [12],
we use topological ultraproduct methods to establish properties of Qα, viewed as a
LOTS. In particular, Qα is both α-additive and α-Baire, and the following is true.

Theorem 3.11 (Theorem 3.14 of [12]). If X is a nonempty space that embeds in
Qα, then Qα can be partitioned into homeomorphic copies of X, each of which is
closed and nowhere dense in Qα.

We end this section with one more preservation result about topological ultra-
products. Its main interest is that its proof apparently needs to involve two cases,
depending upon whether the ultrafilter is countably complete or countably incom-
plete. Also it involves a topological property that illustrates a general machinery
for producing new properties from old.

By Theorem 3.6, every topological ultraproduct via a countably incomplete ul-
trafilter is a P -space. Now if a P -space is also T1, then it has the curious property
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of being pseudo-finite (or, a cf-space, see [51]); i.e., one having no infinite compact
subsets. Another way of saying this is that the only compact subsets of X are the
ones that have to be, based on cardinality considerations alone.

There is a general phenomenon taking place here. Namely, if P is any topological
property, let spec(P ) be the set of cardinals κ such that every space of cardinality
κ has property P ; and denote by anti-P the class of spaces X such that if Y is a
subspace of X and Y has property P , then |Y | ∈ spec(P ). For example, if P is the
property of compactness (resp., connectedness, being self-dense), then anti-P is the
property of pseudo-finiteness (resp., total disconnectedness, being scattered). The
modifier anti- was introduced in [8], and it has been studied in its own right by a
number of people. (See, e.g., [62, 63, 65, 73].) Concerning topological ultraproducts,
what we showed in [8] is the following affirmative answer to Problem 3.3.

Theorem 3.12 (Corollary 3.6 of [8]). Topological ultraproducts of pseudo-finite
Hausdorff spaces are pseudo-finite Hausdorff.

Remark 3.12.1. Of course, topological ultraproducts of Hausdorff spaces, via count-
ably incomplete ultrafilters, are pseudo-finite Hausdorff (by Theorem 3.6 plus basic
facts). One must argue quite differently when the ultrafilters are countably com-
plete. In this case cardinal measurability is involved, and pseudo-finiteness on the
part of the factor spaces is essential; moreover the argument does not work if the
Hausdorff condition is eliminated (or even weakened to T1). One needs to know
that if a set has a certain cardinality, then the cardinality of its closure cannot be
too much greater. The T2 axiom assures us of this, but the T1 axiom does not.
(Consider any infinite set with the cofinite topology.) So, for example, we do not
know whether a topological ultraproduct of pseudo-finite T1-spaces is pseudo-finite,
without assuming countable incompleteness on the part of the ultrafilter.

Open Problems 3.13.

(1) (See Theorem 3.4) Can a topological ultraproduct be normal without being
paracompact?

(2) (See Theorem 3.10 and Remark 3.10.1) If all topological ultraproducts via D
are κ-Baire, as well as λ+-additive for all λ < κ, is D necessarily κ-good?

(3) (See Theorem 3.11) Is there a nice topological characterization of Qα for un-
countable α? (Candidate: being regular self-dense, of cardinality = weight
= α, α-additive and α-Baire. It is definitely not enough to exclude the
α-Baire part, as Example 3.11 in [12] shows.)

(4) (See Theorem 3.12 and Remark 3.12.1) Is pseudo-finiteness (= anti-compact-
ness) generally preserved by topological ultraproducts?

4. Coarse Topological Ultrapowers

There is a natural variation on the definition of the ultraproduct topology in cases
where all the factor spaces are the same. In this section we consider ultrapowers
only, and restrict the ultrapower topology to the one generated by just the open
ultracubes. This is what we call the coarse topological ultrapower. That is, if 〈X, T 〉
is a topological space and D is an ultrafilter on a set I, then the family of open
ultracubes {U I/D : U ∈ T } forms an open base for the coarse ultrapower topology.
Note that, with regard to this topology, the natural diagonal map d : X → XI/D is
a topological embedding. We denote the coarse topological ultrapower by [XI/D].
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(For those interested in nonstandard topology, there is a connection between coarse
topological ultrapowers and Robinson’s S-topology [74].)

Quite straightforwardly, one may obtain a closed base for the coarse ultrapower
topology by taking all closed ultracubes. However, it is generally not true that an
open (resp., closed) base for the coarse ultrapower topology may be obtained by
taking ultracubes from an open (resp., closed) base for the original space. (Indeed,
let X be infinite discrete, with B the open base of singleton subsets of X.)

Our main interest in this section is the question of when coarse topological ul-
trapowers satisfy any of the usual separation axioms. If the ultrafilter is countably
complete, then the diagonal map is a homeomorphism whenever the space has cardi-
nality below the first measurable cardinal. While this may be an interesting avenue
of research, there are no results at this time that we know of; and we therefore con-
fine attention to countably incomplete ultrafilters. For each r ∈ {0, 1, 2, 3, 3.5, 4},
define an ultrafilter D to be a Tr-ultrafilter if it is countably incomplete, and for
some infinite space X, the coarse ultrapower [XI/D] is a Tr-space. The reader
should have no difficulty in constructing coarse topological ultrapowers that are
not T0-spaces, so the question of the mere existence of T0-ultrafilters will doubt-
less come to mind. The good news is that the T0 property for ultrafilters follows
from combinatorial properties that arise in consequence of MA, and are fairly well
understood. We currently do not know whether T0-ultrafilters exist absolutely,
however.

First, we may reduce the existence question to the case of ultrafilters on a count-
ably infinite set; ω, say. The reason is that if D is a T0-ultrafilter on an infinite
set I and [XI/D] is T0, then we may partition I into countably many subsets,
none of which is in D, and build a function f from I onto ω such that the im-
ages of the members of the partition of I partition ω into infinite sets. Then
E := {S ⊆ ω : f−1[S] ∈ D} is clearly a countably incomplete ultrafilter. Moreover
f induces an embedding of [Xω/E ] into [XI/D]; hence E is a T0-ultrafilter.

In [76] B. Scott defines an ultrafilter D on ω to be separative if whenever
f, g : ω → ω are two functions that are D-distinct (i.e., {n < ω : f(n) 6= g(n)} ∈ D),
then their Stone-Čech lifts fβ and gβ disagree at the point D ∈ β(ω) (i.e., there
is some J ∈ D such that f [J ] ∩ g[J ] = ∅). Scott’s main results in [76] include the
facts that selective ultrafilters are separative, and that the properties of separativ-
ity and being a P -point in β(ω) \ ω are not implicationally related. From MA, one
may infer the existence of selective ultrafilters; hence the consistency of separative
ultrafilters is assured. By the famous Shelah P -point independence theorem [89],
P -points cannot be shown to exist in β(ω) \ ω, using ZFC alone. We do not know
whether the same can be said for separative ultrafilters, but strongly suspect so.
The following is an amalgam of several results in [10].

Theorem 4.1. Fix r ∈ {0, 1, 2, 3, 3.5}. Then an ultrafilter on ω is Tr if and only
if it is separative.

Remark 4.1.1. That D is separative if it is T0 is straightforward (Proposition 2.1
in [10]). Assuming D is separative, it is shown in [10] that a coarse D-ultrapower
of X is:

(1) T1 if X is a weak P -space (i.e., no point is in the closure of any countable
subset of the complement of the point);

(2) T2 if X is T2 and a P -space;
(3) T3.5 if X is T4 and a weak P -space; and
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(4) strongly zero dimensional (i.e., disjoint zero sets are separable by disjoint
closed open sets) if X is T4 and a P -space.

We do not know whether coarse topological ultrapowers (of infinite spaces, via
countably incomplete ultrafilters) can ever be normal.

Open Problem 4.2 (See Theorem 4.1 and Remark 4.1.1). Are there (consistently)
any T4-ultrafilters?

5. Topological Ultracoproducts

Most algebraists at all familiar with the classical reduced product construction
know how to define it in terms of direct limits of products (à la Fleischer [36]).
Indeed, in his introductory article in the Handbook of Mathematical Logic, P. Eklof
[34] goes this route, but then says:

“Although the shortest approach to the definition of reduced prod-
ucts is via the notion of direct limit, this approach is perhaps mis-
leading since it is the concrete construction of the direct limit rather
than its universal mapping properties which will be of importance
in the sequel.”

Eklof quite sensibly proceeds to focus on the concrete (i.e., set-based) construc-
tion since it is the classical results from first-order model theory that are of primary
interest to a beginning reader. But now consider the problem of giving an explicit
topological description of the Stone space of an ultraproduct of Boolean lattices,
purely in terms of the Stone spaces of those lattices. Because of the duality the-
orem of M. H. Stone (see [52]), coupled with the limit definition of ultraproducts,
this space must be an inverse limit of coproducts. To be more definite, suppose
〈Xi : i ∈ I〉 is an I-indexed family of Boolean (i.e., totally disconnected compact
Hausdorff) spaces, with D an ultrafilter on I. Letting B(X) denote the Boolean
lattice of closed open subsets of X, the operator B( ) is contravariantly functo-
rial, with inverse given by the maximal spectrum functor S( ). (For a Boolean
lattice A, the points of S(A) are the maximal proper filters in A; if a ∈ A and
a] := {M ∈ S(A) : a ∈M}, then the set A] := {a] : a ∈ A} forms a (closed) lattice
base for a totally disconnected compact Hausdorff topology on S(A).)

So Stone duality tells us that S(
∏

D B(Xi)) is an inverse limit of coproducts;
hence a subspace of β(

⊔
i∈I Xi), the Stone-Čech compactification of the disjoint

union of the spaces Xi. Here is one way (out of many) to describe this space in
purely topological terms (see [14]). Let Y be

⊔
i∈I Xi (:=

⋃
i∈I(Xi × {i})), and

let q : Y → I take an element to its index. Then there is the natural Stone-Čech
lift qβ : β(Y ) → β(I) (I having the discrete topology), and it is not hard to show
that S(

∏
D B(Xi)) is naturally homeomorphic to (qβ)−1[D], the inverse image of

D ∈ β(I) under qβ . Let us denote this space
∑

D Xi. It is rightfully called an
ultracoproduct because it is category-theoretically dual to the usual ultraproduct in
a very explicit way. What makes this whole exercise interesting is that our explicit
description of

∑
D Xi requires nothing special about the spaces Xi beyond the

Tychonoff separation axiom. Indeed, the construction just described, what we call
the topological ultracoproduct, is the Fleischer-style ultraproduct for CHop. And
while the topological ultracoproduct makes sense for arbitrary Tychonoff spaces
(
∑

D Xi is actually a compactification of the topological ultraproduct
∏

D Xi, see
further discussion below), one does not get anything new in the more general setting.
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That is,
∑

D Xi is naturally homeomorphic to
∑

D β(Xi) (see [13]). For this reason
we confine our attention to ultracoproducts of compacta.

Remark 5.0.1. The ultracoproduct construction, though not named as such, was
actually first considered by J. Mioduszewski [66], in the study of continua, i.e.,
connected compacta. He restricted his attention to the ultracoproduct of the dis-
joint union of a countable infinity of copies of the closed unit interval, viewed as
(qβ)−1[D] above, in order to count the number of composants of the Stone-Čech
remainder of the half-open unit interval. M. Smith [83, 84] and J.-P. Zhu [90] went
on to use the construction to find indecomposable subcontinua of this well-studied
nonmetrizable continuum. (See also the survey by K. P. Hart [42].)

If each Xi is the same compactum X, then we have the topological ultracopower
XI\D, a subspace of β(X × I). In this case there is the Stone-Čech lifting pβ of
the natural first-coordinate map p : X × I → X. Its restriction to the ultracopower
is a continuous surjection, called the codiagonal map, and is officially denoted pX,D
(with the occasional notation-shortening alias possible). This map is dual to the
natural diagonal embedding from a relational structure to an ultrapower of that
structure, and is not unlike the standard part map from nonstandard analysis. (It
is closely related to limD, introduced after Theorem 3.7. In fact it is a function
extension, as we shall see below.)

With the codiagonal map so defined, it is an easy exercise to show that being
ultracofinite in the category CH is the same as having finitely many points. (Being
ultrafinite in this category is equivalent to having at most one point because CH-
ultraproducts via countably incomplete ultrafilters must have trivial topologies.)

Stone duality is a contravariant equivalence between the categories BS of Boolean
spaces and continuous maps and BL of Boolean lattices and homomorphisms. From
our perspective, BL is an interesting participant in the duality because it has ab-
stract products, all cartesian, and its class of objects is one that is first-order de-
finable. This tells us its Fleischer-style ultraproduct construction is the usual one.
For the purposes of this paper, let us call a concrete category C Stone-like if there
is a contravariant equivalence between C and some concrete category A, with usual
(cartesian) products; where the objects of A are the models of a first-order theory,
and the morphisms of A are the functions that preserve atomic formulas. Then
clearly any Stone-like category has an ultracoproduct construction, in the Fleischer
sense of forming inverse limits of coproducts. Thus BS is Stone-like; another good
example is the category CAG of compact Hausdorff abelian groups and continuous
group homomorphisms. The reason CAG is Stone-like is that there is the well-
known duality theorem of Pontryagin-van Kampen that matches this category with
the category AG of abelian groups and homomorphisms. (It goes much further in
fact; see, e.g., [49, 87].) But while the ultraproduct constructions in BL and AG
are exactly the same, the ultracoproduct constructions in BS and CAG are quite
different [15].

Any time a concrete category C has an abstract ultra(co)product construction,
there are two clear lines of investigation that present themselves. First one may
study the construction per se in set-theoretic terms, by means of the underlying set
functor; second one may view the construction as a vehicle for establishing abstract
formulations of various model-theoretic notions (thanks to the ultrapower theorem).
The second line is more global in flavor; it is part of a study of the category C as a
whole. For example, one may wish to know whether C is Stone-like. (As explained
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in [9], the full subcategory TDCAG of totally disconnected compact Hausdorff
abelian groups, a category with an abstract ultracoproduct construction, is not
Stone-like because it has ultracofinite objects with infinite endomorphism sets.)
Not surprisingly, it is a combination of these two lines that gives the best results.

Now we have seen that there is an abstract ultraproduct construction, as well as
an abstract ultracoproduct construction, in the category CH. As we saw earlier,
the first construction is uninteresting because it almost always results in the trivial
topology. The story is quite different for the second, however. For one thing,
it extends the corresponding construction in the full subcategory BS, so there
is an immediate connection with model-theoretic ultraproducts. (In fact there is
generally a natural isomorphism between B(

∑
D Xi) and

∏
D B(Xi). This implies,

of course, that ultracoproducts of continua are also continua [9, 13].) For another
thing, there is the fact that a compactum X is finite if and only if all codiagonal
maps pX,D are homeomorphisms (ultracofinite = finite).

In light of the above, a natural conjecture to make is that CH is Stone-like;
and after many years of study, everything known so far about the topological ul-
tracoproduct points to an affirmative answer (in contrast to the situation with
TDCAG). I first posed the question in the McMaster algebra seminar in 1974,
and expressed then my belief that the conjecture is false, despite much evidence to
the contrary. At the time I had little more to go on than the empirical observation
that there were already quite a few duality theorems involving CH, e.g., those of
Banaschewski, Morita, Gel′fand-Kolmogorov and Gel′fand-Năımark, and none of
them were of the right kind. Almost ten years (and several partial answers, see [9])
later, there came confirmation of my belief from two independent quarters.

Theorem 5.1 (B. Banaschewski [3] and J. Rosický [75]). CH is not a Stone-like
category.

Of course, what Banaschewski and Rosický independently prove are two some-
what different-sounding statements that each implies Theorem 5.1. The impor-
tance of their finding is that it underscores the point that dualized model-theoretic
analogues of classical results, automatically theorems in Stone-like categories, are
merely conjectures in CH. (Shining example: R. L. Vaught’s elementary chains
theorem, see Theorem 5.13 below.)

Because of the failure of CH to be Stone-like (perhaps this failure is a virtue
in disguise), one is forced to look elsewhere for model-theoretic aids toward a rea-
sonable study of topological ultracoproducts. Fortunately there is a finitely Π0

2-
axiomatizable Horn class of bounded distributive lattices, the so-called normal dis-
junctive lattices (also called Wallman lattices), comprising precisely the (isomorphic
copies of) normal disjunctive lattice bases for compacta. (To be more specific: The
normal disjunctive lattices are precisely those bounded lattices A such that there
exists a compactum X and a meet-dense sublattice A of the closed set lattice F (X)
of X such that A is isomorphic to A.) We go from bounded distributive lattices
to spaces, as in the case of Stone duality, by means of the maximal spectrum S( )
(pioneered by H. Wallman [86] in the non-Boolean setting). S(A) is defined exactly
as above, and is generally a compact space for any bounded distributive lattice A.
Normality, the condition that if a and b are disjoint (a u b = ⊥), then there are
a′, b′ such that a u a′ = b u b′ = ⊥ and a′ t b′ = >, ensures that the maximal
spectrum topology is Hausdorff. Disjunctivity, which says that for any two distinct
lattice elements there is a nonbottom element that is below one and disjoint from
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the other, ensures that the map a 7→ a] takes A isomorphically onto the canonical
closed set base A] for S(A). S( ) is contravariantly functorial: If f : A → B is a
homomorphism of normal disjunctive lattices and M ∈ S(B), then fS(M) is the
unique maximal filter extending the prime filter f−1[M ]. (For normal lattices, each
prime filter is contained in a unique maximal one.)

It is a relatively easy task to show, then, that S( ) converts ultraproducts to
ultracoproducts. Furthermore, fS : S(B)→ S(A) is a homeomorphism if f : A→ B
is a separative embedding; i.e., an embedding such that if buc = ⊥ in B, then there
exists a ∈ A such that f(a) ≥ b and f(a)uc = ⊥. Because of this, there is a degree of
flexibility in how we may obtain

∑
D Xi: simply choose a lattice base Ai for each Xi

and apply S( ) to the ultraproduct
∏

DAi. So, taking each Ai to be F (Xi), we infer
very quickly that

∑
D Xi contains the topological ultraproduct

∏
D Xi as a densely-

embedded subspace. Also we get an easy concrete description of the codiagonal map
p : XI\D → X: If A is a lattice base for X and y ∈ XI\D = S(AI/D), then p(y)
is that unique x ∈ X such that if A ∈ A contains x in its interior, then AI/D ∈ y.
(So p does indeed extend limD, as claimed earlier.)

We now officially define two compacta X and Y to be co-elementarily equivalent
if there are ultracopowers p : XI\D → X, q : Y J\E → Y , and a homeomorphism
h : XI\D → Y J\E . (Recall the definition of power equivalence in Section 3.) A
function f : X → Y is a co-elementary map if there are p, q, and h as above such
that the compositions f ◦p and q◦h are equal. These definitions come directly from
the ultrapower theorem. Furthermore, because of Theorem 2.3, we may define the
level of a map f : X → Y as follows: f is a map of level ≥ 0 if f is a continuous
surjection. If α is any ordinal, f is a map of level ≥ α+1 if there are maps g : Z → Y
and h : Z → X such that g is co-elementary, h is of level ≥ α, and f ◦ h = g. If
α is a positive limit ordinal, f is a map of level ≥ α if f is a map of level ≥ β
for all β < α. (Because of the definition of co-elementary map, g : Z → Y may be
taken to be an ultracopower codiagonal map.) A map of level ≥ 1 is also called
co-existential.

The reader may be wondering whether we are justified in the terminology co-
elementary equivalence, as there is nothing in the definition above that ensures the
transitivity of this relation. The answer is that we are so justified; but we need
the maximal spectrum functor S( ), plus the full power of the ultrapower theorem
(i.e., Theorem 2.5) to show it (Theorem 3.2.1 in [13]). By the same token, one also
shows that compositions of co-elementary maps are co-elementary (Theorem 3.3.2
in [13]), and that compositions of maps of level ≥ α are of level ≥ α (Proposition
2.5 in [19]).

Remark 5.1.1. Because of how it translates ultraproducts of lattices to ultraco-
products of compacta, the maximal spectrum functor also translates elementary
equivalence between lattices to co-elementary equivalence between compacta. Fur-
thermore, if f : A → B is an elementary embedding (resp., embedding of level
≥ α), then fS : S(B) → S(A) is a co-elementary map (resp., map of level ≥ α).
Nevertheless the spectrum functor falls far short of being a duality, except when
restricted to the Boolean lattices. For this reason one must take care not to jump
to too many optimistic conclusions; such as assuming, e.g., that if f : X → Y is
a co-existential map, then there must be lattice bases A for X and B for Y and
an existential embedding g : B → A such that f = gS . (Of course, for level ≥ 0,
this is obvious: Pick A = F (X), B = F (Y ), and g = fF . However, fF is not an
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existential embedding unless it is already an isomorphism (a slight adjustment of
the proof of Proposition 2.8 in [18]).) This representation problem has yet to be
solved.

The infrastructure for carrying out a dualized model-theoretic study of compacta
is now in place. Because of Stone duality, dualized model theory for Boolean spaces
is perfectly reflected in the ordinary model theory of Boolean lattices, but Theorem
5.1 tells us there is no hope for a similar phenomenon with compacta in general.
For example, one may use the Tarski invariants theorem [28], plus Stone duality, to
show that there are exactly ℵ0 co-elementary equivalence classes in BS; however,
one must work directly to get the number of co-elementary equivalence classes in
CH.

Theorem 5.2 (Diversity Theorem).

(1) (Theorem 3.2.5 in [13]) There are exactly c co-elementary equivalence classes
in CH.

(2) (Theorem 1.5 in [15]) For each 0 < α ≤ ω, there is a family of c metriz-
able compacta, each of dimension α, no two of which are co-elementarily
equivalent.

(3) (Theorem 2.11 in [16]) There is a family of c locally connected metrizable
(i.e., Peano) continua, no two of which are co-elementarily equivalent.

Another example concerns various statements of the Löwenheim-Skolem theo-
rem. The weakest form, for Boolean lattices, says that every infinite Boolean lattice
is elementarily equivalent to a countable one. Now Stone duality equates the cardi-
nality of an infinite Boolean lattice with the weight of its maximal spectrum space
(in symbols, |A| = w(S(A))); hence we infer immediately that every Boolean space
is co-elementarily equivalent to a metrizable one (since, for compacta, metrizability
= weight ℵ0). The same is true for compacta in general, by use of the Löwenheim-
Skolem theorem for normal disjunctive lattices. This was first proved by R. Gurevič
[41], in response to a question raised in [13].

Theorem 5.3 (Löwenheim-Skolem Theorem: Proposition 16 in [41]). For ev-
ery compactum X, there is a metrizable compactum Y and a co-elementary map
f : X → Y . In particular, every compactum is co-elementarily equivalent to a
metrizable one.

Theorem 5.3 has several sharper versions; one is Theorem 1.7 in [15], which sees
the Löwenheim theorem as a factorization of maps. The strongest version appears
in [21].

Theorem 5.4 (Löwenheim-Skolem Factorization Theorem: Theorem 3.1 in [21]).
Let f : X → Y be a continuous surjection between compacta, with κ an infinite
cardinal such that w(Y ) ≤ κ ≤ w(X). Then there is a compactum Z and continuous
surjections g : X → Z and h : Z → Y such that w(Z) = κ, g is a co-elementary
map, and f = h ◦ g.

Remark 5.4.1. When restricted to spaces in BS, Theorem 5.4 is an immediate
corollary of classical model theory. In the absence of a Stone-like duality, though,
one must resort to other techniques. The proof in [21] of Theorem 5.4 above actually
makes use of some Banach space theory.
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Another line of inquiry regarding topological ultracoproducts concerns the gen-
eral preservation problem, Problem 3.3, with

∑
D Xi in place of

∏
D Xi. In this

new setting, we define a property P of compacta to be closed if for any indexed
family 〈Xi : i ∈ I〉 of compacta, and any ultrafilter D on I,

∑
D Xi has property

P whenever {i ∈ I : Xi has property P} ∈ D. P is open if the complement of P
in CH is closed. (Frequently we speak of a subclass K of CH as being closed or
open.)

Theorem 5.5.
(1) The following properties of compacta are both closed and open: being con-

nected (Proposition 1.5 in [13]); being a Boolean space (Proposition 1.7 in
[13]); being a compactum of covering dimension n (n < ω) (essentially The-
orem 2.2.2 in [13]); being a decomposable continuum (Propositions 2.4.4 in
[13] and 11 in [41]); being a hereditarily indecomposable continuum (Theo-
rem 4.9 in [22], see also [43, 83]); and being a continuum of multicoherence
degree n (n < ω) (Theorem 5.1 in [22]).

(2) The following properties of compacta are closed, but not open: having infi-
nite covering dimension (see Theorem 2.2.2 in [13]); being a continuum of
infinite multicoherence degree (see Theorem 5.1 in [22]); and being a con-
tinuum with an indecomposable subcontinum (see Proposition 2.4.4 in [13],
Proposition 11 in [41], Proposition 4.3 in [22], and [83, 84]).

Remark 5.5.1. Given a fixed finite n, there is a (Π0
2) sentence ϕn, in the first-order

language of bounded lattices, such that the models of ϕ are precisely those normal
disjunctive lattices whose maximal spectra are compacta of covering dimension ≤ n.
This derives from a theorem of E. Hemmingsen (Lemma 2.2 and its corollary in
[35]) that allows the replacement of closed set in statements with basic closed set
(for a fixed lattice base). Sentences like ϕn are called base-free; any time a base-free
sentence can be used to define a class of compacta, that class is both closed and
open.

Remark 5.5.2. The reader may be wondering whether other dimension functions
behave as well as covering dimension vis à vis ultracoproducts, and the short answer
is no: There is a compactum X, due to A. L. Lunc [70, 72] such that dim(X) = 1
and ind(X) = Ind(X) = 2 (where dim, ind and Ind are covering dimension, small
inductive dimension and large inductive dimension, respectively). Using Theorem
5.3, find a metrizable Y co-elementarily equivalent to X. Then dim(Y ) = 1 by
Theorem 5.5. Since all three dimension functions agree for separable metrizable
spaces, we see that the two inductive dimension functions are not preserved by
co-elementary equivalence.

Remark 5.5.3. Recall that decomposability in a continuum X means that X is
the union of two proper subcontinua; equivalently, it means that X has a proper
subcontinuum with nonempty interior. It is relatively easy to show that the class of
decomposable continua is closed; much less trivial [41] to show the same for the class
of indecomposable continua. As an alternative to the ultracoproduct argument in
[41], Theorem 4.5 in [22] specifies a (Π0

2) base-free sentence that defines the class
of indecomposable continua.

Remark 5.5.4. A hereditarily indecomposable continuum is a continuum with no
decomposable subcontinua. Thanks to a 1977 crookedness criterion for hereditary
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indecomposability, due to J. Krasinkiewicz and P. Minc (see [43]), there is a base-
free (Π0

2) sentence defining the class of hereditarily indecomposable continua.

Remark 5.5.5. Multicoherence degree is a numerical measure of interconnectedness
in continua, invented in the 1930s by S. Eilenberg (see, e.g., [69]). It simply counts
the maximum number of components (i.e., maximal connected subsets) obtainable
in the overlap of two subcontinua whose union is the whole space, and then subtracts
1 when such a maximum exists. The multicoherence degree of X is denoted r(X)
(defined to be ω if the maximum above does not exist). So, for example, the
condition r(X) = 0 defines the unicoherent continua, including such spaces as the
closed unit interval (as well as the indecomposable continua). r(X) = 1 if X is,
say, a circle. Theorem 5.1 in [22] gives an ultracoproduct argument to show that
the class of continua of any fixed finite multicoherence degree n is both closed and
open. However, we do not know of any base-free sentence defining this class. Such
a sentence must exist in theory because of the facts that: (a) the property of being
a continuum of multicoherence degree ≤ n is closed and open (see Theorem 5.1 in
[22]); (b) this property is preserved by the taking of inverse limits with continuous
surjections for bonding maps (see Theorem 1 in [68]); and (c) a closed-and-open
class is closed under inverse limits with continuous surjective bonding maps if and
only if that class is definable with a Π0

2 base-free sentence (see Corollary 1.5 in [22]).

Remark 5.5.6. The complement of being a continuum containing an indecomposable
subcontinuum, relative to being a continuum, is being a hereditarily decomposable
continuum. The existence of indecomposable subcontinua of ultracopowers of the
closed unit interval shows that being a hereditarily decomposable continuum is not
a closed property.

In [21] the class of κ-wide compacta is defined, for each cardinal κ. Membership
in this class amounts to having a family of λ pairwise disjoint proper subcontinua
with nonempty interiors, for each cardinal λ < κ; so decomposability for a con-
tinuum is equivalent to being 2-wide, and all infinite locally connected compacta
are ℵ1-wide. Using a technique similar to the one Gurevič used to prove Proposi-
tion 11 in [41], one can show that the class of n-wide compacta is both open and
closed for each n < ω; consequently that any compactum co-elementarily equivalent
to a locally connected compactum is ℵ0-wide. The class of ℵ0-wide compacta is
closed under co-elementary equivalence, but this is hardly the case for the locally
connected compacta.

Theorem 5.6 (Corollary 14 in [41]). Let D be a nonprincipal ultrafilter on a
countably infinite set, with X an infinite compactum. Then XI\D is not locally
connected.

This result was used in [16] (along with regular ultrafilters and the Löwenheim-
Skolem theorem) to obtain the following.

Theorem 5.7 (Theorem 2.10 in [16]). Let κ be an infinite cardinal, and X an infi-
nite compactum. Then there is a compactum Y , of weight κ, that is co-elementary
equivalent to X, but not locally connected.

The central role of local connectedness in the study of topological ultracoprod-
ucts was discovered by R. Gurevič in solving a problem raised in [13]. In an exact
analogy with the concept of categoricity in model theory, define a compactum X to
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be categorical if any compactum co-elementarily equivalent to X and of the same
weight as X must also be homeomorphic to X. For example, the Cantor discontin-
uum 2ω is categorical because its Boolean lattice of closed open sets is the unique
(up to isomorphism) countable atomless Boolean lattice, and the class of Boolean
spaces is both closed and open. One problem I raised was whether the closed unit
interval [0, 1] (or any metrizable continuum that is nondegenerate, i.e., having more
than one point) is categorical, and Theorem 5.7 provides a negative answer. (The
same negative answer was given in [41], but the proof of Proposition 15, a key step,
was significantly incomplete.) The question of the existence of categorical continua
remains open, but we know from Theorem 5.7 that any categorical compactum
must fail to be locally connected. (There is even more: Using a Banach version
of the classic Ryll-Nardzewski theorem from model theory, C. W. Henson [45] has
informed me that categorical metrizable compacta must fail to be ℵ0-wide.)

The concept of categoricity may be relativized to a subclass K of CH in the
obvious way. Thus we could ask about the existence of metrizable compacta in
K that are categorical relative to K. When K is the locally connected compacta,
there is a satisfying answer. Define an arc (resp simple closed curve) to be a
homeomorphic copy of the closed unit interval (resp. the standard unit circle).
The following makes important use of a theorem of R. L. Moore (see [67]), which
says that a nondegenerate Peano continuum is either an arc or a simple closed
curve, or contains a triod (i.e., the join of three arcs at a common endpoint).

Theorem 5.8 (Theorem 0.6 in [14]). Arcs and simple closed curves are categorical
relative to the class of locally connected compacta.

Getting back to general preservation (Problem 3.3), there is not much known
about properties of a topological ultraproduct that are conferred solely by the
ultrafilter involved (in analogy with Theorems 3.6 and 3.10). One such is due to
K. Kunen [55], and uses a Banach space argument.

Theorem 5.9 (Kunen [55]). Let D be a regular ultrafilter on I, with X an infinite
compactum. Then w(XI\D) = w(X)|I|.

Recall that a Pκ-space is one for which intersections of fewer than κ open sets are
open. When κ is uncountable, such spaces are pseudo-finite; hence infinite compacta
can never be counted among them. There is a weakening of this property, however,
that compacta can subscribe to. Call a space an almost Pκ-space if nonempty
intersections of fewer than κ open sets have nonempty interior. (So an almost
P-space à la [58] is an almost Pω1-space in our parlance.)

The following is taken from [13, Theorem 2.3.7], where it is stated that if an
ultrafilter is κ-regular, then all topological ultracoproducts via that ultrafilter are
almost Pκ+ -spaces. Unfortunately the proof in [13] is incorrect; it draws the con-
clusion that a compactum is an almost Pλ-space if it contains a dense subset of
Pλ-points. (The one-point compactification of a countably infinite set is not an
almost P -space, even though it contains a dense set of P -points.) We do not know
if the statement of [13, Theorem 2.3.7] is still true, but here is a slightly weaker
statement–along with a proof–that is true.

Theorem 5.10 (Corrected Theorem 2.3.7 in [13]). If an ultrafilter is κ+-good, then
all topological ultracoproducts via that ultrafilter are almost Pκ+-spaces.
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Proof. Let 〈Xi : i ∈ I〉 be an I-sequence of compacta, with D a κ+-good ultrafilter
on I. Suppose U is a family of ≤ κ open subsets of

∑
D Xi, with

⋂
U 6= ∅. We wish

to show
⋂
U contains a nonempty open set.

Without loss of generality, we may assume U consists of basic open sets; namely
sets of the form (

∏
D Ui)], where

∏
D Ui is an open ultrabox, and maximal filter

µ of closed ultraboxes is an element of (
∏

D Ui)] if and only if
∏

D Ui contains
an element of µ. Then there is a family U ′ of ≤ κ open ultraboxes such that
U = {(

∏
D Ui)] :

∏
D Ui ∈ U ′}. Since each member of U ′ contains an element of µ,

we know that U ′ satisfies the finite intersection property. Since D is κ+-good, [7,
Proposition 1.5] tells us that there is some aD ∈

⋂
U ′. Since D is κ-regular, the

Additivity Lemma (Theorem 3.6) says that there is an open ultrabox neighborhood∏
D Vi of aD which is contained in

⋂
U ′. Thus (

∏
D Vi)] is a nonempty open subset

of
∑

D Xi which is contained in
⋂
U . �

A little more significant is the following result about ultracopowers. (Compare
with Theorem 3.10.)

Theorem 5.11 (Theorem 2.3.17 in [13]). If an ultrafilter is κ-good, then all topo-
logical ultracopowers via that ultrafilter are Bκ+-spaces.

The rest of this section concerns what we have informally referred to as the du-
alized model theory of compacta, in exact parallel (only with the arrows reversed)
with model-theoretic investigations of well-known classes of relational structures
(e.g., linear orders, graphs, groups, fields, etc.). As we saw above, the topological
ultracoproduct allows for the definition of co-elementary maps between compacta,
as well as for the creation of the hierarchy of classes of maps of level ≥ α for any or-
dinal α. When we restrict our attention to Boolean spaces, co-elementary maps and
maps of level ≥ α are the Stone duals of elementary embeddings and embeddings
of level ≥ α, respectively, between Boolean lattices. This basic correspondence pro-
vides us with an abundance of facts about the Boolean setting that we would like
to extend to the compact Hausdorff setting. Any failure of extendability would give
a new proof of the Banaschewski-Rosický theorem (Theorem 5.1); so far, however,
there has been nothing but success (or indecision).

The first obvious question that needs clearing up is whether the levels really go
beyond ω, and the answer is no.

Theorem 5.12 (Hierarchy Theorem: Theorem 2.10 in [19]). Let α be any infinite
ordinal. Then the maps between compacta that are of level ≥ α are precisely the
co-elementary maps.

This leads us to the second question, whether the composition of two maps of
level ≥ α is also of level ≥ α. As mentioned above, the answer is yes, but a much
stronger result is true. The following is the dual for compacta of a generalization
of the original elementary chains theorem of R. L. Vaught.

Theorem 5.13 (α-Chains Theorem: Theorem 3.4 in [19]). Let 〈Xn
fn← Xn+1 : n <

ω〉 be a sequence of maps of level ≥ α between compacta, with inverse limit X and
limit maps gn : X → Xn, n < ω. Then each gn is a map of level ≥ α.

Remark 5.13.1. Without much ado, Theorem 5.13 may be extended to arbitrary
inverse systems of compacta.
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In any model-theoretic study of algebraic systems, the most commonly investi-
gated homomorphisms are the existential embeddings. These are the ones arising
from the classical study of algebraically closed fields, for example. When we look
at the dual notion of co-existential maps between compacta, a very rich theory
emerges. First of all, let us recall some properties of compacta that are preserved
by maps of level ≥ 0 (alias continuous surjections). These include: having cardinal-
ity (or weight) ≤ κ (κ any cardinal); being connected; and being locally connected.
When we consider preservation by co-existential maps, we obtain preservation for
several important properties that are not generally preserved by continuous surjec-
tions.

Theorem 5.14 (various results of [21]). The following properties of compacta are
preserved by co-existential maps: being infinite; being disconnected; having covering
dimension ≤ n (n < ω); being an indecomposable continuum; and being a heredi-
tarily indecomposable continuum.

Remark 5.14.1. Co-existential maps cannot raise covering dimension, but they can
lower it (Example 2.12 in [21]). Maps of level ≥ 2 between compacta must preserve
covering dimension, however (see Theorem 2.5 in [20]).

Remark 5.14.2. Co-existential maps also cannot raise multicoherence degree for
continua. This is Corollary 5.4 in [22], and involves an entirely different approach
from that used in Theorem 5.14. Co-existential maps can lower multicoherence
degree (see Remark 5.7(iii) in [22]). As in the case of covering dimension, maps
of level ≥ 2 preserve multicoherence degree (Corollary 5.6 in [22]). The only other
result we know of in this connection is S. Eilenberg’s 1936 theorem (see, e.g., The-
orem 12.33 in [69]), which says that multicoherence degree cannot be raised by
maps that are quasi-monotone (i.e., such that the pre-image of a subcontinuum
with nonempty interior in the image has finitely many components, each mapping
onto the subcontinuum).

An important tool in the proof of results such as Theorem 5.14 is the following
result, of interest in its own right.

Theorem 5.15 (Covering Lemma: Theorem 2.4 in [21]). Let f : X → Y be a
co-existential map between compacta. Then there exists a ∪-semilattice homomor-
phism f∗ from the subcompacta of Y to the subcompacta of X such that for each
subcompactum K of Y :

(1) f [f∗(K)] = K;
(2) f−1[U ] ⊆ f∗(K) whenever U is a Y -open set contained in K;
(3) the restriction of f to f∗(K) is a co-existential map from f∗(K) to K; and
(4) f∗(K) ∈ K whenever K ∈ K and K ⊆ CH is closed under ultracopowers

and continuous surjections.

An easy corollary of Theorem 5.15 is the fact that co-existential maps between
compacta are weakly confluent ; i.e., such that subcontinua of the range are them-
selves images of subcontinua of the domain. If a subcontinuum of the range is
the image of each component of its pre-image, then the map is called confluent.
Stronger still, a continuous surjection is monotone if pre-images of subcontinua of
the range are subcontinua of the domain.

Theorem 5.16 (Theorem 2.7 in [21]). Let f : X → Y be a co-existential map
between compacta, where Y is locally connected. Then f is monotone.
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Theorem 5.16 is a main ingredient in the following result; another is Proposition
2.7 in [17].

Theorem 5.17. Let f : X → Y be a function from an arc to a compactum. The
following are equivalent:

(1) f is a co-existential map.
(2) f is a co-elementary map.
(3) Y is an arc and f is a monotone continuous surjection.

A class of relational structures is called elementary if it is the class of models
of a first-order theory. (This is the usage in [28]. In [24], elementary classes are
the classes of models of a single sentence; what in [28] are called basic elementary
classes.) From early work (1962) of T. E. Frayne, A. C. Morel and D. S. Scott (see
Theorem 4.1.12 in [28]), a class is elementary if and only if it is closed under the
taking of ultraproducts and ultraroots (where, as one might guess, A is an ultraroot
of B just in case B is isomorphic to an ultrapower of A). This characterization is
another bridging theorem, allowing us to define a class K ⊆ CH to be co-elementary
if it is closed under the taking of ultracoproducts and ultracoroots. For example, all
the classes (properties) mentioned in Theorem 5.5 (1) are co-elementary, since they
are both closed and open. The class of compacta of infinite covering dimension,
while not being open, is still co-elementary. The same may be said for the classes
of ℵ0-wide compacta and continua of infinite multicoherence degree (but certainly
not for the class of locally connected compacta, by Theorem 5.6).

An elementary class of relational structures is called model complete (see [60]) if
every embedding between members of that class is elementary. Thus we may define,
in parallel fashion, the notion of model cocomplete co-elementary class. (I apologize
for so many uses of co.) Because of Stone duality, plus the fact that the class of
atomless Boolean lattices is model complete, the class of self-dense Boolean spaces
is a model cocomplete class of compacta. The following is an exact analogue of
Robinson’s test for model completeness, and uses the ω-chains theorem (Theorem
5.13).

Theorem 5.18 (Robinson’s Test: Theorem 5.1 in [21]). A co-elementary class of
compacta is model cocomplete if and only if every continuous surjection between
members of the class is a co-existential map.

In model theory, the Chang- Loś-Suszko theorem (see [28, 79]) tells us that an
elementary class is the class of models of a set of Π0

2 sentences if and only if the
class is inductive; i.e., closed under arbitrary chain unions. In the compact Haus-
dorff setting, we then define a co-elementary class to be co-inductive if that class is
closed under the taking of inverse limits, with continuous surjective bonding maps.
Examples of co-inductive co-elementary classes are: {compacta}, {compacta of
covering dimension ≤ n}, {continua}, {indecomposable continua}, {hereditarily
indecomposable continua}, and {continua of multicoherence degree ≤ n}. The co-
elementary class of decomposable continua is not co-inductive; indeed a favorite
method of constructing indecomposable continua is to take inverse limits of de-
composable ones (see [69]). Theorem 1.2 and Corollaries 1.3, 1.5 of [22] lay out a
topological analogue of the Chang- Loś-Suszko theorem (as well as its generalizations
to sentences of higher complexity, see [82]).

Define a class K of compacta to be κ-categorical, where κ is an infinite cardi-
nal, if: (i) K contains compacta of weight κ; and (ii) any two members of K of
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weight κ are homeomorphic. The class of self-dense Boolean spaces, for example,
is ℵ0-categorical. The following is an exact analogue of Lindström’s test for model
completeness, and uses Theorem 5.18 above, as well as a fair amount of topology.

Theorem 5.19 (Lindström’s Test: Theorem 6.4 in [21]). Any co-inductive co-
elementary class of compacta is model cocomplete, provided it contains no finite
members and is κ-categorical for some infinite cardinal κ.

Remark 5.19.1. Theorems 5.18 and 5.19 are interesting and reasonably challenging
to establish. Unfortunately, they have proven useless in finding new model cocom-
plete classes; in particular, we know of no model cocomplete classes of continua.

Model cocomplete co-elementary classes are interesting because, in some sense,
it is difficult to distinguish their members from one another. This is especially true
if they are also cocomplete; i.e., consisting of exactly one co-elementary equivalence
class. (It is not especially hard to prove that every co-elementary equivalence class
is closed, so there is no problem finding cocomplete co-elementary classes.) One
way to try to look for examples is via the study of co-existential closure. Recall
that in model theory, an L-structure A is existentially closed relative to a class K
of L-structures, of which A is a member, if every embedding from A into a member
of K is existential. Let Ke donote the members of K that are existentially closed
relative to K. It is well known (see [28]) that if K is an inductive elementary class,
then each infinite A ∈ K embeds in some A′ ∈ Ke, of cardinality |A|. In certain
special cases, Ke has a very elegant characterization. For example, if K is the class
of fields, then Ke is the class of algebraically closed fields (Hilbert’s Nullstellensatz ).
Other examples include:

(1) K = {linear orderings without endpoints}, Ke = {dense linear orderings
without endpoints};

(2) K = {abelian groups}, Ke = {divisible abelian groups with infinitely many
elements of each prime order}.

We thus define a compactum X ∈ K ⊆ CH to be co-existentially closed relative
to K if every continuous surjection from a member of K onto X is co-existential.
Let Kc denote the members of K that are co-existentially closed relative to K. An
exact analogue to the existence result just cited is the following.

Theorem 5.20 (Level ≥ 1 Existence Theorem: Theorem 6.1 in [21]). Let K be
a co-inductive co-elementary class, with X ∈ K infinite. Then X is a continuous
image of some X ′ ∈ Kc, of weight w(X).

Theorem 5.20 applies, then, to the three co-inductive co-elementary classes CH,
BS, and CON, of compacta, Boolean spaces, and continua respectively. The fol-
lowing dual Nullstellenzatz for compacta is not difficult to prove.

Theorem 5.21 (Proposition 6.2 in [21]). CHc = BSc = {self-dense Boolean
spaces}.

The nature of CONc is apparently much more difficult to discern. If we can show
it to be a co-elementary class, then, by Robinson’s test (Theorem 5.18), it is model
cocomplete. (It is not hard to show that Kc is closed under co-elementary images
when K is a co-elementary class. Thus to show Kc to be co-elementary, it suffices
to show it is closed under ultracoproducts.) With a slight abuse of language, call
a member of CONc a co-existentially closed continuum. We know from Theorem
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5.20 that co-existentially closed continua abound, but the process used to construct
them involves direct limits of lattices, and is not very informative. We have few
criteria to decide whether a given continuum is co-existentially closed; what we
know so far is the following.

Theorem 5.22 (Corollary 4.3 in [22]). Every co-existentially closed continuum is
a hereditarily indecomposable continuum of covering dimension one.

Remark 5.22.1. Theorem 5.22 has a developmental history that spans a few years.
It started out as Proposition 6.3 in [21], that co-existentially closed continua are
indecomposable. Adding the conclusion that they are also of covering dimension
one (Theorem 4.5 in [19]) followed from an ultracoproduct argument applied to
the folklore result that every metrizable continuum is a continuous image of a one-
dimensional metrizable continuum (see [88]). The next advance came after I found
D. Bellamy’s theorem that every metrizable continuum is a continuous image of
a hereditarily indecomposable metrizable continuum [25]. I was then able to add
(Theorem 4.1 in [20]) that metrizable co-existentially closed continua are hereditar-
ily indecomposable (and, in addition, that there are at least two homeomorphism
types of metrizable co-existentially closed continua). The final version stated above
came about after I learned of the base-free crookedness criterion for hereditary
indecomposability (see Remark 5.5.4). This theorem is still a work-in-progress.

Open Problems 5.23.

(1) (See Remark 5.1.1) If X and Y are co-elementarily equivalent compacta,
can one always find lattice bases A for X and B for Y such that A ≡ B?
(This is only one of a host of similar questions. For example, if f : X → Y
is, say, co-existential, is there an existential embedding g : B → A such that
f = gS?)

(2) (See Remark 5.5.5) Specify a Π0
2 base-free definition of the property of being

a continuum of multicoherence degree ≤ n.
(3) (See Theorem 5.7 and subsequent discussion.) Do nondegenerate categori-

cal continua exist? (Henson [45] has expressed the suspicion that the only
categorical metrizable compacta are Boolean spaces; we are a little more op-
timistic in conjecturing that categorical metrizable continua exist, but they
are all hereditarily indecomposable.)

(4) (See Theorem 5.8.) What Peano continua are there (besides arcs and simple
closed curves) that are categorical relative to the class of locally connected
compacta? (Dendrites and finite graphs are likely candidates, see [69].)

(5) (See Theorems 3.10 and 5.11.) Do κ-good ultrafilters create ultracoproduct
compacta that are Bκ+-spaces?

(6) (See Theorems 5.15 and 5.16.) Are co-existential maps always confluent?
(quasi-monotone?)

(7) (See Theorem 5.15.) Is there an appropriate version of the covering lemma
where co-existential is replaced by of level ≥ α (α ≥ 1)? In the established
version, is f∗ ∩-preserving?

(8) (See Remark 5.19.1.) Are there any model cocomplete co-elementary classes
that contain nondegenerate continua?
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(9) (See Theorem 5.22.) Is the class of co-existentially closed continua a co-
elementary class? (Yes, if it comprises the hereditarily indecomposable one-
dimensional continua. Any positive answer would establish a dual Nullstel-
lensatz for continua.)

(10) (See Theorem 5.22.) Are any of the familiar hereditarily indecomposable
one-dimensional continua co-existentially closed? (A prime candidate is
the pseudo-arc, see [59, 69].)

6. Related Constructions

Starting with an I-indexed family 〈Xi : i ∈ I〉 of topological spaces, the box
product topology on the set

∏
i∈I Xi is defined by declaring the open boxes

∏
i∈I Ui

as basic open sets, where the sets Ui are open subsets of Xi, i ∈ I. Alternatively,
one forms the usual product topology by restricting attention to those open boxes
having the property that {i ∈ I : Ui 6= Xi} is finite. In [54], C. J. Knight combines
these two formations under a common generalization, the I-product topologies, as
I ranges over all ideals of subsets of I (so ∅ ∈ I, and I is closed under subsets
and finite unions), as follows: Take as open base all open boxes

∏
i∈I Ui such that

{i ∈ I : Ui 6= Xi} ∈ I. Then the box (resp., usual) product topology is the I-
product topology for I = ℘(I) (resp., I = {J ⊆ I : J finite}). (For the trivial ideal
I = {∅}, one trivially obtains the trivial topology.) The collective name for these
I-product formations, for various ideals I, is known as the ideal product topology.

In [40], M. Z. Grulović and M. S. Kurilić add a new ingredient to the pot, creating
a further generalization that now takes in all ideal product topologies, as well as
all reduced product topologies. Known as the reduced ideal product topology, it
comprises the FI-product topologies, as 〈F , I〉 ranges over all pairs where F (resp.,
I) is a filter (resp., an ideal) on I: First one takes the I-product topology on∏

i∈I Xi; then forms the obvious quotient topology on the reduced product
∏

F Xi

of underlying sets. Denote this new space by
∏I

F Xi. Then the topological reduced
product

∏
F Xi of Section 3 is

∏℘(I)
F Xi in this notation. Also, when F includes all

the complements of members of I, it follows that
∏I

F Xi has the trivial topology.
Define a filter-ideal pair 〈F , I〉 on I to satisfy the density condition if for every

A ∈ F and every B /∈ F , there exists a C ∈ I such that C ⊆ A\B and I\C /∈
F . (The use of the word density in this definition is justified by the following
observation. Consider the quotient partially ordered set ℘(I)/F , where A,B ⊆ I
are identified if A∩F = B∩F for some F ∈ F . Then the density condition amounts
to the condition that every nonbottom element of ℘(I)/F dominates a nonbottom
element of I/F .) Note that 〈F , ℘(I)〉 satisfies the density condition when F is a
proper filter (given A and B, just let C be A\B), and that 〈{I}, I〉 satisfies the
density condition when every nonempty subset of I contains a nonempty member
of I. Also note that if F includes all the complements of members of I, then 〈F , I〉
does not satisfy the density condition.

The main contribution of [40] is to connect the density condition with the preser-
vation of the separation axioms by reduced ideal products (in a manner not entirely
unlike the style of Theorem 4.1). For a topological property P , say that a filter-
ideal pair 〈F , I〉 preserves P if for any I-indexed family 〈Xi : i ∈ I〉,

∏I
F Xi has

property P whenever {i ∈ I : Xi has property P} ∈ F .
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Theorem 6.1 (Grulović-Kurilić [40]). Let property P be any of the separation
axioms Tr, r ∈ {0, 1, 2, 3, 3.5}. Then a filter-ideal pair 〈F , I〉 preserves P if and
only if it satisfies the density condition.
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