ハ®

Corrigendum to "Taxonomies of Model-Theoretically Defined Topological Properties" Author(s): Paul Bankston
Source: The Journal of Symbolic Logic, Vol. 56, No. 2 (Jun., 1991), pp. 425-426
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2274690
Accessed: 13/02/2011 15:20

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^0] Journal of Symbolic Logic.

CORRIGENDUM TO "TAXONOMIES OF MODEL-THEORETICALLY DEFINED TOPOLOGICAL PROPERTIES"

PAUL BANKSTON

Abstract

An error has been found in the cited paper; namely, Theorem 3.1 is false.

1. I would like to correct a simple, but serious, error in [1]; namely Theorem 3.1 therein is quite false: It can happen that there are compact Hausdorff spaces X and Y with $X \equiv Y$ (indeed $X \doteq Y$) but $X \not \equiv_{\mathbf{T}_{t}} Y$. I am most grateful to Lutz Heindorf for communicating [3] the following straightforward example: Let X and Y be any two Boolean spaces with infinite dense sets of isolated points. Then $B(X)$ and $B(Y)$ are Wallman bases for X and Y respectively, are infinite atomic Boolean algebras, and hence, by the Tarski invariants theorem, are elementarily equivalent. Thus $X \doteq Y$. However, one can easily pick X and Y as above so that $X \not \equiv_{\mathbf{T}_{t}} Y$; e.g., let X and Y be the ordinal spaces $\omega+1$ and $\omega^{2}+1$ respectively. Then Y has a point of CantorBendixson derivative 2, while X does not. This fact can be expressed in a sentence of Φ_{t}.

The faulty inference in the proof of Theorem 3.1 of [1] occurs in the penultimate sentence: If W and Z are two Tichonov spaces with Wallman bases that are latticeisomorphic, it does not generally follow that W and Z are homeomorphic. (We could make the inference if either W and Z were both compact or the Wallman bases contained all the singletons, but in our case W and Z are topological ultrapowers and neither condition holds.)
2. In Professor Heindorf's communication [3], there were some further interesting facts that enrich the content of [1].
2.1. The 3-cell \mathscr{I}^{3} is characterized by \mathbf{T}_{F} in \{metrizable\} [2]. (This augments Theorem 1.2 in [1].)
2.2. There is a complete description of the spaces that are (finitely) characterized by certain taxonomies in \{metrizable Boolean\}. Let \mathscr{R} be the class of R. S. Pierce's "compact 0-dimensional metric spaces of finite type" [7].

Theorem [5]. For any metrizable Boolean space X, the following are equivalent:
(i) $X \in \mathscr{R}$.

[^1](ii) X is finitely characterized by \mathbf{T}_{F} in \{metrizable Boolean $\}$.
(iii) X is finitely characterized by \mathbf{T}_{t} in \{metrizable Boolean $\}$.
(This result addresses issue (I2) in [1].)
2.3. Theorem [6]. There are $c \mathbf{T}_{t}$-taxa (hence $c \mathbf{T}_{F}$-taxa) in $\{$ metrizable Boolean $\}$.
(This result addresses issue (I3) in [1], and answers a question raised in the penultimate paragraph on p. 592 therein. See also the paragraphs following the proof of Theorem 2.10.)
2.4. Theorem [4]. \{metrizable Boolean $\}$ is dense in $\{$ Boolean $\}$, relative to \mathbf{T}_{t}.
(This result addresses issue (I6) in [1].)

REFERENCES

[1] P. Bankston, Taxonomies of model-theoretically defined topological properties, this Journal, vol. 55 (1990), pp. 589-603.
[2] H. G. Bothe, A first order characterization of 3-dimensional manifolds, Workshop on extended model theory (H. Herre, editor), Report R-Math. 03/81, Akademie der Wissenschaften der DDR, Berlin, 1981, pp. 1-19.
[3] L. Heindorf (private communication).
[4] ——, Comparing the expressive power of various languages for Boolean algebras, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 27 (1981), pp. 419-434.
[5] -_, Beiträge zur Modelltheorie der Booleschen Algebren, Seminarbericht No. 53, HumboldtUniversität, Berlin, 1984.
[6] B. Molzan, On the number of different theories of Boolean algebras in several logics, Workshop on extended model theory (H. Herre, editor), Report R-Math. 03/81, Akademie der Wissenschaften der DDR, Berlin, 1981, pp. 102-113.
[7] R. S. Pierce, Compact zero-dimensional metric spaces of finite type, Memoirs of the American Mathematical Society, no. 130 (1972).

```
DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
    MARQUETTE UNIVERSITY
    MILWAUKEE, WISCONSIN 53233
```


[^0]: Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The

[^1]: Received September 17, 1990.
 1980 Mathematics Subject Classifications. (1985 Revision) Primary: 03C15, 03C20, 06D99, 54D30, 54F15, 54F25

