
ON CONTINUOUS IMAGES OF ULTRA-ARCS
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Abstract. Any space homeomorphic to one of the standard subcontinua of
the Stone-Čech remainder of the real half-line is called an ultra-arc. Alterna-
tively, an ultra-arc may be viewed as an ultracopower of the real unit interval
via a free ultrafilter on a countable set. It is known that any continuum of
weight ≤ ℵ1 is a continuous image of any ultra-arc; in this paper we address
the problem of which continua are continuous images under special maps. Here
are some of the results we present.

• Every nondegenerate locally connected chainable continuum of weight
≤ ℵ1 is a co-elementary monotone image of any ultra-arc.

• Every nondegenerate chainable metric continuum is a co-existential im-
age of any ultra-arc.

• Every chainable continuum of weight ℵ1 is a co-existential image of any
ultra-arc whose indexing ultrafilter is a Fubini product of two free ultra-
filters.

• There is a family of continuum-many topologically distinct nonchainable
metric continua, each of which is a co-existential image of any ultra-arc.

• A nondegenerate continuum which is either a monotone or a co-existential
image of an ultra-arc cannot be aposyndetic–let alone locally connected–
without being a generalized arc.

1. introduction

Ultra-arcs are (homeomorphs of) the so-called standard subcontinua of the Stone-
Čech remainder H∗ := β(H)\H of the real half-line H := [0,∞). Ultra-arcs resemble
arcs in many–but far from all–ways; standard subcontinua are widely regarded as
building blocks for H∗, in rough analogy with how arcs are building blocks for
solenoids. In this paper we look into the problem of identifying continua which can
be images of ultra-arcs under special maps.

Continuing the analogy with arcs, we know that it is the continua that are
locally connected and metric which can be continuous images of an arc, but only
another arc can be a monotone–or even a confluent–image. When we move to ultra-
arcs, every continuum of weight ≤ ℵ1 is a continuous image of any ultra-arc, but
nondegenerate monotone images have to be decomposable (among other things).

Let us begin with some basic definitions. A compactum is a compact Haus-
dorff space; a continuum is a connected compactum, and a subcontinuum of
a topological space is a subset whose induced topology makes it a continuum. A
space is nondegenerate if it has at least two points. A cut point of a continuum
is any point whose complement is disconnected; it is well known [31] that every
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nondegenerate continuum has at least two noncut points. One with exactly two is
called a generalized arc. An arc is a generalized arc which is metric; all arcs are
homeomorphic [26] to the closed unit interval I := [0, 1] in the real line. Generalized
arcs are also characterized as being those nondegenerate continua whose topologies
are induced by a linear order on the underlying set. For this reason we refer to a
continuum as being linear if it is either degenerate or a generalized arc. (Hence
the nonlinear continua are the ones with at least three noncut points.)

A continuum X is irreducible about a subset S (or, S is a set of irreducibil-
ity for X) if no proper subcontinuum of X contains S. All continua are irreducible
about their sets of noncut points [31]. X is irreducible if it is irreducible about
a doubleton subset. If X is irreducible about {x, y} and every closed set that is a
set of irreducibility for X contains {x, y}, then we say that X is uniquely irre-
ducible. When this happens, any autohomeomorphism on X fixes {x, y} setwise,
and it makes sense to refer to x and y as the end points of X. When X is a gen-
eralized arc it is uniquely irreducible, and its end points are the order end points
for any linear order inducing its topology.

A standard subcontinuum of H∗ is a subset of the form⋂
J∈D

clβ(H)(
⋃
n∈J

[an, bn]),

where a0 < b0 < a1 < b1 < . . . is an increasing unbounded sequence in H and
D is a free (i.e., nonprincipal) ultrafilter on ω := {0, 1, 2, . . . }. This set is easily
shown to be a subcontinuum of H∗; D is its indexing ultrafilter. Two standard
subcontinua with the same indexing ultrafilter are easily seen to be homeomorphic;
an ultra-arc is any continuum homeomorphic to a standard subcontinuum of H∗.

An alternative description of ultra-arcs, using just the single interval I, starts
with forming the Stone-Čech compactification β(I × ω). Letting q : I × ω → ω
denote projection onto the second coordinate, we now consider the natural lift
qβ : β(I × ω) → β(ω). Points of the image space are just the ultrafilters on ω,
and we define ID to be the pre-image of D ∈ β(ω) under qβ . If D is the principal
ultrafilter fixed at n ∈ ω, we obtain ID = I × {n}. On the other hand, if D ∈ ω∗,
ID is homeomorphic to any ultra-arc indexed by D. The subspaces ID, D ∈ β(ω),
constitute the components of β(I × ω). The introduction of ultra-arcs to study
H∗ is due to J. Mioduszewski [24], and a thorough summary of their use in this
connection may be found in [18].

Our main interest is the general problem of determining when a continuum is an
image of an ultra-arc under continuous maps satisfying extra conditions. With no
conditions on the maps, there is an elegant solution.

Theorem 1.1.

(i) ([28, Theorem 9.20], attributed to D. Bellamy) If X is any metric contin-
uum and A is a nondegenerate subcontinuum of H∗, then there is a contin-
uous map from A onto X.

(ii) ([16, Theorem 1, also Section 4]) If X is any continuum of weight ≤ ℵ1 and
A is either H∗ or one of its standard subcontinua, then there is a continuous
map from A onto X.

Here we consider the mapping conditions of being monotone and of being co-
existential/co-elementary. While monotone maps are well studied in continuum
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theory, co-existential and co-elementary maps are relatively new, arising as natu-
ral category-theoretic duals to existential and elementary embeddings, respectively,
in model theory (see, e.g., [7]). Co-elementary maps are co-existential, but not
conversely; co-existential maps with locally connected range are monotone.

The results of this paper are summarized as follows: (1) Every nonlinear mono-
tone image of an ultra-arc contains a nondegenerate indecomposable subcontin-
uum. (2) Every nondegenerate monotone image of an ultra-arc is decomposable.
(3) Every generalized arc–indeed, every nondegenerate locally connected chainable
continuum–of weight ≤ ℵ1 is a co-elementary monotone image of any ultra-arc. (4)
Every nondegenerate chainable metric continuum is a co-existential image of any
ultra-arc. (5) Every chainable continuum of weight ℵ1 is a co-existential image of
any ultra-arc whose indexing ultrafilter is a Fubini product of two free ultrafilters.
(6) There is a family of continuum-many topologically distinct metric continua
which are nonchainable–indeed, of nonzero span–and are co-existential images of
any ultra-arc. (7) Every aposyndetic monotone (or co-existential) image of an
ultra-arc is linear.

2. monotone maps and co-existential maps

A map from one topological space to another is monotone if its point pre-images
are connected; it is well known that continuous f : X → Y between compacta is
monotone if and only if the pre-image f−1[K] of a subcontinuum K ⊆ Y is a sub-
continuum of X. Monotone maps are closely related to what we call co-existential
maps, but to define the latter notion we need to expand on the “alternative” de-
scription of ultra-arcs given in the Introduction.

The topological ultracopower–more generally, ultracoproduct–construction for
compacta was initiated in [2]; also, independently (in the case of arcs), by Mio-
duszewski [24]. We start with a compactum X and an infinite set I, viewed as a
discrete topological space. With p : X × I → X and q : X × I → I the coordinate
projection maps, we apply the Stone-Čech functor to obtain the diagram

X = β(X)
pβ

←− β(X × I)
qβ

−→ β(I).

Regarding an ultrafilterD on the set I as a point in β(I), we form theD-ultracopower
XD as the pre-image (qβ)−1[D] := (qβ)−1[{D}]. (This is precisely the description of
ultra-arcs when X = I and D ∈ ω∗.) It is a basic fact [3, 7] about this construction
that XD is a continuum if and only if X is a continuum. In this case the family
{XD : D ∈ β(I)} comprises the components of β(X × I).

The restriction pX,D := pβ |XD, called the codiagonal map, is a continuous
surjection from XD to X. A continuous surjection f : X → Y between compacta is
co-existential if there is an ultrafilter D and a continuous surjection g : YD → X
such that f ◦ g = pY,D. If g can be chosen to be of the form pX,E ◦ h, where
h : YD → XE is a homeomorphism, we call f a co-elementary map. (These notions
are exact category-theoretic duals to those of existential embedding and elementary
embedding, respectively, in model theory, and do not explicitly mention topological
properties of subsets of either the domain or the range.) Because ultracopowers
of degenerate continua are degenerate, it is immediate from the definition that a
co-existential image of a nondegenerate continuum is nondegenerate.
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A topological space is locally connected if there is an open base for the space
consisting of connected sets. The following is a very useful fact for us.

Lemma 2.1. [6, Theorem 2.7] Co-existential maps with locally connected range are
monotone.

Remark 2.2. Although we do not use the fact here, it is also true (see, e.g., [12,
Lemma 3.14]) that if X is a compactum which is not locally connected, then there
is a codiagonal map pX,D which is not monotone.

3. regular closed sets

If X is a compactum, then one way of viewing the ultracopower XD is as the
Wallman space of maximal filters in the lattice of all D-ultraproducts ~FD :=

∏
D Fi

of I-sequences of sets closed in X. ~FD, also denoted
∑
D Fi and defined to be

{µ ∈ XD : ~FD ∈ µ}, is a basic closed subset of XD. Closed subsets of this form are
called regular. If each Fi is a singleton {xi} then ~FD has just one point, which
we denote ~xD. These are the regular points of XD, and correspond in a natural
way to the points of the D-ultrapower XD. In this way we may view XD as a
(necessarily dense) subset of XD. If x ∈ X, xD denotes the regular point ~xD, where
xi = x for all i ∈ I. Clearly pX,D(xD) = x; more generally, pX,D(µ) = x if and only
if UD contains a closed-set ultraproduct ~FD ∈ µ for every open neighborhood U of
x.

In the case where the topology on X is induced by a linear order ≤, the ultra-
power order ≤D, also linear, induces the subspace topology on XD. This fact is
extremely useful in the study of ultra-arcs.

Regular closed sets ~KD where each Ki is a subcontinuum of X are called regular
subcontinua of XD. For µ ∈ XD, R(µ) is the family of all regular subcontinua
containing µ, and we define µ, ν ∈ XD to beR-equivalent ifR(µ) = R(ν). Clearly
any R-class containing a regular point is degenerate, so there are generally lots of
R-classes. The associated quotient map is denoted rX,D : XD → XR

D , and referred
to as the regularization map.

The paper [12, Section 7] lays out a general theory of R-classes in ultracoproduct
continua. In particular, it gives conditions ensuring that XR

D is a continuum. What
is of importance to us here is when X = I, and we summarize below the salient facts
(taken from the survey [18]) we will be using. We first define a continuum X to
be decomposable if it is the union of two proper subcontinua; indecomposable
otherwise. X is unicoherent if it is not the union of two subcontinua whose
intersection is disconnected. Adding the modifier hereditarily to any descriptor
confers the given property to all nondegenerate subcontinua.

Lemma 3.1. The following conditions hold for any ultra-arc ID.

(i) ID is irreducible about {0D, 1D}.
(ii) (Propositions 2.8 and 2.12, and Lemma 2.9, attributed to J. Mioduszewski)

The R-classes–also known as layers–of ID are nowhere dense subcontinua,
and at least one of them is nondegenerate.

(iii) (Corollary 2.10, attributed to Mioduszewski) With ≤ denoting the usual
order on I, the ultrapower order ≤D induces a linear order on the set of
layers, and the resulting regularized D-ultracopower IRD is a generalized arc.
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(iv) (Theorem 6.3, attributed to E. van Douwen, M. Smith, and J. -P. Zhu,
independently) All layers of ID are indecomposable subcontinua.

(v) (Theorem 2.11, attributed to Mioduszewski) Every subcontinuum of ID is
either contained in a layer or is a union of layers.

(vi) (Theorem 5.6, attributed to L. Gillman and M. Hendriksen) H∗ is heredi-
tarily unicoherent (and therefore so is ID).

We end this section with two easy applications of Lemma 3.1. First recall that a
continuous map f : X → Y between spaces is a retraction if f has a right inverse;
i.e., a continuous g : Y → X with f ◦ g = identityY .

Corollary 3.2. Ultra-arc regularization maps are monotone, but never retractions.

Proof. Ultra-arc regularization maps are monotone, by (ii). Suppose g : IRD → ID
is a right-inverse for r = rI,D. By (i), plus the elementary fact that monotone maps
preserve irreducibility, we know that IRD is irreducible about {r(0D), r(1D)}. Now
g(r(µ)) = µ whenever µ ∈ ID is a regular point, hence the subcontinuum K = g[IRD ]
contains both 0D and 1D. Consequently K = ID, and r is a homeomorphism. But
this implies all layers of ID are degenerate, contradicting (ii). �

We next show that ultra-arcs share an important property with generalized arcs.

Corollary 3.3. The ultra-arc ID is uniquely irreducible, with end points 0D and
1D.

Proof. We already know that ID is irreducible about {0D, 1D}. Let S ⊆ ID be
a closed set of irreducibility, and suppose, say, 0D 6∈ S. Using the notation in
the proof of Corollary 3.2, r[S] cannot contain r(0D) because r−1[r(0D)] = {0D}.
Because IRD is a generalized arc uniquely irreducible about {r(0D), r(1D)} (use (i)
and (iii)), the closed set r[S] is not a set of irreducibility for IRD . Let K be a
proper subcontinuum containing r[S]. Then r−1[K] is a proper subcontinuum of
ID contining S, a contradiction. �

4. monotone images are decomposable

As mentioned above, monotone maps preserve irreducibility. They are also easily
seen to preserve (hereditary) unicoherence. Thus every monotone image of an
ultra-arc is irreducible and hereditarily unicoherent, by Lemma 3.1 (i,vi).

Remark 4.1. We do not know whether monotone images of ultra-arcs are uniquely
irreducible. For while this is true for ultra-arcs by Corollary 3.3, the property is
not preserved by monotone maps. Indeed, suppose X is decomposed as the union
A ∪ Y ∪ B, where A and B are disjoint arcs, each sharing one of its end points
with Y , and disjoint from Y otherwise. Let a (resp., yA) be the end point of A
not in (resp., shared with) Y ; likewise identify b and yB . Suppose further that Y
is irreducible about {yA, yB}, but that Y is not uniquely irreducible. (E.g., Y is
an indecomposable metric continuum.) Let f : X → Y now be the retraction that
collapses A and B to {yA} and {yB}, respectively. Then X is uniquely irreducible,
unlike Y , and f is monotone.

Ultra-arcs are decomposable, but monotone maps need not preserve this property
either. (Just consider the first coordinate projection from the product of an inde-
composable continuum with a decomposable one.) In this section we address the
issue of (hereditary) decomposability in monotone images of ultra-arcs.
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A map whose domain is an ultracopower is R-preserving if it sends two R-
equivalent points to the same point; i.e., if its point pre-images are unions of R-
classes.

Lemma 4.2. Suppose f : ID → X is an R-preserving map. If either (a) X is
nondegenerate and f is monotone, or (b) f is co-existential, then X is a generalized
arc.

Proof. Since f is R-preserving, there is a map g : IRD → X such that f = g ◦ rI,D.
As a straightforward consequence of the definitions, we know that g is monotone
(co-existential) if the same is true for f .

First assume X is nondegenerate and f is monotone. By Lemma 3.1 (i), we
know X is irreducible about {f(0D), f(1D)}. We show that every other point of X
is a cut point.

So fix x ∈ X \ {f(0D), f(1D)}. By Lemma 3.1 (iii), IRD is a generalized arc. The
subcontinuum g−1[x] does not contain either end point; hence there is a discon-
nection {U, V } of IRD \ g−1[x] into disjoint nonempty open sets. Another appeal to
monotonicity shows that U = g−1[g[U ]] and V = g−1[g[V ]]. Also g[U ]∩g[V ] = ∅; so
{g[U ], g[V ]} is a disconnection of X \ {x}, and we conclude that X is a generalized
arc.

In the event f is a co-existential map, we know immediately that X is nondegen-
erate, and do not have to assume this. IRD , being a generalized arc, is automatically
locally connected. This property in compacta is preserved by continuity, so X is
locally connected too. But, by Lemma 2.1, f is now monotone, and we argue as
above. �

Proposition 4.3. Let X be a metric continuum. Then X is an arc if and only if
X is the image (resp., nondegenerate and the image) of some ultra-arc under an
R-preserving map that is co-existential (resp., monotone).

Proof. To conclude X is an arc, just apply Lemma 4.2. For the converse, note that
the codiagonal map pI,D : ID → I is co-elementary; and also monotone, by Lemma
2.1. Point pre-images always contain many regular points; hence, by Lemma 3.1
(v), they are unions of layers. Thus pI,D is R-preserving. �

Lemma 4.4. Suppose f : ID → X is a monotone surjection which is not R-
preserving. Then X contains a nondegenerate indecomposable subcontinuum.

Proof. Since f is not R-preserving, there is a layer R ⊆ ID which is not contained
in any point pre-image under f . Since f is monotone, we know from Lemma 3.1
(v) that for any x ∈ X, f−1[x] is either disjoint from R or properly contained in
R. Let K = {x ∈ X : f−1[x] ⊆ R}. Then R = f−1[K] and K has more than
one point. By Lemma 3.1 (ii), then, K is a nondegenerate subcontinuum of X.
Now f |R : R → K is a monotone map because R is a union of point pre-images.
Since R is an indecomposable continuum (Lemma 3.1 (iv)), we conclude that K is
a nondegenerate indecomposable subcontinuum of X. �

Theorem 4.5. Let X be a nonlinear continuum which is a monotone image of
some ultra-arc. Then X contains a nondegenerate indecomposable subcontinuum.

Proof. Suppose f : ID → X is a monotone surjection, where X is nonlinear. We
use Lemma 4.2 to infer that f is not R-preserving. Now apply Lemma 4.4 to infer
that X contains a nondegenerate indecomposable subcontinuum. �
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Remark 4.6. In Theorem 4.5, monotone cannot be replaced with co-existential :
The sin( 1

x )-continuum (see [26]) is a nonlinear hereditarily decomposable contin-
uum, and hence not a monotone image of any ultra-arc. It is, however, chainable;
and–by Theorem 6.3 below–thus a co-existential image of each ultra-arc.

Of course an ultra-arc is nonlinear and a monotone image of itself. But this raises
the question of what happens in the metric realm.

Question 4.7. If X is a nondegenerate monotone metric image of an ultra-arc, is
X necessarily an arc?

Finally we consider decomposability in monotone images.

Theorem 4.8. A nondegenerate monotone image of an ultra-arc is decomposable.

Proof. Suppose f : ID → X is a monotone map onto a nondegenerate continuum
X. For n = 0, 1, let xn = f(nD) and Kn = f−1[xn]. If L and R are any layers in
ID, extend interval notation by letting [L,R] denote the union of all layers lying
between L and R in the pre-order induced by the ultrapower order ≤D (see Lemma
3.1, also [18, Theorem 2.11]). Then [L,L] = L; and if L 6= R, we have [L,R]
equal to the interval [µ, ν], where µ ∈ L and ν ∈ R. Now every subcontinuum
not properly contained in a layer is of the form [L,R], where L and R are layers.
Since regular points determine degenerate layers, we have K0 = [0D, L0] and K1 =
[L1, 1D], for some layers L0 and L1. Since L0 6= L1 and X is irreducible about
{x0, x1} = {f(L0), f(L1)}, we know [L0, L1] is a decomposable subcontinuum of ID
which maps via f onto X. Also [L0, L1] is irreducible between any point of L0 and
any point of L1; hence any proper subcontinuum K ⊆ [L0, L1] is disjoint from at
least one of {K0,K1}, and therefore maps to a proper subcontinuum of X. Since
[L0, L1] is decomposable, so too is X. �

Question 4.9. If X is nondegenerate and f : ID → X is a monotone surjection, is
f co-existential? Alternatively: is a nondegenerate monotone image of an ultra-arc
necessarily a co-existential image?

5. generalized arcs which are co-elementary monotone images

We saw earlier that the codiagonal maps pI,D witness the fact that an arc is a co-
elementary image of any ultra-arc. Because arcs are locally connected, these maps
are monotone as well. In this section we show that every generalized arc of weight
ℵ1 is also a co-elementary image of any ultra-arc.

The following mapping existence theorem serves as our main lemma for proving
that certain nonmetric continua are special images of ultra-arcs. Its proof uses clas-
sical results from saturated model theory, so we point out only the highlights of the
argument. We note first that while in model theory the principal cardinal invariant
of a structure is the cardinality of its underlying set, the corresponding invariant
for a compactum is its weight. (So what corresponds to countable cardinality in a
structure is metrizability in a compactum.)

Lemma 5.1. Let X be a compactum of weight ≤ ℵ1 and D ∈ ω∗. Then there is a
metric compactum Y and co-elementary maps f : X → Y , g : YD → X such that
f ◦ g = pY,D.
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Proof. We assume all spaces to be infinite; otherwise there is nothing to prove.
First we note that a lattice base for a compactum Y is a closed-set base that is

itself closed under finite unions and intersections (see [7]). What is most important
for us about lattice bases of compacta is due to H. Wallman [29]: an abstract
structure B over the lexicon of bounded lattices is isomorphic to a lattice base for a
compactum if and only if B is a normal disjunctive distributive lattice. These lattice
conditions may be expressed as first-order sentences; thus the class of lattice bases
for compacta is an elementary class (in the sense of [15]). So if D is an ultrafilter
on index set I and B is a lattice base for compactum Y , then the D-ultrapower BD
is (naturally isomorphic to) a lattice base for the D-ultracopower YD.

Now suppose X is a compactum of weight ≤ ℵ1, and fix a lattice base A for X,
where |A| ≤ ℵ1. By the Löwenheim-Skolem Theorem [15, Theorem 3.1.6], there is a
countable elementary sublattice B ⊆ A. Enumerate the elements of B, and regard
〈B, b〉b∈B as a relational structure in the lexicon of bounded lattices, enhanced with
a constant symbol for each b ∈ B. Then 〈B, b〉b∈B is an elementary substructure of
〈A, b〉b∈B .

By the elementarity feature inherent in Wallman’s theorem, there is a com-
pactum Y having a countable lattice base B isomorphic to B. Fix such an isomor-
phism, and for each b ∈ B, let Bb ∈ B correspond to b. Then there is an elementary
embedding ϕ : 〈B, Bb〉b∈B → 〈A, b〉b∈B .

Let D ∈ ω∗. Then, because D is countably incomplete and ℵ1-good (see [15,
Exercises 6.1.2 and 6.1.5]), the ultrapower 〈B, Bb〉Db∈B is ℵ1-saturated [15, Theo-
rem 6.1.8]. By [15, Theorem 5.1.2], this makes 〈B, Bb〉Db∈B ℵ2-universal; i.e., any
structure of cardinality ≤ ℵ1 which is elementarily equivalent to it is elementarily
embeddable in it. Since 〈A, b〉b∈B is just such a structure, we have an elementary
embedding γ : A → BD such that γ ◦ ϕ is the natural diagonal embedding from
B to BD. By applying the maximal spectrum functor, we obtain co-elementary
maps f : X → Y and g : YD → X (induced by ϕ and γ, respectively) so that
f ◦ g = pY,D. �

Theorem 5.2. Every generalized arc of weight ≤ ℵ1 is a co-elementary monotone
image of any ultra-arc.

Proof. Let X be a generalized arc of weight ≤ ℵ1, with D any free ultrafilter on
ω. Let f : X → Y and g : YD → X be as in Lemma 5.1. (We do not need the
commutativity condition here.) Since f is co-elementary (just co-existential will
do), we know that Y is an arc [4, Proposition 2.3]. Thus YD is an ultra-arc that
co-elementarily maps, via g, onto X. This map is monotone, by Lemma 2.1. �

Remark 5.3. From Lemma 3.1 (ii, iii), the regularization map rI,D : ID → IRD is a
monotone map from an ultra-arc onto a generalized arc of weight c. However, we
do not know whether this map is co-existential. (See [4, Proposition 2.7], where a
fair amount of effort is expended in showing that a monotone map from one arc
onto another is always co-elementary.)

6. chainable continua which are co-existential images

A continuum X is chainable if each open cover of X refines to a finite open cover
{U1, . . . , Un}, ordered in such a way that Ui∩Uj 6= ∅ if and only if |i−j| ≤ 1. From
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this definition it is trivial to see that nondegenerate chainable continua are one-
dimensional (in the covering sense); i.e., no point lies in more than two members
of the refined cover.

Remark 6.1. Covering dimension is preserved under the taking of ultracopowers
[3, Theorem 2.2.2], and co-existential maps (unlike monotone maps [34, Theorem
1]) cannot raise covering dimension [6, Theorem 2.6]. This tells us that ultra-
arcs are one-dimensional, and hence so are all their co-existential–but perhaps not
necessarily monotone–images. The picture is quite different with chainability: non-
degenerate ultracopowers via countably incomplete ultrafilters are never chainable
[1, Lemma 5.3], so the fact that chainability is preserved by co-existential maps [10,
Section 5] is not of any use. The question naturally arises as to whether all metric
co-existential images of ultra-arcs are chainable, and in the next section we give a
negative answer.

It is easy to show that generalized arcs are both chainable and locally connected, but
the converse is only known to be true for metric continua (see [26, Chapter XII]).
Since continuous maps between compacta preserve local connectedness and co-
elementary (even co-existential) maps preserve chainability, the proof of Theorem
5.2 may easily be adapted to prove the following.

Corollary 6.2. If X is a nondegenerate locally connected chainable continuum of
weight ≤ ℵ1, then X is a co-elementary monotone image of every ultra-arc.

It is well known [26, Theorems 12.11, 12.19] that a nondegenerate metric contin-
uum is chainable if and only if it is an inverse limit of an ω-sequence of arcs and
continuous surjections for bonding maps.

The following is proved in far more generality as Theorem 1.2 (ii) (and Corollary
2.1) in [8]. This special case holds the most interest, however, and its proof is much
clearer. Thus we include it here.

Theorem 6.3. Every nondegenerate chainable metric continuum is a co-existential
image of any ultra-arc.

Proof. Fix ultra-arc ID, and let X be a nondegenerate chainable metric contin-
uum. Then we may view X as the inverse limit of an ω-sequence ~f of continuous
surjections on I:

I f0←− I f1←− I f2←− . . .

Let ~π be the associated sequence of projection maps from X to I, so that πn =
fn ◦ πn+1 always holds. The D-ultracoproduct map ~πD : XD → ID of this
sequence is defined by the rule:∏

D
Fn ∈ ~πD(µ) iff

∏
D

~π−1
n [Fn] ∈ µ.

(See [3], where a more general definition is given to cover ultracoproducts of non-
compact spaces.) ~πD is a continuous surjection because the same is true for each
πn.

For each n ∈ ω, define γn : I× (ω \n)→ I via the rule γn(t, m) = fm(t) for t ∈ I
and m ≥ n. Since each terminal segment ω \n is in D, we have ID ⊆ β(I× (ω \n)).
Define gn : ID → I to be the restriction of γβ

n to ID.
It is straightforward to check that the commutativities gn ◦ ~πD = πn ◦ pX,D and

gn = fn ◦ gn+1 always hold. Hence, by basic properties of inverse limits, there is a
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unique g : ID → X so that g ◦ ~πD = pX,D also holds. This shows directly that g is
a co-existential map. �

An obvious question at this point is whether the metric hypothesis in Theorem 6.3
can be weakened to being of weight ≤ ℵ1, and the answer is a qualified yes.

Given D, E ∈ ω∗, denote by D · E the Fubini product of the two ultrafilters,
itself an ultrafilter on ω × ω, as follows: For R ⊆ ω × ω, and i ∈ ω, denote
by R(i) := {j ∈ ω : 〈i, j〉 ∈ R}. Then R is a member of D · E if and only if
{i ∈ ω : R(i) ∈ E} ∈ D. Free ultrafilter F is a Fubini ultrafilter if there is a
bijection between ω and ω × ω which induces an equivalence between F and D · E
for some D, E ∈ ω∗. A Fubini ultra-arc, then, is just an ultra-arc whose indexing
ultrafilter is Fubini.

Theorem 6.4. Every chainable continuum of weight ℵ1 is a co-existential image
of any Fubini ultra-arc.

Proof. Assume X is a chainable continuum of weight ℵ1, with F = D · E an ar-
bitrary Fubini ultrafilter. Using Lemma 5.1, we have a metric continuum Y and
co-elementary maps f : X → Y , g : YD → X. (We do not need the commutativity
condition here either.) Y is nondegenerate, and–as stated in Remark 6.1–chainable.
Thus, by Theorem 6.3, there is a co-existential map k : IE → Y . Let kD : (IE)D →
YD be the D-ultracopower of k. Then [5, Corollary 2.4] kD is co-existential; more-
over [3, Theorem 2.1.1], there is a homeomorphism h : IF → (IE)D. Compositions
of co-existential maps are co-existential [5, Proposition 2.5], so g ◦ kD ◦ h : IF → X
is our desired co-existential map. �

Question 6.5. Is the Fubini assumption necessary in Theorem 6.4?

There is a no answer to this if we assume the Continuum Hypothesis (CH : c :=
2ℵ0 = ℵ1). The following is a corollary of Theorem 6.4, modulo some standard
model-theoretic arguments.

Corollary 6.6. (CH) Every nondegenerate chainable continuum of weight ≤ ℵ1 is
a co-existential image of any ultra-arc.

Proof. Let A be a countable lattice base for I. Given D, E ∈ ω∗, the ultrapowers
AD and AE are both ℵ1-saturated [15, Theorem 6.1.8] and of cardinality c. Since
c = ℵ1 and the ultrapowers are elementarily equivalent, they must be isomorphic
[15, Theorem 5.1.13]. This immediately gives us that any two ultra-arcs are home-
omorphic. So if X is a chainable continuum of weight ℵ1, then Theorem 6.4 tells
us X is a co-existential image of some ultra-arc. Hence it is a co-existential image
of every ultra-arc. �

Remarks 6.7.
(i) One way to get an absolute (in ZFC) no answer to Question 6.5 would be

to show that every ultra-arc is homeomorphic to a Fubini ultra-arc. While
we do not know whether this can be done, it cannot be done by trying to
show every ultrafilter is Fubini: a Fubini ultrafilter is not a weak P-point in
ω∗ (i.e., one not in the closure of any countable subset of its complement),
and there are 2c weak P-points in ω∗ [22, Theorem 0.1].

(ii) In Theorems 5.2 and 6.4 only the existence of co-elementary maps f and
g is used from Lemma 5.1, and the commutativity f ◦ g = pY,D is never
required. We feel there is much potential left in Lemma 5.1.
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7. nonchainable continua which are co-existential images

As mentioned in Remark 6.1, chainability is preserved by co-existential maps, but
ultra-arcs are not chainable. So it makes sense–in the interests of balancing the re-
sults of the last section–to ask whether there are nonchainable metric co-existential
images of ultra-arcs.

A continuum X is co-existentially closed if whenever f : Y → X is a contin-
uous map from a continuum onto X, then f is co-existential.

Remark 7.1. The notion co-existentially closed continuum is dual to that of ex-
istentially closed model of a universal theory in mathematical logic, and is analo-
gous to the well-studied properties Class (C) (“confluently closed continuum”) and
Class (W ) (“weakly-confluently closed continuum”). See, e.g., [26] for details. Note
that there is no such thing as a nondegenerate monotonically closed continuum be-
cause every nondegenerate continuum is easily seen to be a continuous image of
another continuum under a nonmonotone map. Also there are no co-elementarily
closed continua at all. This is true because: (i) co-elementary maps preserve cov-
ering dimension [7, Theorem 5.5 (1)]; and (ii) every continuum is a continuous
image of a continuum of different dimension. (From [7, Theorems 5.20, 5.22] we
know that every continuum is a continuous image of a one-dimensional one; any
one-dimensional continuum is a continuous image of an infinite-dimensional one.)

The class of co-existentially closed continua, however, is quite substantial.

Lemma 7.2.
(i) [6, Theorem 6.1] Every continuum is a continuous image of a co-existentially

closed continuum of the same weight.
(ii) [8, Corollary 4.13] Every co-existentially closed continuum is hereditarily

indecomposable and one-dimensional.

Since there are co-existentially closed continua of any given weight, Theorem 1.1
(ii) may be meaningfully applied.

Corollary 7.3. Every co-existentially closed continuum of weight ≤ ℵ1 is a co-
existential image of any ultra-arc.

Remark 7.4. It is worth noting that since a co-existentially closed continuum
is nondegenerate and indecomposable (Lemma 7.2 (ii)), it cannot be a monotone
image of any ultra-arc (Theorem 4.8). Nor can it be a co-elementary image, because
ultra-arcs are decomposable and co-elementary maps both preserve and reflect this
property (see, e.g., [7, Theorem 5.5]).

Of the nondegenerate hereditarily indecomposable metric continua, the pseudo-arc
P is unique for being chainable (see the survey [23]). Thus P is a co-existential
image of every ultra-arc, by Theorem 6.3. But it is a co-existential image for
another reason, because we may apply Corollary 7.3 to the following.

Theorem 7.5. [17, Main Theorem] P is a co-existentially closed continuum.

Indeed, when we add Lemma 7.2 (ii), we see that the pseudo-arc is the only co-
existentially closed metric continuum which is chainable. There are plenty of non-
chainable ones too, it turns out.

Theorem 7.6. There is a family of continuum-many topologically distinct co-
existentially closed metric continua which are not chainable.
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Proof. In [30], Z. Waraszkiewicz constructs a family S of c pairwise nonhomeomor-
phic subcontinua of the euclidean plane, such that no metric continuum continu-
ously maps onto more than countably many members of S. Using Lemma 7.2 (i),
pick, for each S ∈ S, a co-existentially closed metric continuum XS which contin-
uously maps onto S. Then each point pre-image under the assignment S 7→ XS

is countable; hence there must be c point pre-images. Thus there is a family C of
c topologically distinct metric co-existentially closed continua. Using Lemma 7.2
(ii), plus the topological characterization of P, at most one member of C can be
chainable. �

So applying Corollary 7.3 gives us the following.

Corollary 7.7. There is a family of continuum-many topologically distinct met-
ric continua which are co-existential images of any ultra-arc, but which are not
chainable.

Remarks 7.8.
(i) A continuum X is span zero if whenever Y is a continuum and f, g : Y →

X are continuous maps such that f [Y ] ⊆ g[Y ], it follows that f(y) = g(y)
for some y ∈ Y . Chainable metric continua are well known to be span zero,
but the converse is not true, even for continua in the plane [19]. However,
any hereditarily indecomposable metric continuum is chainable if it is span
zero [20, Theorem 1]; thus chainable may be replaced in Corollary 7.7 with
span zero. We do not know whether a metric continuum of nonzero span
can be a co-existential image of an ultra-arc without being hereditarily
indecomposable.

(ii) As an immediate consequence of Theorem 1.1 (ii) and Lemma 7.2 (i), there
is a co-existentially closed continuum X, of weight c, which continuously
maps onto each continuum of weight ≤ ℵ1.

8. nonlinear images and local connectedness

In this section we consider the following question: if a nonlinear continuum is a
special image of an ultra-arc, how close to being locally connected can it be? Our
conclusion is: not very.

To make this a bit clearer, we identify two properties; the first stronger than
the second, and both weaker than local connectedness for continua. The stronger
is aposyndesis, initially studied by F. B. Jones (see [21]): A topological space X is
aposyndetic if for each two points of X, one of them is contained in the interior of
a closed connected subset that excludes the other. Aposyndesis clearly follows from
local connectedness in regular T1 spaces and is a kind of separation property. The
suspension over the compact ordinal space ω + 1 is well known to be aposyndetic,
but not locally connected.

The second property, somewhat less well known than aposyndesis, is what we
label antisymmetry in [11]: a space X is antisymmetric if for any triple 〈a, b, c〉
in X with b 6= c, there is a closed connected subset containing a and exactly one of
b, c. With point a serving as “base point” and defining x ≤a y to mean that every
closed connected subset containing a and y contains x as well, it is easily seen that
X is antisymmetric if and only if each ≤a is antisymmetric as a pre-order.

Antisymmetry was also studied, in the context of metric continua, by B. E. Wilder
[32], who called it “Property C.”
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Lemma 8.1. Every connected aposyndetic space is antisymmetric.

Proof. Let 〈a, b, c〉 be a triple in the connected space X, with b 6= c. We first
claim that there is a connected set A ⊆ X which contains a and exactly one of b, c.
Indeed, suppose C is the component of X \ {b} that contains c. If a ∈ C, we put
A = C and obtain a connected set containing a and c, but not b. In the case a 6∈ C,
noting that both X and {b} are connected, we use [27, Theorem 3.3] to infer that
A = X \ C is a connected set containing a and b, but not c.

Now suppose A ⊆ X is a connected set containing a and b, but not c. For
each x ∈ A, use aposyndesis to find open set Ux and connected closed set Kx with
x ∈ Ux ⊆ Kx ⊆ X \ {c}. {Ux : x ∈ A} is an open cover of the connected set
A; hence there is a finite subfamily {Ux1 , . . . , Uxn}, where a ∈ Ux1 , b ∈ Uxn , and
Uxi ∩ Uxi+1 6= ∅ for 1 ≤ i ≤ n− 1. Then Kx1 ∪ · · · ∪Kxn is a connected closed set
containing a and b, but not c. �

Remarks 8.2.
(i) The cone over ω + 1, also known as the harmonic fan, is an antisymmetric

continuum which is not aposyndetic.
(ii) The version of Lemma 8.1 in which X is a metric continuum was first proved

by Wilder [32, Theorem 1], who also observed that nondegenerate antisym-
metric metric continua are decomposable. We do not know whether this is
still true in the nonmetric case, as it relies on the fact that indecomposable
metric continua are irreducible.

(iii) The connectedness assumption in Lemma 8.1 is essential: indeed, only the
two-point discrete space is both disconnected and antisymmetric.

Given points a, b in a continuum X, it is convenient to define the interval [a, b] to
constitute the intersection of all subcontinua that contain both a and b. In interval
terms, then, antisymmetry is the statement that if c ∈ [a, b] and b ∈ [a, c], then
b = c.

In [25] an arboroid is a hereditarily unicoherent continuum X which has the
feature that each doubleton subset is the set of end points of a generalized arc in
X. (So a dendroid–see [26]–is a metric arboroid.)

Lemma 8.3. [11, Corollary 4.8] A continuum is an arboroid if and only if it is
antisymmetric, and each of its nondegenerate intervals has at least three points.

Theorem 8.4. Suppose X is an antisymmetric monotone image of some ultra-arc.
Then X is a generalized arc.

Proof. Let f : ID → X be a monotone map from an ultra-arc onto a nondegenerate
antisymmetric continuum X. Since ID is hereditarily unicoherent (Lemma 3.1 (vi)),
and monotone maps are easily seen to preserve this property, we know that X is
also hereditarily unicoherent. It is easy to show that in hereditarily unicoherent
continua, intervals are subcontinua. Hence, by Lemma 8.3, X is an arboroid. By
Lemma 3.1 (i) and the fact that f is monotone, X is irreducible about the two
points f(0D), f(1D). But then X = [f(0D), f(1D)] is a generalized arc. �

In the interests of obtaining a companion to Theorem 8.4 for co-existential maps,
we first need to address the preservation of hereditary unicoherence.

Lemma 8.5. [9, Theorem 5.3] Hereditary unicoherence is preserved by co-existential
maps between continua.
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So combining Lemma 8.5 with the proof of Theorem 8.4, we obtain the following.

Corollary 8.6. Suppose X is an antisymmetric continuum that is a co-existential
image of some ultra-arc. Then X is an arboroid.

Remark 8.7. What stands in the way of concluding in Corollary 8.6 that X is a
generalized arc is that co-existential maps–even co-elementary ones–fail in general
to preserve irreducibility. (See [12, Theorem 4.7] and surrounding discussion.) We
address in Corollary 8.15 below the question of whether co-existential images are
irreducible in the special case where the domain is an ultra-arc.

We next show that when monotone is replaced with co-existential in Theorem
8.4, we can conclude that X is a generalized arc, as long as we assume it to be
aposyndetic.

First define X to be connected im kleinen at point x ∈ X if every open
neighborhood of x contains a subcontinuum which in turn contains x in its interior.
A continuum is locally connected if and only if it is connected im kleinen at each
of its points [33].

The following was first proved in [14] for metric continua, but the argument may
be extended to all continua by means of Zorn’s Lemma.

Lemma 8.8. Every hereditarily unicoherent aposyndetic continuum is locally con-
nected.

Proof. Given an open set U ⊆ X and x ∈ U , we say x is aposyndetic in U to
mean that x is in the interior int(M) := intX(M) of a subcontinuum M ⊆ U . (So
X is connected im kleinen at x if and only if x is aposyndetic in each of its open
neighborhoods.)

Fix x ∈ X and let U be the collection of open neighborhoods in which x is not
aposyndetic. Assuming U to be nonempty and partially ordered by set inclusion,
with V a linearly ordered subcollection, let V =

⋃
V. If x were aposyndetic in V ,

then we would have a subcontinuum M ⊆ V with x ∈ int(M). But V is a linearly
ordered open cover of M ; hence M ⊆ U for some U ∈ V. This makes x aposyndetic
in a member of U , a contradiction. Hence, by Zorn’s Lemma, U has a maximal
element.

Now suppose X is a hereditarily unicoherent aposyndetic continuum. If X is
not locally connected, then we may fix some x ∈ X at which X is not connected
im kleinen. By the paragraph above there is an open neighborhood U of x which
is maximal subject to the condition that x fails to be aposyndetic in U . Since x
is trivially aposyndetic in X, we know U is proper. Fix y ∈ X \ U . Since X is
aposyndetic, there is a subcontinuum M ⊆ X \ {y} with x ∈ int(M).

Let A = M \ U . Then X \ A is an open set containing U . Furthermore, X \ A
properly contains U because y ∈ (X \ A) \ U . Hence x is aposyndetic in X \ A,
and we may find a subcontinuum N ⊆ (X \ A) such that x ∈ int(N). Now x ∈
int(M) ∩ int(N) ⊆ int(M ∩ N) ⊆ M ∩ N ⊆ M ∩ (X \ A) = M \ (M \ U) ⊆ U .
Since x is not aposyndetic in U , we infer that M ∩ N is not connected. But this
contradicts hereditary unicoherence. �

We can now state our first companion to Theorem 8.4.

Theorem 8.9. Suppose X is an aposyndetic co-existential image of some ultra-arc.
Then X is a generalized arc.
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Proof. Let f : ID → X be a co-existential map from an ultra-arc onto an aposynde-
tic continuum X. Using Lemmas 8.1 and 8.5, we argue–as in the proof of Theorem
8.4–that X is an arboroid. But now we invoke Lemma 8.8 to conclude that X is ac-
tually locally connected. By Lemma 2.1, f is monotone, and X is now irreducible.
This makes X a generalized arc. �

Our second companion to Theorem 8.4 allows the assumption of antisymmetry,
but only in the metric context. The obstruction is that we do not know whether
co-existential images of ultra-arcs are irreducible in general; however, in the metric
case, we have an affirmative answer, thanks to a deep theorem of R. Sorgenfrey.

Recall that a continuum X is a triod if there is a subcontinuum K ⊆ X such
that X \K partitions into three open sets. X is a weak triod if there is a cover
of X by three subcontinua, no one of which is contained in the union of the other
two.

Remark 8.10. If 〈K, U1, U2, U3〉 witnesses that X is a triod, then each Ui is clopen
in X \ K. Hence, by [27, Theorem 3.4], K ∪ Ui is a subcontinuum of X, and we
have 〈K ∪ U1,K ∪ U2,K ∪ U3〉 witnessing that X is a weak triod.

Lemma 8.11. ([26, Theorem 11.34], attributed to R. Sorgenfrey) Every nonde-
generate unicoherent metric continuum which is not a triod is irreducible.

Remark 8.12. The metric assumption in Lemma 8.11 cannot be discarded: D. Bel-
lamy [13] has constructed a continuum of weight ℵ1 which is indecomposable, with
but a single composant. It is hence unicoherent and not a triod, but still not
irreducible.

The most important feature of co-existential maps for our present purpose is that
they are weakly confluent (i.e., subcontinua of the range are images of subcontinua of
the domain) in a particularly uniform way. The following is an immediate corollary
of [6, Theorem 2.4].

Lemma 8.13. Let f : Y → X be a co-existential map between compacta. Then
there is a ∪-preserving homomorphism f∗ from the subcompacta of X to the sub-
compacta of Y such that for any subcompactum F ⊆ X: (i) f [f∗(F )] = F ; (ii)
f−1[U ] ⊆ f∗(F ) whenever U ⊆ F is open in X; and (iii) f∗(K) is a subcontinuum
of Y for any subcontinuum K ⊆ X.

From this fact, we may now prove the following.

Lemma 8.14. Co-existential maps reflect being a weak triod.

Proof. Let f : Y → X be co-existential, and assume X is a weak triod. Then we
have a triple 〈K1,K2,K3〉 of subcontinua of X, where K1 ∪ K2 ∪ K3 = X and
Ki \ (Kj ∪Kl) 6= ∅ whenever i 6∈ {j, l}.

Let f∗ now be the set map in Lemma 8.13, and set Mi = f∗(Ki), i = 1, 2, 3.
By clause (iii) each Mi is a subcontinuum of Y . Since f∗ preserves finite unions,
M1 ∪M2 ∪M3 = f∗(X) = f−1[X] = Y , by clause (ii).

Suppose, say, that M1 ⊆ M2 ∪M3. Then, by clause (i), K1 = f [M1] ⊆ f [M2] ∪
f [M3] = K2 ∪K3, a contradiction. Hence the triple 〈M1,M2,M3〉 witnesses that
Y is a weak triod. �

Corollary 8.15. Any co-existential metric image of a unicoherent irreducible con-
tinuum is irreducible. In particular, any co-existential metric image of an ultra-arc
is irreducible.
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Proof. Let f : Y → X be co-existential, where Y is unicoherent and irreducible. Y
is then clearly not a weak triod; so by Lemma 8.14, neither is X. Co-existential
maps preserve unicoherence. Thus if we further assume X is metric, we may use
Lemma 8.11 to conclude that X is irreducible. �

Remark 8.16. A co-existential metric image of an ultra-arc need not be uniquely
irreducible (see Remark 4.1): By Theorem 6.3, we obtain a host of indecomposable
examples, as well as the hereditarily decomposable sin( 1

x )-continuum.

Combining Corollary 8.15 with Lemma 8.5 and the argument proving Theorem 8.4
immediately gives us our second variant of Theorem 8.4.

Theorem 8.17. Suppose X is a metric continuum which is an antisymmetric co-
existential image of some ultra-arc. Then X is an arc.

Question 8.18. If a nondegenerate arboroid is not a triod, must it be a generalized
arc?

The answer to this question is positive in the metric case; a positive answer in gen-
eral would allow us to conclude generalized arc outright in Corollary 8.6, obviating
the need for Sorgenfrey’s Theorem (Lemma 8.11), as well as any of the results above
mentioning aposyndesis.
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