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Abstract. A ternary relational structure 〈X, [·, ·, ·]〉, interpreting a notion of
betweenness, gives rise to the family of intervals, with interval [a, b] being
defined as the set of elements of X between a and b. Under very reasonable
circumstances, X is also equipped with some topological structure, in such
a way that each interval is a closed nonempty subset of X. The question
then arises as to the continuity behavior–within the hyperspace context–of
the betweenness function {x, y} 7→ [x, y]. We investigate two broad scenarios:
the first involves metric spaces and Menger’s betweenness interpretation; the
second deals with continua and the subcontinuum interpretation.

1. Introduction and Preliminaries

Let 〈X, [·, ·, ·]〉 be a ternary structure; i.e., X is a set and [·, ·, ·] ⊆ X3 is a ternary
relation on X. The relation is intended to convey a notion of inclusive betweenness,
so we assume it to be basic; i.e., it satisfies the conditions that [a, a, b] and [a, b, b]
always hold (inclusivity), that [a, c, b] implies [b, c, a] (symmetry), and that [a, c, a]
implies a = c (uniqueness).

For each a, b ∈ X, we define the interval [a, b] to be the set {x ∈ X : [a, x, b]}.
Then, in interval terms, the three basic criteria above become [a, b] ⊇ {a, b}, [a, b] =
[b, a], and [a, a] = {a}, respectively. There is a unique smallest basic relation,
namely the one where [a, b] = {a, b} identically. This we refer to here as the
minimal ternary relation on X.

The points a and b are bracket points (and {a, b} a bracket pair) for the
interval [a, b]. If I is an interval, its bracket set is defined to be {{a, b} : [a, b] = I}.

The assignment {x, y} 7→ [x, y] is the betweenness function associated with
[·, ·, ·], and is denoted throughout the text by [·, ·]. Hence the bracket set for interval
I is just the fiber over I with respect to this function.

The present paper is a continuation of the project initiated in [2] (see also [3, 4]);
here we are interested in the issue of when nearby bracket pairs give rise to nearby
intervals. The best way to make sense of this is to give X some topological structure,
and inquire into whether the betweenness function is continuous in the context of
hyperspaces [15].

We consider two broad case studies: the first is where X is a metric space, and
[a, c, b] means that c lies between a and b in the sense of Menger [14]; the second is
where X is a continuum, and [a, c, b] means that c lies in every subcontinuum of X
that contains {a, b}. In the first study it is both the topology and the geometry of
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metric spaces that dictate the continuity of the betweenness function; in the second
it is the topology alone of (not necessarily metrizable) continua.

For a topological space X, we denote by 2X (resp., K(X)) its hyperspace of all
nonempty closed (resp., nonempty closed connected) subsets. If U is an open set in
X, U+ (resp., U−) denotes the set {C ∈ 2X : C ⊆ U} (resp., {C ∈ 2X : C∩U 6= ∅}).
The upper (resp., lower) Vietoris topology on 2X is subbasically generated by
sets of the form U+ (resp., U−), as U ranges over the open subsets of X. The join
of these two topologies is the Vietoris topology on 2X , and we view K(X) as
inheriting this topology.

We let ω := {0, 1, 2, . . . } denote the set of finite ordinals. It will be convenient
to eliminate zero at times, so we use the symbol N to denote ω \ {0}.

For each n ∈ N, let Fn(X) denote the n-fold symmetric power of X, the
hyperspace consisting of those C ∈ 2X with at most n elements (also equipped
with the inherited Vietoris topology). When X is a T1 space, the function x 7→ {x}
defines a homeomorphism from X onto F1(X) (where the inherited upper and lower
Vietoris topologies coincide); when X is Hausdorff, each Fn(X) is a closed subspace
of 2X . If X is also normal, then K(X) is closed in 2X as well. Of the hyperspaces
Fn(X), we will be interested only in the case n = 2 from here on.

The following is a simple, but useful, result (see, e.g., [15]).

Lemma 1.1. The Vietoris topology on 2X is basically generated by sets of the form
[[U1, . . . , Un]] := {C ∈ 2X : C ⊆ U1 ∪ · · · ∪Un and C ∩Ui 6= ∅ for 1 ≤ i ≤ n}, where
n ∈ N and 〈U1, . . . , Un〉 ranges over all n-tuples of open subsets of X.

Proof. This is a direct consequence of the following identities: U+∩V + = [[U ∩V ]],
U− ∩ V − = [[X, U, V ]], U+ ∩ V − = [[U,U ∩ V ]], and [[U1, . . . , Un]] = (

⋃n
i=1 Ui)+ ∩

(
⋂n

i=1 U−i ). �

Unless specified otherwise, the default topology on the hyperspaces defined above
is the Vietoris topology. It is a basic fact about this topology (see [15, §4]) that X
is compact Hausdorff (resp., compact metrizable) if and only if the same is true for
any of these hyperspaces.

If X and Y are two topological spaces, a function ϕ : Y → 2X is upper (resp.,
lower) semicontinuous (usc and lsc, respectively) at a ∈ Y if it is continuous at
a in the usual sense for the upper (resp., lower) Vietoris topology on 2X . So ϕ is
continuous at a if and only if it is both usc and lsc at a. And when we unpack the
definitions, we see that ϕ is usc (resp., lsc) at a just in case for any open U ⊆ X
such that ϕ(a) ⊆ U (resp., ϕ(a)∩U 6= ∅), there is an open neighborhood V of a in
Y such that ϕ(x) ⊆ U (resp., ϕ(x) ∩ U 6= ∅) for all x ∈ V .

Recall that a subset of a topological space is residual if it contains the intersec-
tion of countably many dense open sets, and a Baire space is a topological space
in which all residual sets are dense. So while residual sets can even be empty in
general, they form a countably complete filter of subsets in a Baire space.

By the Baire Category Theorem, all topologically complete metric spaces, as
well as all locally compact Hausdorff spaces, are Baire spaces.

Let us say that a certain localized property holds at almost every point of a
space Y if the set of points at which the property holds is a dense residual subset
of Y .
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The following result of M. K. Fort [11] (strengthening earlier work of K. Kura-
towski [13, §43,VII, Corollary 1]) gives an important link between the two kinds of
semicontinuity under consideration here.

Lemma 1.2. Let X and Y be topological spaces, with X metrizable and Y a Baire
space, and suppose ϕ : Y → 2X is such that ϕ(y) is compact for each y ∈ Y . If ϕ is
usc (resp., lsc) at every point of Y , then ϕ is also lsc (resp., usc) at almost every
point of Y .

In the sequel, all of our basic ternary structures 〈X, [·, ·, ·]〉 will be closed; i.e., X
is equipped with a Hausdorff topology for which all intervals are closed subsets. In
this way the betweenness function will have domain F2(X) and codomain 2X .

Remark 1.3. In applications of Lemma 1.2, the space Y will be F2(X), where X is
a topologically complete metric space. In that case X2 is topologically complete as
well, and hence Baire. The function 〈x, y〉 → {x, y} defines a continuous open map
from X2 onto F2(X), and it is an easy exercise to show that the Baire property is
thus preserved.

In a slight abuse of language below, we refer to the members of F2(X) generically
as pairs, using the terms singleton (resp., doubleton) to specify that the pair has
cardinality one (resp., two). Typical basic Vietoris-open sets for F2(X) may be
written as [[U, V ]]2 := [[U, V ]] ∩ F2(X), where U, V are open in X.

The following result concerning semicontinuity is trivial, but worth recording for
later reference.

Proposition 1.4. Let 〈X, [·, ·, ·]〉 be a closed basic ternary structure, with a, b ∈ X.
Then [·, ·] is usc at {a, b} if [a, b] = X, and is lsc at {a, b} if a = b.

2. Menger Betweenness in Metric Spaces

Given a metric space X = 〈X, %〉 and a, b, c ∈ X, we say c lies between a and b in
the Menger sense (in symbols, [a, c, b]M or c ∈ [a, b]M) if %(a, b) = %(a, c)+ %(c, b)
(see [14]). We call this relation M-betweenness, and the associated intervals M-
intervals. When there is no confusion over betweenness interpretation, we drop
subscripts–i.e., [a, b] := [a, b]M, etc.

Proposition 2.1. M-betweenness is a closed basic ternary relation. Indeed, each
M-interval is bounded, as well as closed.

Proof. M-betweenness is clearly a basic ternary relation, so fix a, b ∈ X and define
f : X → R by f(x) = %(a, x) + %(x, b) − %(a, b). Then f is continuous and [a, b] =
f←[{0}], which is closed in X.

To show boundedness, we prove that the diameter of [a, b] is %(a, b). For if
c, d ∈ [a, b], then %(a, c) + %(c, b) = %(a, b) = %(a, d) + %(d, b). From the triangle
inequality, we have %(c, d) ≤ %(c, a) + %(a, d) and %(c, d) ≤ %(c, b) + %(b, d) both
holding. Hence

2%(c, d) ≤ (%(a, c) + %(c, b)) + (%(a, d) + %(d, b)) = 2%(a, b),

and therefore %(c, d) ≤ %(a, b). �

A metric space (or metric) is proper (resp., M-proper) if each of its closed bounded
subsets (resp., M-intervals) is compact. The metric space is M-minimal if its M-
betweenness relation is minimal. M-minimal metrics are obviously M-proper. We
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define a metric space 〈X, %〉 to be topologically proper (resp., topologically
M-proper, topologically M-minimal) in exact analogy with how one defines
topological completeness; i.e., there is a proper (resp., M-proper, M-minimal) metric
on X that is equivalent to %. Every proper metric is M-proper, by Proposition 2.1;
proper metrics are easily seen to be complete.

While being topologically proper is an interesting metric space property, the
topological modifications of M-proper and M-minimal are not.

Proposition 2.2. Every metric space is topologically M-minimal.

Proof. Let f : [0,∞) → [0,∞) be the square root function x 7→
√

x. Then f is
a strictly increasing homeomorphism, satisfying the condition that f(a) + f(b) >
f(a + b), for a, b > 0. Thus composing any metric with f results in an equivalent
metric that is M-minimal. �

Remark 2.3. Our original proof of Proposition 2.2 involved the needlessly sophis-
ticated process of embedding a given metric space into the unit sphere of a Hilbert
space. We are grateful to D. Anderson [1] for suggesting the simple argument above.

Any two-valued metric on an infinite set is complete and M-minimal, without being
proper. The following shows that an M-minimal metric space with no isolated
points can also fail to be topologically proper.

Example 2.4. Let X be the set of rational points on the unit circle (i.e., X =
{〈x, y〉 ∈ R2 : x2 + y2 = 1} ∩ (Q × Q)), with % the inherited euclidean metric.
Then 〈X, %〉 is easily seen to be M-minimal. However, this space is countable with
no isolated points, so it is not a Baire space and thus not topologically complete.
Consequently, it is not topologically proper.

Theorem 2.5. For a metric space that is either proper or M-minimal, [·, ·] is usc
at all pairs.

Proof. If the metric space is M-minimal, then [·, ·] is the inclusion map, and is
hence continuous. Suppose we have a proper metric space 〈X, %〉 such that usc fails
for some {a, b} ∈ F2(X). Then there is an open subset U of X such that: (1)
[a, b] ⊆ U ; and (2) for each n ∈ N, there are an, bn, cn, where %(a, an), %(b, bn) ≤ 1

n

and cn ∈ [an, bn] \ U . Then %(cn, a) ≤ %(cn, an) + %(an, a) ≤ %(bn, an) + 1
n ≤

( 2
n + %(b, a)) + 1

n = 3
n + %(b, a), implying that the sequence 〈cn〉 is bounded. A

metric’s being proper is clearly equivalent to bounded sequences having convergent
subsequences, so we know there is a subsequence of 〈cn〉 that converges. We lose
no generality in assuming that cn → c for some c ∈ X.

Note that %(an, bn) = %(an, cn) + %(cn, bn) for n ∈ N, and that an → a, bn → b,
cn → c. We may thus use continuity of the metric function to infer that %(a, b) =
%(a, c) + %(c, b). Hence c ∈ [a, b] ⊆ U . This implies that some cn is contained in U ,
a contradiction. �

Remark 2.6. Theorem 2.5 no longer holds for metric spaces that are merely com-
plete. (See Proposition 4.15 and Example 4.19 below.)

Question 2.7. Does Theorem 2.5 still hold if the metric is complete and M-proper?

The following example shows that Theorem 2.5 need not hold, even for metric
spaces that are both topologically proper and M-proper.
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Example 2.8. Let X be the “deleted” harmonic fan1 in the euclidean plane,
namely the union D ∪

⋃∞
n=1 Sn, where D = ([0, 1] × {0}) \ {〈 12 , 0〉} and Sn =

{〈t, t
n 〉 : 0 ≤ t ≤ 1}. Let % be the euclidean metric on R2, restricted to X. This

metric is not complete, hence not proper either. However, X is both locally compact
and separable, and is hence topologically proper [12, Theorem 5.3].

Let a = 〈0, 0〉, b = 〈1, 0〉, with bn = 〈1, 1
n 〉, n ∈ N. Given x ∈ X \ {b}, we see

that [x, b] is a simple sequence (i.e., homeomorphic to the ordinal space ω + 1) if
x 6= a and is {a, b} if x = a. If x, y ∈ X \ {b}, then [x, y] is either finite or a closed
line segment. In any case, M-intervals in X are compact.

Now each [a, bn] is the closed line segment Sn, and hence connected, while [a, b]
is the disconnected set {a, b}. Let U and V be disjoint open sets, where a ∈ U and
b ∈ V . Then [a, b] ⊆ U ∪ V . However, the sequence 〈{a, bn}〉 converges to {a, b} in
F2(X) and [a, bn] 6⊆ U ∪ V for n ∈ N. This shows [·, ·] not to be usc at {a, b}.
If X is a complete metric space, then F2(X) is a Baire space (see Remark 1.3).
Since proper metrics are complete, we may combine Theorem 2.5 and Lemma 1.2
to obtain the following.

Corollary 2.9. For a proper metric space, [·, ·] is lsc–and hence continuous–at
almost every pair.

The assumption that the metric is proper is unnecessary in Theorem 2.5 if we limit
our attention to singletons.

Proposition 2.10. For any metric space, [·, ·] is continuous at each singleton.

Proof. By Proposition 1.4, we need only prove upper semicontinuity. Let a ∈ X
and let U ⊆ X be open, such that [a, a] = {a} ⊆ U . Fix r > 0 such that the open
3r-ball B(a; 3r), centered at a, is contained in U . If {a′, b′} ∈ [[B(a, r), B(a, r)]]2 and
c ∈ [a′, b′], then %(a, c) ≤ %(a, a′)+%(a′, c) ≤ %(a, a′)+%(a′, b′) ≤ 2%(a, a′)+%(a, b′) <
3r; hence [a′, b′] ⊆ U . �

The question arises whether Corollary 2.9 may be extended to lsc at all pairs, and
hence to continuity itself, but that is not possible, even for compact metric spaces.

Example 2.11. Let X be the unit circle with % the intrinsic (i.e., “shortest arc”)
metric on X. Then [·, ·] fails to be lsc precisely at the antipodal pairs: Without loss
of generality, let a = 〈0,−1〉 and b = 〈0, 1〉, with U equal to X intersected with the
open right half-plane. If b′ ∈ X is any point with negative first coordinate, then
[a, b′] ∩ U = ∅, while [a, b] = X, and hence intersects U . It is easy to show that
[·, ·] is lsc at any nonantipodal pair, and that the set of such pairs is a dense open
subset of F2(X) (more than just a dense residual set, as guaranteed by Corollary
2.9) .

The following four betweenness notions will prove useful in subsequent discussions.
The first two are “transitivities” (in the sense of [18, 19]).

A basic ternary structure is τ-basic (resp., κ-basic) if it satisfies the transitivity
(resp., convexity) axiom, namely that [a, c] ⊆ [a, b] (resp., [c, d] ⊆ [a, b]) for all
c, d ∈ [a, b]. Clearly every κ-basic structure is τ -basic. Menger proves in [14,
Erste Untersuchungen, §2] that (the M-betweenness structures of) metric spaces
are always τ -basic; he also provides an ad hoc example of a finite metric space that
is not κ-basic. Here is one that is a bit more geometric.

1Corrected from the published version.
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Example 2.12. Let X be the unit circle from Example 2.11, and let Y = X ∪H,
where H = [−1, 1] × {0} and the “shortest arc” metric is extended in the obvious
way. To show X is not κ-basic, we choose the points a and b as before, and we set
c = 〈−1, 0〉, d = 〈1, 0〉, and e = 〈0, 0〉. Then {c, d} ⊆ [a, b] = X and e ∈ [c, d] = H,
but e 6∈ [a, b].

The second two notions are as follows: a basic ternary structure is weakly dis-
junctive if [a, b] = [a, c]∪ [c, b] whenever c ∈ [a, b]; it is antisymmetric if intervals
[a, b] and [a, c] are unequal whenever b 6= c.

Proposition 2.13. Every weakly disjunctive τ -basic structure is κ-basic.

Proof. Given c, d ∈ [a, b], let x ∈ [c, d] be arbitrary. By weak disjunctivity, we have
either d ∈ [a, c] or d ∈ [c, b]. In each instance, two applications of transitivity give
us x ∈ [a, b]. �

In a basic ternary structure 〈X, [·, ·, ·]〉, fix a ∈ X and define the binary relation ≤a

by setting x ≤a y to mean x ∈ [a, y]. Then transitivity in the betweenness sense is
equivalent to saying each ≤a is transitive in the order sense, and hence a pre-order.
And for τ -basic structures, antisymmetry in the betweenness sense is equivalent
to antisymmetry in the order sense, so that each ≤a becomes a partial order. For
any a, b ∈ X, define ≤a,b to be the restriction of ≤a to [a, b]. The following is an
amalgamation of Propositions 5.0.4 and 5.0.5 of [2], and will be of use later on.

Lemma 2.14. For any τ -basic structure that is both antisymmetric and weakly
disjunctive, each ≤a is a tree order with least element (root) a, and each ≤a,b is a
total order with least element a and greatest element b.

It is easy to see that metric spaces are always antisymmetric; the space X in
Example 2.11 is κ-basic without being weakly disjunctive.

The following result, also of use in the sequel, is about betweenness functions,
and is an immediate consequence of [2, Theorem 5.0.6].

Lemma 2.15. For a τ -basic weakly disjunctive ternary structure, antisymmetry is
equivalent to injectivity of the betweenness function.

3. Menger Betweenness in Geodesic Spaces

Our main aim in this section is to remove the word almost from the conclusion
of Corollary 2.9. We show that this can be done if we add to the hypothesis the
condition that the metric space is unique-geodesic, meaning (roughly) that between
any two points, there is–up to reparameterization–a unique path whose length is
the distance between those points.

In light of the fact that there is considerable terminological variation in the
metric geometry literature ([7, 8, 16] are good modern sources), we beg the reader’s
indulgence and carefully lay out the elementary notions we use.

A connected compact Hausdorff topological space is called a continuum; a sub-
continuum of a space is a subset that is a continuum in its subspace topology. A
continuum–or any topological space–is nondegenerate if it has at least two points.
A Peano continuum is a metrizable continuum that is also locally connected.

Let 〈X, %〉 be a metric space, with a, b ∈ X. A path from a to b is a continuous
map p : [α, β] → X, where [α, β] ⊆ R is a closed bounded interval, p(α) = a,
and p(β) = b. The interval [α, β] is the parameterization interval, a is the
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initial point, and b is the terminal point of the path. The image of p, a Peano
subcontinuum of X, is called the support of p, and is denoted bpc.

If p is a path from a to b, any path q from b to a is said to be oppositely oriented
to p. As a prime example of this, we have the reverse path←−p : [α, β]→ X, defined
by ←−p (s) := p(α + β − s). Clearly b←−p c = bpc.

We define the length Λ(p) of a path p : [α, β] → X in the classical way. First
define a subdivision of [α, β] to be a finite sequence 〈s0, . . . , sn〉, where α = s0 ≤
s1 ≤ · · · ≤ sn = β. Given subdivision Σ = 〈s0, . . . , sn〉, we denote by Λ(p, Σ) the
sum

∑n−1
i=0 %(p(si), p(si+1)). Then the length Λ(p) of p is the (possibly infinite)

supremum of the set of real numbers Λ(p, Σ), as Σ ranges over all subdivisions of
[α, β].

The length of a path is largely–but not entirely–independent of its parameteri-
zation or orientation, as we delineate next.

Given paths p : [α, β] → X and q : [γ, δ] → X from a to b, write p � q to mean
that there is a weakly increasing surjection µ : [α, β] → [γ, δ] such that p = q ◦ µ.
This relation between paths from a to b is clearly reflexive and transitive, and we
define ' to be the smallest equivalence relation containing �.

The following is well known and an easy exercise.

Lemma 3.1. If p : [α, β]→ X is any path from a to b, then Λ(←−p ) = Λ(p). Also if
q : [γ, δ]→ X is any path from a to b such that q ' p, then Λ(q) = Λ(p).

We next come to the important notion of path concatenation. Suppose p : [α, γ]→
X and q : [γ, β] → X are paths, where α ≤ γ ≤ β and p(γ) = q(γ). Then the
concatenation pq : [α, β]→ X is given by the rule:

(pq)(t) :=

{
p(t) if α ≤ t ≤ γ

q(t) if γ ≤ t ≤ β.

We leave the straightforward proof of the following to the reader.

Lemma 3.2. Under the assumptions above, Λ(pq) = Λ(p) + Λ(q).

The metric space X is intrinsic if for each a, b ∈ X, %(a, b) equals the infimum of
the lengths Λ(p) as p ranges over all paths from a to b. If p is a path whose length
is %(a, b), then we call p a geodesic from a to b. From Lemma 3.1, ←−p is a geodesic
from b to a if and only if p is a geodesic from a to b. Also, if p and q are paths from
a to b and p ' q, then p is a geodesic if and only if q is one too.

If each pair of points of X can be joined by a geodesic, we call X a geodesic
space. Clearly every geodesic space is intrinsic, but the converse is not true:
equipped with the euclidean metric, the punctured plane R2 \ {〈0, 0〉} is a (locally
compact) intrinsic metric space, but no two points 〈a, b〉 and 〈−a,−b〉 can be joined
by a geodesic. It is well known [16] that a locally compact intrinsic metric space is
a geodesic space if its metric is complete.

Lemma 3.3. Let X be an intrinsic metric space, with p : [α, β] → X a geodesic
from a to b and α ≤ γ ≤ δ ≤ β. If c = p(γ) and d = p(δ), then p|[γ,δ], the restriction
of p to [γ, δ], is a geodesic from c to d.

Proof. Assume the contrary. Then there is a path q : [γ, δ] → X from c to d such
that Λ(q) < Λ(p|[γ,δ]). But then we have the concatenation r = (p|[α,γ])q(p|[δ,β]),
a path from a to b; and, by Lemma 3.2, Λ(r) = Λ(p[α,γ]) + Λ(q) + Λ(p[δ,β]) <
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Λ(p[α,γ]) + Λ(p|[γ,δ]) + Λ(p[δ,β]) = Λ(p). This contradicts the assumption that p is
a geodesic. �

We now bring Menger betweenness into the discussion.

Proposition 3.4. If X is an intrinsic metric space and p is a geodesic from a to
b, then bpc ⊆ [a, b].

Proof. Suppose p : [α, β] → X is a geodesic from a to b, and pick γ ∈ [α, β], with
c = p(γ). Then, by Lemmas 3.2 and 3.3, %(a, b) = Λ(p) = Λ(p|[α,γ]) + Λ(p|[γ,β]) =
%(a, c) + %(c, b). Hence c ∈ [a, b]. �

Proposition 3.5. Let X be an intrinsic metric space, with a, b, c ∈ X such that
c ∈ [a, b]. If p : [α, γ]→ X is a geodesic from a to c and q : [γ, β]→ X is a geodesic
from c to b, then pq is a geodesic from a to b.

Proof. By Lemma 3.2, Λ(pq) = Λ(p) + Λ(q) = %(a, c) + %(c, b) since p and q are
geodesics. The right-hand side is %(a, b) since c ∈ [a, b]; thus pq is a geodesic from
a to b. �

Proposition 3.6. Let X be a geodesic space. Then for any a, b ∈ X, [a, b] =⋃
{bpc : p is a geodesic from a to b}. In particular, M-intervals are connected closed

bounded sets, and [·, ·] maps F2(X) to K(X).

Proof. By Proposition 3.4, the left-hand side contains the right. Now suppose
c ∈ [a, b]. Then there are geodesics q : [α, γ]→ X, from a to c, and r : [γ, β]→ X,
from c to b. By Lemma 3.5, p = qr is a geodesic from a to b. Thus c ∈ bpc and we
infer that the right-hand side contains the left.

Each support is a Peano continuum in X. Since [a, b] is a union of a family of
connected sets containing the point a, it too must be connected. It is closed and
bounded, by Proposition 2.1. �

We next set about showing that the supports of geodesics are arcs. Recall that a
point a of a connected topological space X is a cut point if X\{a} is disconnected; a
noncut point otherwise. It is well known [17] that every nondegenerate continuum
has at least two noncut points; arcs are homeomorphic copies of [0, 1] ⊆ R, and
are characterized as being those metrizable continua possessing precisely two. If
X is a continuum and A ⊆ X, we say X is irreducible about A if no proper
subcontinuum of X contains A. Every continuum is irreducible about its set of
noncut points. The following will prove useful in achieving the main aim of this
section.

Proposition 3.7. Let X be an intrinsic metric space. If p : [α, β] → X is a
geodesic from a to b, then p is a monotone map; hence bpc is either degenerate or
an arc with noncut points a and b.

Proof. If p is nonmonotone, then there are γ, δ, with α ≤ γ < δ ≤ β, such that
p(γ) = p(δ), but p|[γ,δ] is nonconstant. By Lemma 3.3, we know p|[γ,δ] is a geodesic
from a point to itself. It is immediate from the definition that this cannot happen,
that any geodesic from a point to itself must be constant.

Thus p must be a monotone map. Assuming a 6= b in bpc and c ∈ bpc \ {a, b}, it
is easy to show that the monotonicity of p implies that c is a cut point of bpc. Since
every nondegenerate continuum possesses at least two noncut points, we know that
bpc is an arc with noncut points a and b. �
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The intrinsic metric space X is unique-geodesic at the pair {a, b} if: (1) there
is a geodesic p from a to b; and (2) for any geodesic q from a to b (or vice versa),
we have bqc = bpc. The space is unique-geodesic if it is unique-geodesic at each
pair.

Theorem 3.8.
(i) Every unique-geodesic space is weakly disjunctive.
(ii) Every M-proper weakly disjunctive geodesic space is unique-geodesic.

Proof. Let X be any geodesic space, with a, b, c ∈ X such that c ∈ [a, b]. Proposition
3.6 provides us with a geodesic p : [α, β]→ X from a to b, where c ∈ bpc. Suppose
α ≤ γ ≤ β is such that c = p(γ). By Lemma 3.3, q = p|[α,γ] (resp., r = p|[γ,β]) is a
geodesic from a to c (resp., from c to b), and by Proposition 3.4, we have bqc ⊆ [a, c]
(resp., brc ⊆ [c, b]).

Given any d ∈ [a, b], uniqueness of geodesic provides us with some α ≤ δ ≤ β
such that d = p(δ). If δ ≤ γ, we have d ∈ [a, c], by the argument in the last
paragraph; if γ ≤ δ, we have d ∈ [c, b]. Hence X is weakly disjunctive.

Now suppose X is an M-proper weakly disjunctive geodesic space. Then by
Lemma 2.14, each binary relation ≤a,b is a total order on [a, b], with least element
a and greatest element b.

Thus [a, b] has both an order topology induced by ≤a,b and a subspace topology
induced by %. We first claim that every order-closed subset of [a, b] is subspace-
closed: given x, y ∈ [a, b] with x ≤a,b y, let [x, y]a,b := {z ∈ [a, b] : x ≤a,b z ≤a,b y}.
Then a closed-set subbase for the order-closed sets consists of order-intervals of the
form [a, y]a,b and [x, b]a,b, x, y ∈ [a, b]. Then it is straightforward from the definition
of ≤a,b that [a, y]a,b = [a, y] and [x, b]a,b = [x, b] always, so by Proposition 2.1 each
of these order-intervals is subspace-closed. This proves our claim.

Because the metric is M-proper, we know that the subspace topology on [a, b]
is compact. Hence, so is the order topology. Since the smaller topology is also
Hausdorff, the two topologies must coincide. Since M-intervals are also connected,
by Proposition 3.6, this makes [a, b] a totally ordered continuum with end points
a and b. Therefore [a, b] is an arc with noncut points a and b, showing that X is
unique-geodesic. �

Question 3.9. Can the hypothesis of being M-proper be removed from Theorem
3.8 (ii)?

The space in Example 2.11 is a proper (indeed compact) geodesic space that fails
to be unique-geodesic at some (i.e., the antipodal) pairs. We next show that this
condition is necessary to have failure of lsc at a pair.

Theorem 3.10. For a proper geodesic space, being unique-geodesic at a pair of
points implies that [·, ·] is lsc (and hence continuous) at that pair.

Proof. By Theorem 2.5, all we need to concentrate on is lower semicontinuity.
Let X be a proper geodesic space. Then, by Proposition 3.6, every M-interval

in X is a subcontinuum.
Fix {a, b} ∈ F2(X) so that there is just one geodesic from a to b. Assuming

failure of lsc at {a, b}, we have an open U ⊆ X such that: (1) [a, b]∩U 6= ∅; and (2)
for each n ∈ N, there are an, bn, where %(a, an), %(b, bn) ≤ 1

n and [an, bn] ∩ U = ∅.
Suppose c ∈

⋃∞
n=1[an, bn]. Then, arguing as in the proof of Theorem 2.5, we

infer that %(c, a) ≤ 3 + %(b, a); hence that
⋃∞

n=1[an, bn] is bounded in X. Let
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Y =
⋃∞

n=1[an, bn]. Then Y , being both closed and bounded in X, is compact.
Consequently 2Y is a compact metrizable subspace of 2X , and the sequence 〈[an, bn]〉
has a subsequence that converges to something in 2Y . Without loss of generality,
we may assume the sequence itself converges, say, to A ∈ 2Y .

To show a ∈ A, suppose otherwise. Invoking regularity, we have open V ⊆ X
with a ∈ V ⊆ V ⊆ X \ A. But then A ∈ [[X \ V ]], and hence for all but finitely
many n ∈ N, we have [an, bn] ∈ [[X \ V ]]. This says that [an, bn]∩ V = ∅ for all but
finitely many n, and hence that an 6→ a. Similarly we show b ∈ A.

If A were not connected, we could invoke normality to find disjoint open sets V,W
such that A ∈ [[V,W ]]. But then [an, bn] ∈ [[V,W ]] for some n ∈ N, contradicting
connectedness in M-intervals. Now we know A is a subcontinuum of X containing
{a, b}.

Next we show A ⊆ [a, b]. Indeed, fix c ∈ A; and for n ∈ N, let Un = B(c; 1
n ).

Using the facts that [an, bn]→ A and that [[U1, X]] is a Vietoris-open neighborhood
of A, let n1 ∈ N be least such that [an, bn] ∩ U1 6= ∅ for all n ≥ n1. Pick cn1 ∈
[an1 , bn1 ]∩U1. For our inductive hypothesis, assume we have n1 < · · · < nk, points
cni ∈ [ani , bni ] ∩ Uni , 1 ≤ i ≤ k, and that [an, bn] ∩ Unk

6= ∅ for all n ≥ nk. Then
pick nk+1 > nk to be least such that [an, bn] ∩ Unk+1 6= ∅ for all n ≥ nk+1. Fix
cnk+1 ∈ [ank+1 , bnk+1 ]∩Unk+1 . This gives us a sequence 〈cni〉 converging to c. Since
%(ank

, cnk
) + %(cnk

, bnk
) = %(ank

, bnk
), k ∈ N, ank

→ a, and bnk
→ b, we know

%(a, c) + %(c, b) = %(a, b). Hence c ∈ [a, b], and we infer A ⊆ [a, b].
Finally, by Proposition 3.7, and since there is just one geodesic from a to b, we

know that [a, b] is an arc with noncut points a, b. A is a subcontinuum of [a, b]
containing the noncut points of [a, b]; hence A = [a, b], thanks to irreducibility.
Thus A ∩ U 6= ∅, and we may conclude–as above–that [an, bn] ∩ U 6= ∅ for some n,
which is a contradiction. �

We can now put Theorems 2.5 and 3.10 together to fulfill the stated aim of this
section, to remove the word almost from Corollary 2.9.

Corollary 3.11. For a proper unique-geodesic space, [·, ·] is continuous at every
pair.

Because M-betweenness is always antisymmetric, we may combine Lemma 2.15,
Proposition 3.6, Theorem 3.8, and Corollary 3.11 to obtain the following.

Corollary 3.12. For a proper unique-geodesic space X, [·, ·] is a continuous injec-
tion from F2(X) to K(X). It is a topological embedding if X is compact.

4. Menger Betweenness in Normed Vector Spaces

In this section we consider Menger betweenness in geodesic spaces arising from
linear algebra. Here we take a normed (vector) space to be a pair 〈X, ‖ · ‖〉,
where X is a vector space over the field R of real numbers and ‖ · ‖ is a norm.
(As usual, we abuse notation slightly, writing X for 〈X, ‖ · ‖〉 when there is no
possible ambiguity.) We define the (closed) unit ball and unit sphere of X by
BX := {x ∈ X : ‖x‖ ≤ 1} and SX := {x ∈ X : ‖x‖ = 1}, respectively. A norm
on a vector space naturally gives rise to a metric %, defined by %(x, y) := ‖x − y‖,
which we refer to as the norm metric. We obtain geodesics in normed spaces in
the simplest possible way: for any a, b ∈ X, define the standard straight path
La,b : [0, 1] → X by La,b(s) := (1 − s)a + sb. The support [a, b]L := bLa,bc is, of
course, the closed line segment with end points a, b.
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A normed space X is called strictly convex if for any a, b ∈ SX distinct,
[a, b]L ∩ SX = {a, b}. Among the strictly convex normed spaces are those whose
norms arise from an inner product (e.g., Hilbert spaces, those inner product spaces
whose norm metrics are complete). There are many characterizations of strict
convexity; the one of most relevance here is the following.

Proposition 4.1 ([7, Proposition I.1.6]). In any normed space, La,b is a geodesic
from a to b. Moreover, a normed space is strictly convex if and only if it is unique-
geodesic.

Consequently, by Proposition 3.6, [a, b] ⊇ [a, b]L whenever a and b are in a normed
space X, and equality always holds if and only if X is strictly convex. Thus, in
this context, we may use the terms strictly convex and unique-geodesic interchange-
ably. Below, in Theorem 4.10, we provide a complete geometric description of the
intervals [a, b], in all cases.

The following result provides analogues–but not consequences–of Theorem 3.10
and Corollary 3.11. As is well known, norm metrics are proper exactly when the
vector space dimension is finite, and that is not assumed here. Note that the usc
component of the result below easily follows from later results (i.e., Theorems 4.10
and 4.21)–the additional proof given below is included as it is simple and direct.

Theorem 4.2. Let X be a normed space and let a, b ∈ X. If [a, b] = [a, b]L,
then [·, ·] is lsc at {a, b}. Moreover, if X is unique-geodesic, then [·, ·] is usc (and
consequently continuous) at every pair.

Proof. Let a, b ∈ X and r > 0. Note that if ‖a′ − a‖, ‖b′ − b‖ ≤ r, then

‖((1− s)a′ + sb′)− ((1− s)a + sb)‖ = ‖(1− s)(a′ − a) + s(b′ − b)‖ ≤ r,

whenever 0 ≤ s ≤ 1. Thus each point in [a′, b′]L is r-close to some point in [a, b]L.
It follows that if [a, b] = [a, b]L, then [·, ·] is lsc at {a, b}. Indeed, if U is open

and [a, b] ∩ U = [a, b]L ∩ U 6= ∅, then using the observation above, [a′, b′] ∩ U ⊇
[a′, b′]L ∩ U 6= ∅ for a sufficiently small r > 0.

Now assume that X is unique-geodesic. For upper semicontinuity, we simply
remark that, given an open set U such that [a, b] ⊆ U , the compactness of [a, b] =
[a, b]L ensures that, for a sufficiently small r > 0, we know that y ∈ U whenever y
is r-close to a point in [a, b]. Hence [a′, b′] = [a′, b′]L ⊆ U for such an r. �

We next consider how being unique-geodesic can be cast in terms of convexity. A
subset K of a normed space X is M-convex (resp., linearly convex) if whenever
a, b ∈ K, we also have [a, b] ⊆ K (resp., [a, b]L ⊆ K). Linear convexity is the
usual notion of convexity from linear algebra, and relies solely on the vector space
structure of X. On the other hand, the clearly stronger notion of M-convexity is a
special case of something that makes sense for any basic ternary structure. (Indeed,
the ternary structure associated with a metric space is κ-basic precisely when its
M-intervals are M-convex.)

The following is to be expected of M-betweenness in normed spaces.

Proposition 4.3. The M-intervals of a normed space are linearly convex.

Proof. Given points a, b, c, d ∈ X, with c, d ∈ [a, b], and e = (1− s)c + sd ∈ [c, d]L,
it suffices to show that ‖e− a‖+ ‖b− e‖ ≤ ‖b− a‖.
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We are already given that ‖c−a‖+‖b− c‖ = ‖b−a‖ = ‖d−a‖+‖b−d‖. Hence

‖e− a‖+ ‖b− e‖ = ‖((1− s)c + sd)− a‖+ ‖b− ((1− s)c + sd)‖
= ‖(1− s)(c− a) + s(d− a)‖+ ‖(1− s)(b− c) + s(b− d)‖
≤ (1− s)(‖c− a‖+ ‖b− c‖) + s(‖d− a‖+ ‖b− d‖) = ‖b− a‖,

as desired. �

Remark 4.4. As Example 2.12 shows, one cannot immediately generalize Propo-
sition 4.3 to geodesic spaces, with [c, d]L being replaced with even a unique-geodesic
from c to d.

In the sequel we will refer to linearly convex sets simply as convex. While the unit
ball (or any open or closed ball) in a normed space is convex, it is not necessarily
M-convex, as Example 4.5 below shows.

Example 4.5. Let X = Rn
p := 〈Rn, ‖ · ‖p〉, where the p-norm (p > 1) of ~x =

〈~x(1), . . . , ~x(n)〉 is given by ‖~x‖p :=
( ∑n

i=1 |~x(i)|p
) 1

p

. (So the usual euclidean
norm is just ‖ · ‖2.) The ∞-norm is given by ‖~x‖∞ := max{|~x(1)|, . . . , |~x(n)|},
which in turn equals limp→∞ ‖~x‖p. (See, e.g., [7, I.1], [9, III.1].)

For X = R2
1, the unit ball BX is the square with corners 〈±1, 0〉 and 〈0,±1〉,

and the M-intervals are rectangles with sides parallel to the coordinate axes. In
particular, when ~a ∈ BX is in the first quadrant, [~0,~a] is the rectangle with lower-left
corner ~0 and upper-right corner ~a. All M-intervals of the form [~0,~a], where ~a ∈ BX ,
lie in BX ; however if ~a = 〈0, 1〉 and~b = 〈1, 0〉, then [~a,~b] = [0, 1]×[0, 1] 6⊆ BX . Hence
BX is not M-convex. The case with p = ∞ is similar because the normed spaces
R2

1 and R2
∞ are isometrically isomorphic, via the linear transformation 〈x, y〉 7→

〈x− y, x + y〉.
Finally, when 1 < p < ∞, the unit sphere contains no nondegenerate closed

line segments; consequently R2
p is strictly convex; and, by Proposition 4.1, unique-

geodesic.

The following simple example shows that normed vector spaces need not be κ-basic,
and complements Example 2.12.

Example 4.6. R3
∞ is not κ-basic. To see this, let ~a = 〈0, 0, 0〉, ~b = 〈1, 0, 0〉,

~c = 〈 12 , 1
2 , 0〉, ~d = 〈 12 ,− 1

2 , 0〉, and ~e = 〈0, 0, 1
2 〉. Then: (1) ‖~a −~b‖ = 1, ‖~a − ~c‖ +

‖~c − ~b‖ = ‖~a − ~d‖ + ‖~d − ~b‖ = 1
2 + 1

2 = 1, so {~c, ~d} ⊆ [~a,~b]; (2) ‖~c − ~d‖ = 1,
‖~c − ~e‖ + ‖~e − ~d‖ = 1

2 + 1
2 = 1, so e ∈ [c, d]; but (3) ‖~a − ~e‖ + ‖~e −~b‖ = 1

2 + 1 =
3
2 > ‖~a−~b‖, so e 6∈ [~a,~b].

Question 4.7. Is every two-dimensional normed vector space κ-basic?

The rest of this section is devoted to a further exploration of conditions that allow
(or disallow) semicontinuity of the M-betweenness function at a given pair, offering
a complete characterization in the usc case. In order to do this–as well as to address
the problem of upper semicontinuity–we will need some vocabulary from convexity
theory.

Let X be a vector space, let K ⊆ X be convex, and let a ∈ K. We define the
facet of a in K to be the set

F (a) = {b ∈ K : s−1a + (1− s−1)b ∈ K for some s ∈ (0, 1)}.
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Remark 4.8. This definition is equivalent to the one given in Bourbaki [6, TVS
II.87]. The set F (a) is always convex, however, as is noted in Bourbaki, if X is
in addition a topological vector space (for example, a normed vector space), then
F (a) is not always closed. While Example 4.18 below is provided principally for
another purpose, it happens to be another example of this phenomenon.

It is clear that a ∈ F (a), and if b ∈ F (a) and

c := s−1a + (1− s−1)b ∈ K,

where s ∈ (0, 1), then a = (1− s)b + sc and, by considering 1− s, we have c ∈ F (a)
as well. Recall that a ∈ K is an extreme point of K if no closed line segment
containing a in its interior lies entirely in K. Let ext(K) denote the (possibly empty)
set of extreme points of K. Evidently, a ∈ ext(K) if and only if F (a) = {a}.

Suppose that X is a normed vector space, K ⊆ X is closed, bounded and convex,
a ∈ K and b ∈ F (a). We define

σa(b) = inf{s > 0 : s−1a + (1− s−1)b ∈ K}.

Clearly σa(a) = 0 and σa(b) < 1 in general. The boundedness of K and the
inequality

‖s−1a + (1− s−1)b‖ ≥ s−1‖a− b‖ − ‖b‖,

demonstrates that if b 6= a, then σa(b) > 0. Moreover, as K is closed, the infimum
in the definition of σa(b) is attained whenever b 6= a. Furthermore, regardless of the
value of σa(b), by the convexity of K, we see that s−1a + (1− s−1)b ∈ K whenever
s ∈ [σa(b), 1] ∩ (0, 1]. If a and K are clear from the context, we will write σ(b)
instead of σa(b).

The following lemma gives a useful criterion for when a convergent sequence of
points in F (a) converges in F (a).

Lemma 4.9. Fix a bounded, closed convex set K and a ∈ K. Let 〈bn〉 be a sequence
from F (a) converging to b ∈ X, and assume that σ(bn)→ s ∈ [0, 1). Then b ∈ F (a)
and σ(b) ≤ s.

Proof. Suppose that bn 6= a. Then σ(bn) > 0 and by the infimum attainment
discussed above, we have

σ(bn)−1a + (1− σ(bn)−1)bn ∈ K,

and thus
a + (σ(bn)− 1)bn ∈ σ(bn)K. (1)

Observe that (1) also holds whenever bn = a: if bn = a then σ(bn) = 0 and
σ(bn)K = {0}. By taking limits in (1), and using the fact that K is closed, b ∈ K
and

a + (s− 1)b ∈ sK. (2)

If s = 0 then we glean from this that a− b ∈ 0K = {0}, and so b = a ∈ F (a), and
σ(b) = 0 ≤ s. If s > 0 then s ∈ (0, 1), and it follows from (2) that

s−1a + (1− s−1)b ∈ K,

which implies that b ∈ F (a) and, by definition, σ(b) ≤ s. �
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Now assume X has a norm. In the sequel, we will be most concerned with the case
K = BX , the (closed) unit ball of X. In this scenario, X is strictly convex if and
only if F (a) = {a} for all a ∈ SX , or equivalently, ext(BX) = SX . (In Example
4.5, with 1 < p < ∞, we have ext(BX) = SX . When p = 1 (resp., p = ∞),
ext(BX) = {〈±1, 0〉, 〈0,±1〉} (resp., {〈±

√
2,±
√

2〉}).) If a and b are distinct points
of X, the mapping x 7→ x−a

‖b−a‖ is an affine transformation on X that takes the
M-interval [a, b] to the M-interval [0, b−a

‖b−a‖ ], whose nonzero bracket point lies on
SX . These two intervals are topologically and (with the obvious exception of the
scaling factor) geometrically identical. Moreover, [cot, ·] is usc or lsc at {a, b} if and
only if the same is true at {0, b−a

‖b−a‖}; hence we may confine our attention to the
geometric analysis of M-intervals of the form [0, a], where ‖a‖ = 1.

We wish to relate the geometry of the M-betweenness interval [0, a] to that of
the facet F (a) of a ∈ SX . Observe that F (a) ⊆ SX : if s−1a + (1 − s−1)b ∈ BX ,
then

s ≥ ‖a + (s− 1)b‖ ≥ ‖a‖ − (1− s)‖b‖ = 1− (1− s)‖b‖,
which implies ‖b‖ ≥ 1.

From Proposition 3.6, we know that an M-interval is the union of (the supports
of) all geodesics joining the points of a bracket pair for the interval. In the next
result we show that an M-interval is also a union of closed line segments, all fanning
out from one bracket point. In order to determine the other end point of such a
line segment, we use the s-functions introduced above.

In the following, K = BX . The following is a strengthening of Proposition 4.1.

Theorem 4.10. Let X be a normed vector space, with a ∈ SX . Then

[0, a] = {λb : b ∈ F (a) and λ ∈ [0, 1− σ(b)]}.

In particular, [0, a] = [0, a]L if and only if a ∈ ext(BX).

Proof. Let x ∈ [0, a], so that ‖x‖ + ‖a − x‖ = ‖a‖ = 1. If x = 0 then set b = a
and λ = 0. Otherwise, let b = x/‖x‖ and λ = ‖x‖ ∈ (0, 1]. In either case, x = λb.
If b = a then b ∈ F (a) and λ ≤ 1 = 1 − σ(b). Suppose that b 6= a. In this case,
set s = 1 − λ = 1 − ‖x‖. Since b 6= a, we have x 6= 0 and x 6= a, which implies
s ∈ (0, 1). Then observe that

s−1a + (1− s−1)b =
1

1− ‖x‖
(a− ‖x‖b) =

a− x

1− ‖x‖
=

a− x

‖a− x‖
∈ SX ,

given that ‖x‖ + ‖a − x‖ = 1. Consequently, b ∈ F (a) and, moreover, σ(b) ≤ s =
1− λ, giving λ ≤ 1− σ(b).

Conversely, let x = λb, where b ∈ F (a) and λ ∈ [0, 1 − σ(b)]. If b = a then
σ(b) = 0 and ‖x‖+ ‖a− x‖ = λ + (1− λ) = 1 = ‖a‖. If b 6= a then σ(b) > 0 and,
from the discussion about σ(b) above, as 1 − λ ∈ [σ(b), 1], we have (1 − λ)−1a +
(1− (1− λ)−1)b ∈ BX , which implies

1− ‖x‖ = 1− λ ≥ ‖a− λb‖ = ‖a− x‖,

and thus ‖a − x‖ + ‖x‖ ≤ 1 = ‖a‖. It follows that x ∈ [0, a] by the triangle
inequality. �

Note that Proposition 4.1 is an immediate consequence of Theorem 4.10, which,
when combined with Theorem 4.2, gives us the following.
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Corollary 4.11. Let X be a normed vector space, with a, b ∈ X. If either a = b
or b−a
‖b−a‖ ∈ ext(BX), then [·, ·] is lsc at {a, b}.

We are now in a position to show that the unique-geodesic assumption implicit
in Corollary 4.11 cannot be eliminated. Given a normed space X and a closed,
symmetric, convex, bounded subset K ⊆ X that contains 0 as an interior point,
the Minkowski functional defined by

‖x‖ = inf{t > 0 : t−1x ∈ K},
is a norm on X equivalent to the original norm and having closed unit ball K [10,
Definition 2.9, Lemma 2.11].

Example 4.12. We construct a norm ‖ · ‖ on R3, with respect to which [·, ·] is not
lsc at all pairs.

First define the function f : [−1, 1]2 → [0, 1] by the assignment 〈x, y〉 7→√
(1− x2)(1− y2). Then f satisfies the following conditions:

(1) f(0, 0) = 1;
(2) f(x, y) = 0 whenever |x| = 1 or |y| = 1;
(3) f is strictly concave on (−1, 1)2 (i.e., fx,x < 0, fy,y < 0, and fx,xfy,y−f2

x,y >
0); and

(4) f is symmetric (i.e., f(−x,−y) = f(x, y) on [−1, 1]2).
Let

B := {〈x, y, z〉 ∈ [−1, 1]3 : |z| ≤ f(x, y)}.
The set B is symmetric, compact and convex, and the origin is an interior point;
so let ‖ · ‖ be its Minkowski functional. Then 〈R3, ‖ · ‖〉 is a normed space, with
B〈R3,‖·‖〉 = B. Since B ⊆ [−1, 1]3, we have ‖ · ‖ ≥ ‖ · ‖∞. More to the point: since
the intersection of B with the plane R2 × {0} is [−1, 1]2 × {0}, it follows that ‖ · ‖
agrees with ‖ · ‖∞ on that plane (i.e., ‖〈x, y, 0〉‖ = max{|x|, |y|}).

Let S be the unit sphere S〈R3,‖·‖〉. By the strict concavity of f , we have that

ext(B) = S \ {〈x, y, z〉 : (|x| = 1 and |y| < 1) or (|x| < 1 and |y| = 1)}.

We claim that for ~a ∈ S, [·, ·] is lsc at {~0,~a} if and only if ~a ∈ ext(B). Indeed,
one direction is immediate from Corollary 4.11; as for the other direction, we lose
no generality in taking a simplifying case, namely ~a = 〈1, 0, 0〉. Here it is easy
to check that F (~a) = {1} × [−1, 1] × {0} and [~0,~a] is the square with corners
〈0, 0, 0〉, 〈1, 0, 0〉, and 〈 12 ,± 1

2 , 0〉. Let U be the open set {〈x, y, z〉 : y > 1
4}. Then

[~0,~a] ∩ U 6= ∅. However, given r ∈ (0, 1
4 ], there exists ~a′ ∈ ext(B) such that

‖~a′ − ~a‖ ≤ r. Thus, by Corollary 4.11, [~0,~a′] is a closed line segment that clearly
misses U , and we conclude that [·, ·] is not lsc at {~0,~a}.

We now show that dimension three is lowest possible for Example 4.12.

Proposition 4.13. The M-betweenness function on any two-dimensional normed
space is continuous at all pairs.

Proof. Because finite-dimensional normed spaces have proper norm metrics, Theo-
rem 2.5 allows us to focus on lower semicontinuity.

Let X be a two-dimensional normed space, with a ∈ SX . Having in mind the
argument in the proof of Theorem 4.2, it is sufficient to demonstrate that, given
r > 0, there exists δ > 0 such that every point of [u, v] is r-close to some point
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of [0, a], whenever ‖u‖, ‖v − a‖ ≤ δ. The case a ∈ ext(BX) has been covered by
Corollary 4.11 and Theorem 4.2, so hereafter we assume that a /∈ ext(SX).

Let r > 0. We will find δ in two steps. First, we show that, given r > 0,
there exists δ′ > 0 such that every point of [0, x] is 1

2r-close to some point of
[0, a] whenever x ∈ SX and ‖x − a‖ ≤ δ′. Since X is two-dimensional, it follows
that the facet F (a) in BX is a non-degenerate straight line segment [p, q]L, and
a = u + α(q − p), for some α ∈ (0, 1). Using this, given b = p + β(q − p) ∈ F (a)
(β ∈ [0, 1]), it is easy to compute that

σa(b) = max
{

β − α

β
,
α− β

1− β

}
.

In particular, for x ∈ SX

sup
b∈F (a)

|σx(b)− σa(b)| → 0,

as ‖x− a‖ → 0 (note that F (x) = F (a) for all x sufficiently close to a). Thus there
exists δ′ ∈ (0,min{1, 1

2r}] such that F (x) = F (a) and σx(b) ≤ σa(b) + 1
2r whenever

x ∈ SX and ‖x− a‖ ≤ δ′. Take such an x, and let w ∈ [0, x]. By Theorem 4.10, we
know that w = λb for some b ∈ F (x) = F (a) and λ ∈ [0, 1 − σx(b)]. If λ ≤ σa(b),
then w ∈ [0, a], and if not, then |λ − σa(b)| ≤ 1

2r, giving ‖w − σa(b)b‖ ≤ 1
2r.

Whatever the case, w is 1
2r-close to a point in [0, a]. This completes the first step.

In the second step, we show that there exists δ > 0 such that if ‖u‖, ‖v− a‖ ≤ δ
and x := (v−u)/‖v−u‖ ∈ SX , then ‖x−a‖ ≤ δ′ and every point of [u, v] is 1

2r-close
to a point of [0, x]. We complete the proof by stitching the two steps together. Set
δ = 1

6δ′ ≤ 1
6 . Let ‖u‖, ‖v − a‖ ≤ δ and set x = (v − u)/‖v − u‖ ∈ SX . Given

w ∈ [u, v], it is easy to check that z := (w − u)/‖v − u‖ ∈ [0, x]. By elementary
considerations we have

|‖v − u‖ − 1| = |‖v − u‖ − ‖a‖| ≤ ‖(v − a)− u‖ ≤ 2δ,

and as w ∈ [u, v],

‖w‖ ≤ ‖w − u‖+ ‖u‖ ≤ ‖v − u‖+ ‖u‖ ≤ 1 + 3δ ≤ 3
2 .

Therefore,

‖w − z‖ =
1

‖v − u‖
‖(‖v − u‖ − 1)w − u‖ ≤ 4δ

1− 2δ
≤ 6δ = δ′ ≤ 1

2r,

and

‖x− a‖ =
1

‖v − u‖
‖(v − a) + (‖v − u‖ − 1)a− u‖ ≤ 4δ

1− 2δ
≤ δ′. �

The final series of results of this section deals with the question of when the M-
betweenness function is (or is not) upper semicontinuous. We first consider pairs
whose M-intervals are not compact. We will need the following elementary result.

Lemma 4.14. Let X be a normed space, with K ⊆ X a closed bounded subset that
is not compact. Then there exists an open set U containing K, such that

inf{‖w − v‖ : w ∈ K and v ∈ X \ U} = 0.

Proof. Since K is not compact, there is a sequence 〈a1, a2, . . . 〉 of points of K, with
no convergent subsequence. Fix a ∈ SX arbitrary, and for n ∈ N, let

µn = sup{µ ≥ 0 : an + µa ∈ K}.
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Since K is bounded, the sequence 〈µn〉 is bounded in R, and hence has a convergent
subsequence. Without loss of generality, we may assume 〈µn〉 itself is convergent.

Now, for n ∈ N, set bn = an + (µn + 1
n )a, by definition a point of X \K. The

sequence µn converges, while an has no convergent subsequence; hence bn has no
convergent subsequence either. Consequently the set U = X \ {b1, b2, . . . } is open
and contains K.

Finally, since K is closed, we have an + µna ∈ K, n ∈ N, and thus

inf{‖w − v‖ : w ∈ K and v ∈ X \ U} ≤ ‖(an + µna)− bn‖ =
1
n
→ 0. �

An almost immediate consequence of Lemma 4.14 is the following.

Proposition 4.15. Let X be a normed space, with a, b ∈ X. If [a, b] is not compact,
then [·, ·] is not usc at {a, b}.

Proof. Since [a, b] is closed and bounded, but not compact, we use Lemma 4.14 to
produce an open set U , with [a, b] ⊆ U , so that

inf{‖w − v‖ : w ∈ [a, b] and v ∈ X \ U} = 0.

Given any δ > 0, find w ∈ [a, b] and v ∈ X \ U so that ‖w − v‖ < δ. Then

v = w + (v − w) ∈ (v − w) + [a, b] = [a + (v − w), b + (v − w)],

thus [a + (v − w), b + (v − w)] 6⊆ U . �

Remark 4.16. The statements of Lemma 4.14 and Proposition 4.15 make sense in
the general metric context, but are generally false. An easy counterexample comes
from taking X to be the irrational line R \Q, with the usual metric (topologically
complete). The M-intervals coincide with the closed bounded intervals inherited
from R, and so it is easy to check that [·, ·] is continuous at every pair. However, no
nondegenerate M-interval is compact. (See Remark 4.20 below for a geodesic space
example.)

We will see in Example 4.22 below that the compactness of [a, b] is not sufficient
for the upper semicontinuity of [·, ·] at {a, b}. In order to fully characterize upper
semicontinuity of [·, ·], it will be helpful to present the following simple test for
compactness of M-intervals. Recall Lemma 4.9 and the discussion before Theorem
4.10.

Proposition 4.17. The following statements are equivalent.
(1) The M-interval [0, a] is compact.
(2) Given a sequence 〈bn〉 from F (a), either σ(bn) → 1, or 〈bn〉 admits a sub-

sequence that converges in F (a).
(3) Given a sequence 〈bn〉 from F (a), either σ(bn) → 1, or 〈bn〉 admits a sub-

sequence that converges in X.

Proof. First, we show that (1)⇒ (2). Let [0, a] be compact. Let 〈bn〉 be a sequence
from F (a) such that σ(bn) 6→ 1. According to Theorem 4.10, λnbn ∈ [0, a], where
λn := 1 − σ(bn). Using the compactness of [0, a] and the fact that σ(bn) 6→ 1, we
can assume, by taking a subsequence if necessary, that there exist s < 1, b ∈ F (a)
and λ ∈ [0, 1 − σ(b)], such that σ(bn) ≤ s for all n and λnbn → λb. By continuity
of the norm, we have λn → λ ≥ 1− s > 0. Hence bn → b.

The implication (2) ⇒ (3) is trivial. We finish with (3) ⇒ (1). Assume the
conditions of (3), and let 〈xn〉 be a sequence from [0, a]. By Theorem 4.10, xn =
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λnbn for some bn ∈ F (a) and λn ∈ [0, 1 − σ(bn)]. By taking a subsequence if
necessary, we can assume that σ(bn)→ s ∈ [0, 1] and λn → λ ≤ 1−s. If λ = 0 then
xn → 0 ∈ [0, a]. If λ > 0 then s < 1. By (3), and by taking another subsequence if
necessary, there exists b ∈ X such that bn → b. According to Lemma 4.9, b ∈ F (a)
and σ(b) ≤ s. Thus xn → λb and λ ∈ [0, 1− σ(b)], giving λb ∈ [0, a]. �

It is clear from Proposition 4.17 that if F (a) is compact, then so is [0, a]. However,
as the example below demonstrates, the converse of this statement is false. In other
words, it is not possible to drop the condition σ(bn)→ 1 in Proposition 4.17. Recall
that c0 is the vector space of all real sequences converging to zero. Unless otherwise
specified, c0 is equipped with the usual sup norm; i.e., given ~x = 〈~x(1), ~x(2), . . . 〉,
‖~x‖∞ := sup{|~x(n)| : n ∈ N}. Let ~en denote the nth standard unit vector of c0,
that is, ~en(k) = δn,k, and let e∗n denote the corresponding nth evaluation functional,
i.e., e∗n(~x) = ~x(n) whenever ~x ∈ c0.

Example 4.18. Let Bc0 denote the closed unit ball of c0 (with respect to ‖ · ‖∞).
Define the closed convex set

M = {~x ∈ c0 : ~x(1) = 1 and − 2−n ≤ ~x(n) ≤ 1 for all n ≥ 2},
let K be the closed convex hull of 1

2Bc0 ∪M ∪ (−M), and let ‖ · ‖ be the Minkowski
functional of K. Then ‖ · ‖ is a norm on c0, equivalent to ‖ · ‖, having closed unit
ball K, such that ‖~e1‖ = 1, F (~e1) = M is not compact, and [~0, ~e1] is compact.

Proof. As 1
2Bc0 ⊆ K ⊆ Bc0 , ‖ · ‖ is indeed an equivalent norm on c0 with closed

ball K. Observe that e∗1(~x) = 1 whenever ~x ∈ M and e∗1(~x) ≤ 1
2 whenever ~x ∈

1
2Bc0∪(−M), so e∗1(~x) ≤ 1 whenever ~x ∈ K. It follows that if ~x ∈ K and e∗1(~x) = 1,
then ‖~x‖ = 1, because t−1~x /∈ K whenever t ∈ (0, 1). In particular, ‖~e1‖ = 1.

Next, we show that F (~e1) = M . Notice that F (~e1) ⊆ H, where

H := {~x ∈ c0 : e∗1(~x) = 1}.

Indeed, given ~b ∈ F (~e1), we have, for some s ∈ (0, 1),

1 = s−1 + (1− s−1) ≤ s−1 + (1− s−1)e∗1(~b) = s−1e∗1(e1) + (1− s−1)e∗1(~b) ≤ 1,

because 1 − s−1 < 0 and ~b, s−1~e1 + (1 − s−1)~b ∈ K. The only way that the line
above can hold is if e∗1(~b) = 1, hence the result.

Therefore F (~e1) ⊆ K∩H. The next thing we notice is that K∩H ⊆M . Indeed,
let ~x ∈ K ∩H. As ~x ∈ K, there exist ~xi ∈ M , ~yi ∈ 1

2Bc0 , ~zi ∈ −M , and λi,j ≥ 0,
1 ≤ j ≤ 3, such that

3∑
j=1

λi,j = 1 for all i, and λi,1~xi + λi,2~yi + λi,3~zi → ~x as i→∞.

Applying e∗1 to the sequence and limit above yields λi,1 + λi,2~yi(1) + λi,3~zi(1)→ 1.
On the other hand,

λi,1 + λi,2~yi(1) + λi,3~zi(1) ≤ λi,1 + 1
2 (λi,2 + λi,3)

= λi,1 + 1
2 (1− λi,1) = 1

2 (1 + λi,1) ≤ 1,

which implies that λi,1 → 1 and, consequently, λi,2, λi,3 → 0 and ~xi → ~x. Since
M is closed, we conclude that ~x ∈ M . Finally, again as M is closed, we have
F (~e1) ⊆M .
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To see the reverse inclusion, we observe that if ~y ∈M has finite support, that is,
there exists N ∈ N such that ~y(n) = 0 whenever n > N , then ~y ∈ F (~e1). Indeed,
given such ~y and N , set s = (1 + 2−N )−1 ∈ (0, 1). The reader can verify that

−2−n ≤ (1− s−1)~y(n) = −2−N~y(n) ≤ 1,

whenever 2 ≤ n ≤ N . Given the finite support of ~y, it follows easily that s−1~e1 +
(1−s−1)~y ∈M ⊆ K, giving ~y ∈ F (~e1). Since the set of finitely supported elements
of M is dense in M , we obtain F (e1) = M .

By considering the vectors ~e1 + ~en ∈ M , n ≥ 2, it is easy to see that M is
not compact. However, [~0, ~e1] is compact. This will follow from Proposition 4.17,
once we show that if 〈~bi〉 is a sequence in F (~e1) ⊆ M and σ(~bi) 6→ 1, then 〈~bi〉
admits a convergent subsequence. Given such a sequence, by taking a subsequence
if necessary, we can assume that there exists s ∈ [ 12 , 1) such that σ(~bi) ≤ s for all
i. We claim that |~bi(n)| ≤ 2−ns/(1− s) for all i and all n ≥ 2. Given n ≥ 2, since
~bi ∈ M , we have −2−n ≤ ~bi(n) ≤ 1. If −2−n ≤ ~bi(n) ≤ 0 then there is nothing to
check, as s ≥ 1

2 . Instead, assume that 0 ≤ ~bi(n) ≤ 1. From Remark 4.8, we know
that σ(~bi)−1~e1 + (1− σ(~bi)−1)~bi ∈ K, which implies that in fact

σ(~bi)−1~e1 + (1− σ(~bi)−1)~bi ∈ F (~e1) ⊆ M.

According to the definition of M , it follows that

−2−n ≤ (1− σ(~bi)−1)~bi(n) ≤ (1− s−1)~bi(n),

and since ~bi(n) ≥ 0 and 1− s−1 < 0, we deduce that

~bi(n) ≤ 2−ns

1− s
.

This completes the proof of the claim.
By taking a diagonal subsequence, we can find ~b ∈ c0 such that, for all n,

~bi(n) → ~b(n) as i → ∞. This, coupled with the condition |~bi(n)| ≤ 2−ns/(1 − s),
ensures that ~bi → ~b in norm also. �

We also remark that F (~e1) above is not closed. Define ~b ∈M = F (e1) by ~b(1) = 1
and ~b(n) = 2−

n
2 for n ≥ 2. If there exists s ∈ (0, 1) such that ~c := s−1~e1 + (1 −

s−1)~b ∈ K, then according to Remark 4.8, ~c ∈ F (~e1) ⊆M . Hence for all n ≥ 2 we
have

−2−n ≤ (1− s−1)2−
n
2 ,

meaning that s ≥ (1 + 2−
n
2 )−1, which is impossible. Thus ~b ∈ F (~e1) \ F (~e1).

We can put together Proposition 2.10 and Propositions 4.15 and 4.17 to obtain an
example where upper semicontinuity holds only at singletons.

Example 4.19. Consider c0 with the usual supremum norm. Then no nondegen-
erate M-interval is compact. Consequently, [·, ·] is usc precisely at the singletons.

Proof. To see this, first note that, by Proposition 2.10, [·, ·] is usc at each singleton.
Hence it suffices to assume ~a ∈ Sc0 and show [~0,~a] is not compact.
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Given that ~a ∈ c0, there exists k ∈ N such that |~a(n)| < 1
2 whenever n ≥ k.

Given n ≥ k, define ~bn,~cn ∈ Sc0 by

~bn(i) =

{
~a(i) if i 6= n

1 if i = n,
and ~cn(i) =

{
~a(i) if i 6= n

−1 if i = n.

It is easy to check that s−1
n ~a + (1− s−1

n )~bn = ~cn ∈ Sc0 , where sn := 1
2 (1− ~a(n)) ∈

(0, 1). Thus ~bn ∈ F (~a). Evidently, ‖~bm − ~bn‖∞ ≥ |(~bm)(m) − (~bn)(m)| > 1
2

whenever m,n ≥ k are distinct. Moreover, σ(~bn) ≤ sn → 1
2 . That [~0,~a] is not

compact follows from Proposition 4.17. Consequently, by Proposition 4.15, [·, ·] is
not usc at {~0,~a}. �

Remark 4.20. Example 4.19 can be used to obtain an even more convincing
example of how much the truth of Lemma 4.14 and Proposition 4.15 depends on the
normed metric context. Given c0, let X = [~a,~b] be any nondegenerate M-interval.
Then X is not compact. On the other hand, relative to the inherited supremum
norm, X is still the M-interval bracketed by {~a,~b}. Thus [·, ·] is trivially usc at
{~a,~b} (see Proposition 1.4). Note that X is a convex subset of c0, by Proposition
4.3, and is hence a geodesic space, by Proposition 4.1.

Next we fine tune Proposition 4.15 to obtain a characterization of upper semicon-
tinuity of [·, ·] at a pair.

Theorem 4.21. Let X be a normed space and let a ∈ SX . The M-betweenness
function is usc at {0, a} if and only if, given an ∈ SX converging in norm to a, and
points bn ∈ F (an), either σan(bn)→ 1 or a subsequence of 〈bn〉 converges in X.

Proof. We proceed by proof by contraposition. Suppose that [·, ·] is not usc at {0, a}.
If [0, a] is not compact, then the conclusion follows immediately from Proposition
4.17, by setting an = a for all n ∈ N. Hereafter, we assume that [0, a] is compact. By
the failure of upper semicontinuity, there exists an open set U such that [0, a] ⊆ U ,
and points un → 0, vn → a and wn ∈ [un, vn], n ∈ N, such that wn ∈ [un, vn]\U . By
the compactness of [0, a], there exists r > 0 such that %(wn, [0, a]) := inf{‖wn−x‖ :
x ∈ [0, a]} > r for all n ∈ N. Define

an =
vn − un

‖vn − un‖
and xn =

wn − un

‖vn − un‖
∈ [0, an].

As ‖xn−wn‖ → 0, it follows that %(xn, [0, a]) > 1
2r for large enough n. By Theorem

4.10, xn = λnbn for some bn ∈ F (an) and λn ∈ [0, 1− σan
(bn)].

Without loss of generality, assume that λn → λ for some λ. We claim that
〈bn〉 has no convergent subsequence. For a contradiction, suppose that it does: let
bnk
→ b for some b ∈ X. Then xnk

→ λb, and

‖λb‖+ ‖a− λb‖ = lim
k→∞

‖xnk
‖+ ‖ank

− xnk
‖ = 1,

whence λb ∈ [0, a]. However, this contradicts the fact that

‖xnk
− λb‖ ≥ %(xnk

, [0, a]) > 1
2r,

for large enough k. It follows that 〈bn〉 has no convergent subsequence, as required.
Finally,

1
2r < %(xn, [0, a]) ≤ ‖xn‖ = λn ≤ 1− σan(bn),

for large enough n implies that σan(bn) 6→ 1.
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Conversely, assume the existence of an converging to a and bn ∈ F (an), n ∈
N, such that σan(bn) 6→ 1 and no subsequence of 〈bn〉 converges. By taking a
subsequence if necessary, we can assume that there exists s < 1 such that σan(bn)→
s. Now set xn = λnbn, where λn := 1− σan(bn). We have λn → λ := 1− s > 0.

According to Theorem 4.10, xn ∈ [0, bn] for all n ∈ N. As λ > 0 and 〈bn〉 has
no convergent subsequence, it follows that the sequence 〈xn〉 has no convergent
subsequence either. There are now two possibilities: either %(xn, [0, a])→ 0 or not.
If %(xn, [0, a]) → 0, then there exist points yn ∈ [0, a] such that ‖yn − xn‖ → 0.
It follows that 〈yn〉 has no convergent subsequence, and thus [0, a] is not com-
pact. We conclude from Proposition 4.15 that [·, ·] is not usc at {0, a}. Instead, if
%(xn, [0, a]) 6→ 0 then, by taking yet another subsequence if necessary, there exists
δ > 0 such that %(xn, [0, a]) ≥ δ for all n ∈ N. If we set

U := {v ∈ X : %(v, [0, a]) < δ},
then U is open and [0, a] ⊆ U , but an → a and xn ∈ [0, an] \ U for all n, so [·, ·] is
not usc at {0, a}. �

As mentioned above, the usc part of Theorem 4.2 follows easily from Theorems 4.10
and 4.21.

We end this section with an example illustrating the difference between Propo-
sition 4.15 and Theorem 4.21. The reader is referred to Example 4.18 and the
preceding remarks for notation and terminology.

Example 4.22. There exists a norm ‖ · ‖ on c0, equivalent to ‖ · ‖∞, having unit
ball K and a ∈ ext(K), such that [·, ·] is not upper semicontinuous at {0, a}.

Proof. Let Bc0 denote the unit ball of ‖ · ‖∞, and let K be the closed convex hull
of the symmetric set

S := 1
3Bc0 ∪ {s(~e1 + n−1~e2n) + t~e2n+1 : n ∈ N and s, t ∈ {−1, 1}}.

Then 1
3Bc0 ⊆ K ⊆ Bc0 , and the Minkowski functional of K defines an equivalent

norm ‖ · ‖ on c0, having closed unit ball K (again see [10, Definition 2.9, Lemma
2.11]). Given n ∈ N, set

~an = ~e1 + n−1~e2n = 1
2 ((~e1 + n−1~e2n + ~e2n+1) + (~e1 + n−1~e2n − ~e2n+1)) ∈ K.

Observe that e∗1(~x) ≤ 1 for all ~x ∈ S, thus e∗1(~x) ≤ 1 for all x ∈ K. It follows that
if ~x ∈ K and e∗1(~x) = 1, then ‖~x‖ = 1, because r−1~x /∈ Bc0 whenever r ∈ (0, 1).
In particular, ‖~an‖ = 1 for all n. Since ‖~an − ~e1‖ → 0, we have ‖~e1‖ = 1 as well.
Evidently,

~an ± ~e2n+1 ∈ S ⊆ K.

Set ~bn = ~an + ~e2n+1. Since

2~an −~bn = ~an − ~e2n+1 ∈ K,

it follows that ~bn ∈ F (~an) and σ~an
(~bn) ≤ 1

2 for all n. Moreover, given distinct
m,n ∈ N, we have

‖~bm −~bn‖ = ‖m−1~e2m − n−1~e2n + ~e2m+1 − ~e2n+1‖
≥ ‖m−1~e2m − n−1~e2n + ~e2m+1 − ~e2n+1‖∞ = 1,

meaning that 〈~bn〉 has no convergent subsequence. Therefore, [·, ·] is not upper
semicontinuous at {0, ~e1} with respect to ‖ · ‖, by Theorem 4.21.
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On the other hand, we claim that ~e1 ∈ ext(K), meaning that [~0, ~e1] is the
compact straight line segment [~0, ~e1]L. To prove the claim, we show that there
exists f ∈ c∗0 such that f(~e1) = ‖f‖ = 1, yet f(~y) < 1 whenever ~y ∈ K \ {~e1}. In
other words, we will show that ~e1 is an exposed point of K [10, Definition 7.10]. This
certainly implies that ~e1 is an extreme point: if ~e1 is the midpoint of a non-trivial
straight line segment in K, then f(~y) = 1 for all points ~y on said line segment [10,
Exercise 7.72].

Define f = e∗1 −
∑∞

i=1 2−ie∗2i. It is clear that f(~e1) = 1, f(~x) ≤ 2
3 whenever

~x ∈ 1
3Bc0 , and

f(s(~e1 + n−1~e2n) + t~e2n+1) = s− n−12−n < 1,

whenever n ∈ N and s, t ∈ {−1, 1}. Hence, f(~x) ≤ 1 for all ~x ∈ S, and thus the
same holds for all ~x ∈ K. We conclude that ‖f‖ = 1.

It remains to show that f(~y) < 1 whenever ~y ∈ K \ {~e1}. Let ~y ∈ K and assume
that f(~y) = 1. Since K is the closure of the convex hull of S, for each k ∈ N,
we are able to find vectors ~uk ∈ 1

3Bc0 , strictly increasing integers nk, numbers
λk,0, . . . , λk,nk

≥ 0 and signs sk,1, tk,1, . . . , sk,nk
, tk,nk

∈ {−1, 1}, such that

nk∑
j=0

λk,j = 1 and the vectors ~yk := λk,0~uk+
nk∑
j=1

λk,j

(
sk,j(~e1+j−1~e2j)+tk,j~e2j+1

)
,

converge in norm to ~y. We will show that ~yk → ~e1 in the weak topology of c0. By
uniqueness of limits, it will follow that ~y = ~e1. Since the sequence 〈~yk〉 is norm-
bounded, it is sufficient to show that, given i ∈ N, we have e∗i (~yk − ~e1) → 0 as
k →∞ [10, Exercise 3.33].

Since f(~y) = 1, we have f(~yk)→ 1 as k →∞. We estimate

f(~yk) = λk,0f(~uk) +
nk∑
j=1

λk,j(sk,j − j−12−j) (3)

≤ 2
3λk,0 +

nk∑
j=1

λk,j(1− j−12−j) = 1− 1
3λk,0 −

nk∑
j=1

j−12−jλk,j ≤ 1.

As f(~yk) → 1, and the summands under consideration are all non-negative, we
conclude that

λk,0 → 0 and
nk∑
j=1

j−12−jλk,j → 0, (4)

as k →∞. If we combine (4) and (3), we obtain

e∗1(~yk) = λk,0e
∗
1(~uk) +

nk∑
j=1

λk,jsk,j

= λk,0e
∗
1(~uk) + f(~yk)− λk,0f(~uk)−

nk∑
j=1

j−12−jλk,j → 1, (5)

as k →∞.
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Moreover, given i ∈ N, if we choose k large enough to ensure that i ≤ nk (which
we can do as the nk are strictly increasing), then (4) also yields

0 ≤ λk,i ≤ i2i
nk∑
j=1

j−12−jλk,j → 0,

as k →∞. Therefore, for large enough k, we have

e∗2i(~yk) = λk,0e
∗
2i(~uk) + i−1λk,isk,i → 0, (6)

and
e∗2i+1(~yk) = λk,0e

∗
2i+1(~uk) + λk,itk,i → 0, (7)

as k →∞. Combining (5), (6) and (7) yields the desired weak convergence. �

5. Subcontinuum Betweenness

For our second case study, we shift attention to the subcontinuum interpreta-
tion of betweenness in a (not necessarily metrizable) continuum X (see [2, 3, 4]).
We refer to this interpretation as K-betweenness; the K-interval [a, b]K is the in-
tersection

⋂
Ka,b, where Ka,b = Ka,b(X) is the collection of all subcontinua of X

that contain {a, b}. Clearly the resulting ternary relation is both closed and basic;
indeed it is κ-basic and disjunctive (i.e., [a, b] ⊆ [a, c] ∪ [c, b] for any third point
c, not just one K-between a and b).

Recalling that M-betweenness is automatically antisymmetric but not necessarily
weakly disjunctive, we see that quite the opposite is true for K-betweenness, as the
antisymmetry axiom can easily fail (see [4]). We will be mainly interested in two
extremes: one where certain connectedness conditions hold at the local level; the
other where no such conditions occur anywhere.

A topological space X is connected im kleinen (abbr. cik) at point a ∈ X
if for each open neighborhood U of a, there exists an open neighborhood V of a
such that each two points of V are contained in a connected subset of U . For
continua, this condition is well known to be equivalent to saying that for each open
neighborhood U of a, there is an open set V and a subcontinuum K such that
a ∈ V ⊆ K ⊆ U . Being locally connected for a continuum is equivalent to being
cik at each of its points (see, e.g., [20]).

A continuum is unicoherent if it is not the union of two subcontinua with
disconnected intersection. In this paper, the addition of the modifier hereditarily
to a property of continua confers the property to all nondegenerate subcontinua. So,
for example, a continuum is hereditarily unicoherent if and only if the intersection
of any two of its subcontinua is connected (possibly empty). This property is
equivalent [3, Proposition 2.1] to the condition that each K-interval is connected.

Remarks 5.1. Suppose our continuum X is a geodesic space.
(i) Then usual open balls are (path) connected; hence X is a Peano continuum.
(ii) By Proposition 3.6, we have [a, b]K ⊆ bpc ⊆ [a, b]M always holding, where p

is any geodesic from a to b.
(iii) If p and q are geodesics from a to b with distinct supports, then, by Propo-

sition 3.7, plus the fact that an arc is irreducible about its pair of noncut
points, we know that bpc ∩ bqc is disconnected. This makes [a, b]K dis-
connected too; hence we may conclude that in a hereditarily unicoherent
geodesic continuum, [a, b]K = [a, b]M always holds, and the continuum is
unique-geodesic.
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(iv) Since M-intervals in geodesic spaces are connected (Proposition 3.6), the
identity between corresponding K- and M-intervals implies hereditary uni-
coherence.

(v) The closed unit square [0, 1]2 in the euclidean plane is unique-geodesic with-
out being hereditarily unicoherent: all M-intervals are line segments, while
the K-betweenness relation is minimal.

In the remainder of this section K-betweenness is the default interpretation of our
interval notation.

Theorem 5.2. If X is a continuum that is cik at each of the two points a, b ∈ X,
and if [a, b] is connected, then [·, ·] is usc at {a, b}. So if X is locally connected then
[·, ·] is usc at each singleton; and if X is also hereditarily unicoherent, then [·, ·] is
usc at all pairs.

Proof. Let a, b ∈ X be points at which X is cik, and such that [a, b] is connected.
Let U be open in X such that [a, b] ⊆ U . Since {a, b} ⊆ U and X is cik at each
point, we have open sets V,W and subcontinua K, M , with a ∈ V ⊆ K ⊆ U
and b ∈ W ⊆ M ⊆ U . Now, {a, b} ∈ [[V,W ]]2; and if {a′, b′} ∈ [[V,W ]]2 then
K ∪ [a, b] ∪M ∈ Ka′,b′ and is contained in U . Hence [a′, b′] ⊆ U .

The second assertion follows easily since local connectedness is equivalent to
being cik at each point, and hereditary unicoherence is equivalent to the condition
that each K-interval is a subcontinuum. �

Theorem 5.3. Let X be a continuum that is cik at a ∈ X. Then [·, ·] is usc at
{a}. If X is hereditarily unicoherent and [·, ·] is usc at {a}, then X is cik at a.

Proof. The first assertion follows immediately from Theorem 5.2. Now assume X
is hereditarily unicoherent and that [·, ·] is usc at {a}. Pick open U ⊆ X such
that a ∈ U . Then [a, a] = {a} ⊆ U , so there exists an open neighborhood V of a
(i.e., {a} ∈ [[V, V ]]2) such that for any {a′, b′} ∈ [[V, V ]]2, [a′, b′] ⊆ U . So for any
two points of V , their K-interval is a connected set contained in U , showing cik at
a. �

Corollary 5.4. For hereditarily unicoherent continua, being locally connected is
equivalent to having [·, ·] be usc at singletons.

Example 5.5. The hereditary unicoherence hypothesis in Corollary 5.4 cannot be
eliminated: Let X ⊆ R2 be the planar continuum H0 ∪H1 ∪ V0 ∪

⋃∞
n=1 Vn, where

Hm = [0, 1] × {m}, m = 0, 1, V0 = {0} × [0, 1], and, for n ∈ N, Vn = { 1
n} × [0, 1].

Then X is K-minimal; hence [·, ·] is trivially continuous. On the other hand, X is
not locally connected.

The connectedness im kleinen assumption in Theorem 5.2 is not necessary; as, by
Proposition 1.4, [·, ·] is usc at any pair about which the continuum is irreducible.

A continuum is decomposable if it is the union of two proper subcontinua,
indecomposable otherwise. The composant of a point a in continuum X is the
union κ(a) of all proper subcontinua of X that contain a. Composants are always
dense and connected; the composants of an indecomposable continuum are pair-
wise disjoint. Nondegenerate metrizable indecomposable continua have uncount-
ably many composants [17], but it is possible for a nonmetrizable indecomposable
continuum to have exactly one composant [5].
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Theorem 5.6. Let X be an indecomposable continuum that has at least two com-
posants. Then [·, ·] is usc at {a, b} if and only if κ(a) 6= κ(b). In particular, [·, ·] is
never usc at a singleton.

Proof. Suppose κ(a) 6= κ(b). Then X is irreducible about {a, b}, and we may use
Proposition 1.4 to conclude that [·, ·] is usc at {a, b}.

If κ(a) = κ(b) = κ, then [a, b] is a proper closed subset of X. Hence there is a
proper open set U with [a, b] ⊆ U . Suppose we are given a neighborhood [[V,W ]]2
of {a, b}, say a ∈ V . Then, because there are composants disjoint from κ and each
composant is dense in X, there is some a′ ∈ V that lies in a composant disjoint
from κ. Thus [a′, b] = X 6⊆ U , showing [·, ·] not to be usc at {a, b}. �

Examples 5.7.
(i) Let X be the sin 1

x -continuum, namely the union in R2 of A = {0}× [−1, 1]
and S = {〈t, sin 1

t 〉 : 0 < t ≤ 1}. For each 0 < t ≤ 1, let St = S∩ ((−∞, t]×
R). If a ∈ A and b = 〈t, sin 1

t 〉, then the K-interval [a, b] is A ∪ St; all other
intervals are arcs. This continuum is hereditarily unicoherent, as well as
hereditarily decomposable, but is not cik at any point of A. It is an easy
exercise to show that [·, ·] is usc at {a, b} if and only if either: (1) a and b
are the end points of A; (2) a ∈ A and b ∈ S; or (3) a and b are both in S.
In particular, [·, ·] is usc at {a} if and only if a ∈ S.

(ii) By Theorem 5.3, hereditarily unicoherent continuum X is cik at no point
of X if and only if [·, ·] is usc at no singleton. It is easy for [·, ·] to fail
at singletons without the (hereditarily unicoherent) continuum being inde-
composable: Let X = Y ∪Z, where Y and Z are (hereditarily unicoherent)
indecomposable continua–e.g., pseudo-arcs, bucket handles–and Y ∩Z is a
singleton. Then X is decomposable (and hereditarily unicoherent), and an
argument similar to the proof of Theorem 5.6 shows [·, ·] to be usc at no
singleton.

From Theorem 5.2 and Proposition 1.4, we obtain the following.

Corollary 5.8. For any locally connected continuum, [·, ·] is continuous at each
singleton.

The following shows that lower semicontinuity is not affected by any of the issues
that confound usc in hereditarily unicoherent continua.

Theorem 5.9. For any hereditarily unicoherent continuum, [·, ·] is lsc at all pairs.

Proof. Suppose X is a hereditarily unicoherent continuum. Then each K-interval
is a subcontinuum.

If [·, ·] fails to be lsc at {a, b}, let U ⊆ X be an open set such that [a, b]∩U 6= ∅,
but [a′, b′]∩U = ∅ for {a′, b′} “arbitrarily near” {a, b}. To make this more precise,
let ∆ = 〈∆,≤〉 be a directed set, with {[[Vδ,Wδ]]2 : δ ∈ ∆} an open neighborhood
base at {a, b}, indexed so that [[Vδ,Wδ]]2 ⊇ [[Vε,Wε]]2 whenever δ ≤ ε in ∆.

Because U witnesses the failure of lsc at {a, b}, we have a net 〈{aδ, bδ}〉δ∈∆,
where {aδ, bδ} ∈ [[Vδ,Wδ]]2, δ ∈ ∆, and [aδ, bδ] ∩ U = ∅ for all δ. Clearly we have
the net convergence {aδ, bδ} → {a, b}. The hyperspace 2X is compact, and hence
the net 〈[aδ, bδ]〉 has a subnet that converges to some A ∈ 2X . Since subnets of
convergent nets converge to the same point, we lose no generality in assuming that
[aδ, bδ]→ A.
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Arguing as in the proof of Theorem 3.10, and noting that each [aδ, bδ] is con-
nected, we infer that A ∈ Ka,b; hence that [a, b] ⊆ A. But now we have A ∩U 6= ∅,
implying–by the definition of net convergence–that [aδ, bδ]∩U 6= ∅ for some δ ∈ ∆,
a contradiction. �

Remark 5.10. The argument for the proof of Theorem 5.9 does not allow us to
conclude lsc at a pair {a, b} where only [a, b] is assumed to be connected; we need
the intervals in the net to be connected too. Contrast this situation with the one
in Theorem 3.10.

Putting Theorems 5.9 and 5.2 together, we have:

Corollary 5.11. For any locally connected hereditarily unicoherent continuum, [·, ·]
is continuous at all pairs.

To obtain a companion to Corollary 3.12 for K-betweenness, we cite an immediate
corollary of [4, Theorem 3.2].

Lemma 5.12. For a locally connected continuum, K-betweenness is antisymmetric.

Now we combine Lemmas 2.15 and 5.12, along with Corollary 5.11.

Corollary 5.13. For a locally connected hereditarily unicoherent continuum X,
[·, ·] is a topological embedding of F2(X) into K(X).

And combining Theorems 5.9 and 5.6 gives us:

Corollary 5.14. Let X be an indecomposable continuum that is hereditarily uni-
coherent and has at least two composants. Then [·, ·] is continuous at {a, b} if and
only if a and b lie in different composants of X.

When we add the Fort-Kuratowski Lemma 1.2 to Theorem 5.9, we obtain the
following.

Corollary 5.15. For a hereditarily unicoherent metrizable continuum, [·, ·] is usc–
and hence continuous–at almost every pair.

Remark 5.16. Note that Lemma 1.2 comes in two versions. One is used to prove
Corollary 2.9, the other proves Corollary 5.15.

Finally, adding Lemma 1.2 to Theorems 5.6 and 5.9 gives the following result, which
makes no mention of betweenness functions.

Corollary 5.17. For any nondegenerate hereditarily unicoherent indecomposable
metrizable continuum X, the set {{a, b} : κ(a) 6= κ(b)} is dense residual in F2(X).

Remark 5.18. Under the hypotheses of Corollary 5.17, [a, b] = X precisely when
κ(a) 6= κ(b). Thus the bracket set of the interval X is dense residual in F2(X).
Contrast this with the locally connected case in which–by Lemmas 2.15 and 5.12–all
bracket sets are singletons.

Question 5.19. Can hereditary unicoherence be removed from the hypothesis of
Corollary 5.17?
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