

On Productive Classes of Function Rings Author(s): Paul Bankston Source: Proceedings of the American Mathematical Society, Vol. 87, No. 1 (Jan. - Apr., 1983), pp. 11-14 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2044340</u> Accessed: 16/02/2011 12:04

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

ON PRODUCTIVE CLASSES OF FUNCTION RINGS

PAUL BANKSTON

ABSTRACT. No nontrivial P-class ("P" for "productive") of rings of continuous real-valued functions can be category equivalent to any elementary P-class of finitary universal algebras.

0. Introduction. In this paper, "algebra" means "finitary universal algebra" in the sense of Birkhoff, and a class \mathcal{K} of algebras will be viewed as a category by allowing all algebra homomorphisms as category morphisms. \mathcal{K} is *productive* or a *P*-class (resp. *S*-class) if \mathcal{K} is closed under usual direct products (resp. subalgebras); \mathcal{K} is *elementary* if there is a set of first order axioms such that \mathcal{K} is precisely the class of models of those axioms (see [5]).

We will be interested in category theoretic properties of classes of function rings, to wit: Let RCF denote the class of all rings of continuous real-valued functions C(X) with topological spaces for domains. We ask which subclasses of RCF can be equivalent to "nice" classes of algebras (e.g. elementary *P*-classes, *SP*-classes, varieties, etc.).

0.1 EXAMPLES. (i) $\mathfrak{H}_0 = \{C(X): X \text{ is zero-dimensional compact Hausdorff}\}\$ is equivalent to the variety of Boolean algebras (see [6]).

(ii) $\mathfrak{K}_1 = \{C(X) \in \mathfrak{K}_0 : X \text{ has no isolated points}\}$ is equivalent to the elementary *P*-class of atomless Boolean algebras.

There has come to be a growing list of negative results in this area. In [1] it is shown that $\mathfrak{K} = \{C(X): X \text{ is compact Hausdorff}\}$ cannot be equivalent to an *SP*-class; and in [3] it is shown also that \mathfrak{K} cannot be equivalent to a class \mathfrak{L} which is "representable" (i.e. free objects over singletons exist in \mathfrak{L}) and is either an elementary *P*-class or an *S*-class whose basic alphabet of operation symbols has cardinality less than that of the continuum. The major unsolved problem in this area is whether \mathfrak{K} is equivalent to any elementary *P*-class at all. In this paper we highlight the importance of the fact that products in \mathfrak{K}_0 , \mathfrak{K}_1 and \mathfrak{K} above are not the usual ones by proving results of which the following is an easy corollary.

0.2 THEOREM. No nontrivial P-subclass of RCF (i.e. one having more than the isomorphism type of the "degenerate" ring $0 = C(\emptyset)$) can be category equivalent to an elementary P-class.

© 1983 American Mathematical Society 0002-9939/82/0000-0814/\$02.00

Received by the editors April 28, 1982 and, in revised form, August 9, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 08C05, 08C10, 54C40.

Key words and phrases. P-classes, elementary classes, rings of continuous functions.

The proof employs the notion of "reduced product" in a category and will be presented in the next section.

1. Main results. We assume the reader to be familiar with the usual notion of reduced product in model theory [5]. The key observation, one which is well known, is that if \Re is any elementary *P*-class of finitary relational structures, then ultraproducts in \Re are simply direct limits of direct products (see [2, 3, 4] for more details and references). This of course can be placed in a categorical context. We will show that most categorical reduced products in a *P*-subclass of RCF must be trivial (or nonexistent). This will immediately entail (0.2) since the diagonal morphism from an algebra into an ultrapower in an elementary *P*-class is always a monomorphism.

Our notation regarding reduced products and powers comes from [5]: If $\langle A_i: i \in I \rangle$ is a family of relational structures of the same finitary type and D is a filter on I then $\prod_D A_i = \prod_D \langle A_i: i \in I \rangle$ is the reduced product with elements $a_D = \{a' \in \prod_{i \in I} A_i: \{i: a'_i = a_i\} \in D\}$; if each A_i is equal to A then the reduced power is denoted $\prod_D A$ and the natural diagonal embedding is denoted $d: A \to \prod_D A$.

For $J \supseteq K \in D$, let r_{JK} : $\prod_{i \in J} A_i \to \prod_{i \in K} A_i$ be the natural restriction morphism. Then the associated direct limit $\lim_{i \in J} \langle \prod_{i \in J} A_i; J \in D \rangle$ is precisely the reduced product $\prod_{D} A_i$ in the category of all relational structures. Moreover, if \mathcal{K} is any elementary *P*-class then categorical ultraproducts in \mathcal{K} are the usual ones. (N.B. It is possible to have an elementary class \mathcal{K} which has unusual ultraproducts as a category (see [4]).)

Before we state our main results, we introduce the notion of "commuting system" of homomorphisms. Let $\langle X_i : i \in I \rangle$ be topological spaces, let D be a filter on I, and let X be any space. A "commuting system", in this context, is a family $\langle h_J : J \in D \rangle$ where, for $J \in D$, $h_J : \prod_{i \in J} C(X_i) \to C(X)$ is a homomorphism such that for all $J \supseteq K \in D$, $h_K \circ r_{JK} = h_J$. Our main concern is in the existence of certain commuting systems.

1.1 THEOREM. Assume $\langle X_i: i \in I \rangle$ is a family of topological spaces, D is a free filter on I (i.e. $\cap D = \emptyset$), X is a space, there are no uncountable measurable cardinals at most |I| (= the cardinality of I), and $\langle h_J: J \in D \rangle$ is a commuting system. Then X is empty.

PROOF. It is well known (see [6]) that we lose no generality by assuming all of the above spaces to be realcompact Tichonov; and we can then invoke Theorem (10.6) of [6] to the effect that if Y is realcompact and if $h: C(Y) \to C(X)$ is a ring homomorphism (N.B. h(1) = 1. Hence Hom $(0, C(X)) = \emptyset$, unless $X = \emptyset$.) then there is a unique continuous $h': X \to Y$ such that, for all $f \in C(Y)$, $h(f) = f \circ h'$.

Let $\bigcup_{i \in I} X_i$ denote the disjoint union of the spaces X_i ; and let p be a z-ultrafilter on $\bigcup_{i \in I} X_i$ with the countable intersection property (c.i.p. = intersections of countable subfamilies of p are nonempty). We show that $\bigcup_{i \in I} X_i$ is realcompact by proving that p must be fixed. Indeed let $g: \bigcup_{i \in I} X_i \to I$ take x to i exactly when $x \in X_i$, and let $F = \{J \subseteq I: g^-[J] \in p\}$. One can check easily enough that F is a countably complete ultrafilter on I (e.g. F is closed under superset since $g^-[J] = \bigcup_{i \in J} X_i$ is always clopen, hence a zero set). Now there are no uncountable measurable cardinals at most |I|, hence F must be fixed (= principal). Suppose $\{i\} \in F$. Then $X_i \in p$, and p restricted to X_i is a z-ultrafilter on X_i with the c.i.p. Thus, since X_i is realcompact, p converges.

Now since $\prod_{i \in I} C(X_i)$ and $C(\bigcup_{i \in I} X_i)$ are naturally isomorphic, we can consider each h_J as a homomorphism from $C(\bigcup_{i \in J} X_i)$ to C(X). Thus look at the "dual system" $h'_J: X \to \bigcup_{i \in J} X_i$. Letting $e_{JK}: \bigcup_{i \in K} X_i \to \bigcup_{i \in J} X_i$ be the natural embedding, $J \supseteq K \in D$ (an inclusion in this case), we note that the uniqueness of each h'_J ensures that all the appropriate diagrams commute (i.e. $e_{JK} \circ h'_K = h'_J$ for each $J \supseteq K \in D$). Since $\cap D = \emptyset$, this forces X to be empty. \Box

1.2 COROLLARY. If \mathcal{K} is a P-subclass of RCF then reduced products in \mathcal{K} are "trivial", in the sense that $\prod_{D}^{\mathcal{K}} A_i$, the reduced product in \mathcal{K} , is zero whenever D is a free filter on an index set whose cardinality is less than all uncountable measurable cardinals. \Box

1.3 REMARK. The measurable cardinal hypothesis is necessary for 1.1 to work. For let D be a free countably complete ultrafilter on a set I, and let each X_i be a singleton. Then $\prod_D C(X_i) \cong \mathbf{R}$ (= the ring of real numbers), by Corollary (4.2.8) in [5].

We can get the conclusion of 1.1 with altered hypotheses and more model theoretic techniques.

1.4 THEOREM. Assume $\langle X_i: i \in I \rangle$ is a family of spaces, D is a countably incomplete ultrafilter on I, X is a space, and $\langle h_J: J \in D \rangle$ is a commuting system. Then X is empty.

PROOF. Suppose, to the contrary, that there is a nonempty space X for which a commuting system exists. If $\{i: X_i = \emptyset\} = J \in D$ then $h_J: \prod_{i \in J} C(X_i) \to C(X)$, being a ring homomorphism, forces X to be empty. Since D is an ultrafilter, we lose no generality by assuming that $X_i \neq \emptyset$ for each $i \in I$. For each $J \in D$ let p_j : $\prod_{i \in J} C(X_i) \to \prod_D C(X_i)$ be the natural projection homomorphism. By properties of direct limits there is a unique homomorphism h: $\prod_{D} C(X_{i}) \to C(X)$ such that for all $J \in D$, $h \circ p_J = h_J$. Now for each $i \in I$ let $d_i: \mathbf{R} \to C(X_i)$ be the diagonal embedding. Then the ultraproduct mapping $\prod_D d_i$: $\prod_D \mathbf{R} \to \prod_D C(X_i)$ is a homomorphism. Now D is an ultrafilter, hence $\prod_{D} \mathbf{R}$ is a field by the Loś Theorem. Therefore $h \circ \prod_{D} d_{i}$ is a homomorphism from a field into a nontrivial ring, hence an embedding. Let $d: \mathbf{R} \to \prod_{D} \mathbf{R}, e: \mathbf{R} \to C(X)$ be the diagonal embeddings. It is a straightforward algebraic fact that there can be no other homomorphism $e' \colon \mathbf{R} \to C(X)$, since C(X) is a "diagonal" subring of a power of **R** (use the fact that the identity map is the only ring endomorphism on **R**). Therefore $e = h \circ \prod_D d_i \circ d$, and $\prod_D \mathbf{R}$ embeds as a diagonal subring of C(X). Since D is countably incomplete, this ultrapower is ω_1 -saturated. We will obtain a contradiction once we prove the

LEMMA. No diagonal subring of a power of **R** is ω_1 -saturated.

PROOF OF LEMMA. Let $A \subseteq \mathbf{R}^{I}$ be a diagonal subring which is ω_1 -saturated. For each $n \in \omega$, let $\phi_n(x)$ be the first order formula which says of x that x - n (= the

PAUL BANKSTON

result when the constantly *n* function is subtracted from the function *x*) has a square root. $\phi_n(x)$ can be expressed in the first order language of rings with countably many additional constants. Clearly $\Phi(x) = \{\phi_n(x): n \in \omega\}$ is finitely satisfiable in *A*: if $\Phi_0(x) = \{\phi_{n_1}(x), \dots, \phi_{n_k}(x)\}$ then $A \models \phi_{n_i}[\max\{n_1, \dots, n_k\}]$ for $i = 1, \dots, k$ since $\mathbf{R} \subseteq A$. So by ω_1 -saturicity, there is an $a \in A$ such that a - n has a square root for each $n \in \omega$. That is, for each $i \in I$, the *i*th coördinate a_i of *a* exceeds *n* for all $n \in \omega$, a contradiction. \Box

1.5 COROLLARY. If \mathfrak{K} is a P-subclass of RCF then ultraproducts in \mathfrak{K} are "trivial", in the sense that $\prod_{D}^{\mathfrak{K}} A_{i}$ is zero whenever D is a countably incomplete ultrafilter. \Box

REFERENCES

1. B. Banaschewski, On categories of algebras equivalent to a variety, Algebra Universalis (to appear).

2. P. Bankston, Reduced coproducts in the category of compact Hausdorff spaces (to appear).

3. _____, Some obstacles to duality in topological algebra, Canad. J. Math. 34 (1982), 80-90.

4. P. Bankston and R. Fox, On categories of algebras equivalent to a quasivariety, Algebra Universalis (to appear).

5. C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.

6. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, MARQUETTE UNIVERSITY, MILWAUKEE, WISCONSIN 53233