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ON PARTITIONS OF PLANE SETS 
INTO SIMPLE CLOSED CURVES. II 

PAUL BANKSTON 

ABSTRACT. We answer some questions raised in [1]. In particular, we prove: (i) Let F 
be a compact subset of the euclidean plane E2 such that no component of F 
separates E2. Then E 2\F can be partitioned into simple closed curves iff F is 
nonempty and connected. (ii) Let F C E2 be any subset which is not dense in E2, 
and let 5 be a partition of E 2\ F into simple closed curves. Then 5 has the 
cardinality of the continuum. We also discuss an application of (i) above to the 
existence of flows in the plane. 

Statement of results. This note is a sequel to [1], whose notation and terminology 
we follow faithfully. Throughout the paper, F is a subset of the euclidean plane E2, 

and 5 is an alleged partition of E 2\ F into simple closed curves (scc's) (i.e. 5 is a 
cover of E2 \F by pairwise disjoint topological replicas of the unit circle). We are 
interested in two kinds of question: (i) (existential) what conditions on F ensure or 
prohibit the existence of a partition 5; and (ii) (spectral) what are the relationships 
between F and the set of cardinalities of possible partitions S? 

Existence questions are considered in [1, 2]. We summarize what we know: If the 
cardinality I FI of F is less than the continuum c, and if either the number of isolated 
points of F or the number of cluster points of F (in E2) is finite, then 5 exists iff 
F I= 1. We conjecture that the conclusion is still valid under the weaker hypothesis 

"I F j< c"; however, the conclusion fails when the hypothesis is weakened further to 
"F is totally disconnected", as is witnessed by a nice construction due to R. Fox 
[1, Theorem 12]. 

In [1] we also raise the question of when 5 exists for F compact. This brings us to 
our first result. 

1. THEOREM. Let F be a compact subset of E2 such that no component of F separates 
E2. Then E2\F can be partitioned into scc's iff F is nonempty and connected. 

Questions of spectrum are considered in [1, 2,4]; in particular, in [1] we ask: for 
which F is it necessarily the case that I 5= c (if it exists at all)? 

2. THEOREM. Let F be any subset of E2 which is not dense in E2, and let 5 be a 
partition of E 2\ F into scc's. Then I j= c. 
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The proof of Theorem 1 uses techniques from [1]. The proof of Theorem 2 is 
inspired by H. Cook's proof [4] that every partition of E2 into closed arcs must have 
cardinality c. 

Proof of Theorem 1. Our first observation (due to the referee of [1]) is that the 
components of F, together with singleton points of E 2\F, form an uppersemicon- 
tinuous decomposition of E2. By a theorem of R. L. Moore [6, p. 533] the corre- 
sponding quotient space is - 2. In view of this it is easy to get the existence of S 

whenever F is a nonempty continuum which fails to separate E2, so it will suffice to 
prove 

3. THEOREM. Let F C E2 be a compact totally disconnected subset of cardinality 
different from 1. Then E2 \ F cannot be partitioned into scc 's. 

We can eliminate the case F = 0 immediately [1, Theorem 1], so assume I Fj > 1; 
and, for the sake of contradiction, let S be a partition of E 2\ F into scc's. As in [1] 
we let B(S) be the bounded component of E2\S for any scc S and rely heavily on 
Schonflies's theorem (i.e. B(S) ? E2). Also we will use the partial order < on 5, 
given by SI < S2 if B(S1) =B(S1) U SI C B(S2). 

4. LEMMA. If F is totally disconnected and 9Th C S is a maximal chain, then 
n {B(S): S EC '9} is a singleton subset of F. 

PROOF. This is proved in [1, Lemma 4]. O 
Now for any S E 5, B(S) n F is a nonempty clopen subset of F, so for each 

clopen G C F let S = {S E S: B(S) n F = G}. Then S = U {SG: G C F is clopen} 
is a (countable) union of pairwise disjoint subcollections, each of which is a chain 
under the < -ordering. Let UG = U SG. Then the collection {UG: G C F is clopen} is 
a cover of E2 \F by pairwise disjoint sets (" annuli"). We will show that each UG is 
open. By a theorem of Kuratowski-Knaster [7], to the effect that X separates E2 only 
if a connected subset of X separates E2, we know that E2\F is connected. Hence, 
UG = 0 for all but one clopen G C F. We will show that, in fact, 5F #1 0, hence 

= SF. This will mean that S is a chain all of whose members enclose F, 
contradicting Lemma 4. 

We will be done, therefore, once we prove the following two assertions. 

5. LEMMA. SF 7# 0. 

PROOF. Although we could argue as in the proof of [1, Lemma 9], the following 
approach (suggested by the referee) is more elementary. 

View E2 as S2\{ p} (i.e. the two-sphere minus the point at infinity); and for each 
scc S C E2 let U(S) be the complement of B(S) U S in S2. Since the collection of 
<-maximal elements of S is at most countable and each chain in S without a 
<-maximal element has countable cofinality, we can find a countable collection 

Si, S2,... in S which includes the < -maximal elements and such that Un=1B(Sn) 
= U {B(S): S E S}. For m = 1, 2,..., let Cm = nl U(Sn). Then Cl, C2,... is a 
decreasing chain of continua containing p. Suppose Cm n F 7# 0 for each m. Since 
F is compact, we have that C = n,=l Cm is a continuum which intersects F and 
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contains p. By a theorem of Sierpiinski [6, p. 173; 1, Lemma 8(ii)], to the effect that 
no locally compact connected Hausdorff space can be partitioned into countably 
many proper compact subsets, C must contain a point x not in F U {p} U U= 1S'. 
But x E S for some S E S, and S cannot be < -maximal. Thus x E B(Sn) for some 
n, a contradiction. Thus for some m, Fn Cm = 0; hence F C U 1B(Sn). 

For each x E F let Sx = {S E S: x E B(S)}. By [1,Theorem I1, S = U xe FX 
and each Sx is a chain. Let Gx = U {B(S): S E Sxj. By the above argument, 
x E Gx, Gx is a closed disk if Sx has a < -maximal element, and Gx is a chain union 
of open disks if Sx has no <-maximal element. Furthermore, the collection {Gx: 
x E F) is a finite partition of E2. But the complement of a finite nontrivial union of 
disjoint closed disks is multiply connected. Hence Gx = E2 for each x E F and 
FCB(S)forsomeSES. O 

6. LEMMA. Each UG is an open set. 

PROOF. Let G C F be clopen and assume SG 7L 0. Since SG is a chain it will 
suffice to show that SG has no < -minimal or < -maximal element. Let S E SG' 
Since B(S) P E2 and G is compact, we can apply Lemma 5 relativized to B(S). 
Thus, there is a scc S' E S with G C B(S') C B(S') C B(S). Clearly S' E SG9 SO SG 
has no < -minimal element. 

To see that SG has no < -maximal element, we "exchange" the point p at infinity 
for any element of G. (G is nonempty.) The ordering < is reversed and we apply the 
above argument to the compact set (F\G) U {p}. This finishes the proof of the 
lemma, and hence of Theorem 1. 0 

Proof of Theorem 2. Suppose F is a subset of E2 which is not dense in E2, and let 
S be a partition of E2\F into scc's. Let D be a standard open disk with boundary 
circle C such that D f F = 0. Then no S E S lies in D [1, Theorem 1]; so for each 
s E S, s n D is a countable disjoint union of open arcs with distinct endpoints on 
C. Since these arcs form a partition of D and each such arc is a subarc of a member 
of 5, it will suffice to show that it takes c arcs to do the job. Let A be one of the arcs 
and let DA be a component (- E2) of D \ A. We show that c arcs are necessary to 
fill DA by proving the following. 

7. LEMMA. Let [0, 112 denote the closed unit square and let c5 be a partition of the 
open unit square (0, 1)2 by open arcs (i.e. homeomorphs of (0, 1)), each with distinct 
endpoints on [0. 11 X (0). Then I6iI= c. 

PROOF. The following argument is similar to that given by H. Cook in [4] to show 
that E2 cannot be partitioned into < c closed arcs. 

By the Baire Category Theorem applied to (0, 1)2 (each A (? is closed as well as 
nowhere dense in (0, 1)2), we know that ( is uncountable; hence there is a real 8 > 0 
and an uncountable do 5 6 such that the endpoints of each A C do have a distance 
apart of at least 8. For A C (?, let l(A) (resp. r(A)) denote the left (resp. right) 
endpoint of A, and let B(A) denote the region bounded by A and [l(A), r(A)] X (0). 
We order C by writing Al < A2 if B(A1) C B(A2) and A1 # A2. Now suppose n is 
any whole number such that nS > 1. Then do has at most n maximal chains under 
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< . (This follows from the fact that < is a tree ordering; hence, if there were > n 
maximal chains in 6do, then there would be > n arcs A E do such that the regions 
B(A) are pairwise disjoint. Since their endpoints have a distance apart of > 8, this 
is impossible.) Thus there is an uncountable d,, 9 6i0 which is a chain under the 
< -order. Assume I 6 I I< c, and let C denote the space of subcontinua of [0, 1]2. 
Under the well-known Hausdorff metric, C( is a compact metric space. Let f I denote 
the closure of Cl in C. Then I , 1= c. (To see this we use the facts that C is 
hereditarily Lindelof, and in such spaces scattered subsets are countable. Since C I is 
uncountable it is not scattered; hence, it has a nonempty closed subset without 
isolated points. This subset, being also compact metric, contains Cantor sets.) 

Since we are assuming I I I 1< c, we have I 1\&i, I = c. Also, since 6 I is a chain, 
each element of (, \d I is a limit either from above or below of distinct arcs in &I?1, 
say B lim,,n , An where An+ I < A. Hence, B intersects at most one arc in C i and 
at most one other continuum in 0\ l . Let 

r = inf{r(A): A E &i1}, 1 = sup{l(A): A E 6, 

and let (a, 0) be the midpoint of the segment [1, r] X {0} (r - 1 a 8). Let L be the 
vertical segment (a) X [0, 1]. Then each B E & intersects both [0, a) X (0) and 
(a, 1] X (0). Letf: (6 1\61) -l L take a continuum B to a point ofB (L\{ (a, 0> }). 
Then the image f [i(\d I] has cardinality c since the fibers of f have at most two 
elements. 

Finally, it is plain that if x1, X2, X3 are three distinct points of f[ \d I ] then some 
arc of I separates two of them in [0, 112. Thus no member of the original family 6? 
can contain more than two points of L. Since every point of f [d1\i 1I] lies on exactly 
one arc in C, this says that I j I= c. C 

8. REMARK. Theorem 2 contrasts nicely with the fact [5,91 that, under hypotheses 
consistent with the usual axioms of set theory, E2 can be covered by < c (possibly 
overlapping) scc's. 

An application to the theory of flows. In this section we follow the terminology 
found in Beck [3]. A flow in E2 is a continuous surjection f: E' X E2 -> E2 with the 
"group property" f(s + t, x) = f(s, f(t, x)). We define a flow to be periodic if for 
each x E E2, either x is a fixed point of f (i.e. f(t, x) = x for all t E E1) or 

pf(x) = inf{t > 0: f(t, x) = x} is finite and positive. It is an easy exercise (see [3]) to 
show that x is a fixed point iff pf(x) = 0; and the orbit of x, {f(t, x): t E El), is a 

scciffO<pf(x)< oo. 

9. THEOREM (BECK [3, COROLLARY 6.20]). Let F C E2. be a compact set whose 
complement is homeomorphic with the open annulus {x E E2: 1 <I x I< 2}. Then there 
exists a periodic flow on E2 whose set of fixed points is F. 

Let F C E2 be nonempty and compact, such that both F and E2\F are con- 
nected. Letting F be the uppersemicontinuous decomposition of E2 into F together 
with singletons of E2\F, we have immediately from Moore's theorem (i.e. E2/13F 
E2) that E2 \F is homeomorphic with an open annulus. Putting Theorem 9 and our 
Theorem 1 together we have the following existence theorem for flows. 
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10. THEOREM. Let F C E2 be compact, no component of which separates F2. The 
following are equivalent: 

(i) F is nonempty and connected. 
(ii) There exists a periodic flow on E2 whose fixed point set is F. 

11. REMARK. The (ii) =* (i) direction is a very weak corollary of Theorem 1, which 
in effect offers a "static" (rather than "dynamic") argument for the nonexistence of 
flows. 
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