CORRIGENDUM TO 'SOME OBSTACLES TO DUALITY IN TOPOLOGICAL ALGEBRA'

PAUL BANKSTON

I wish to correct an error in [1]; and, in doing so, improve on a result contained therein. I am grateful to Evelyn Nelson for pointing out the error, which is the following.

Theorem 4.4 of [1] states that if \mathscr{A} is a full subcategory of the category of compact Hausdorff spaces and continuous maps satisfying: (i) \mathscr{A} is closed-hereditary and closed under usual (Tichonov) products; and \mathscr{A} is category dual to a class \mathscr{L} of finitary algebras which has fewer than c (the cardinality of the continuum) distinguished operations and which has representable underlying set functor, then every object of \mathscr{A} is totally disconnected.

The proof incorrectly assumes that whenever \mathscr{L} satisfies the above conditions then the free \mathscr{L} -algebra $F^{\mathscr{L}}$ over a singleton set (guaranteed by representability) must have fewer than c elements. (This would definitely be true if \mathscr{L} were, say, an S-class, i.e., closed under subalgebras; for then $F^{\mathscr{L}}$ would be a homomorphic image of the corresponding absolutely free algebra F on one generator. The assumption would also be justifiable if \mathscr{L} were an elementary class, i.e., the class of models of a set of sentences in the appropriate first order language. To see this, let $\phi: F \to F^{\mathscr{L}}$ be the natural homomorphism and let A be the image of F under ϕ . By the Löwenheim-Skolem Theorem there is an elementary subalgebra B of $F^{\mathscr{L}}$ containing A and of the same cardinality as F. Since $B \in \mathscr{L}$, it follows that $B = F^{\mathscr{L}}$.)

The following simple result refutes only the above assumption, not the theorem itself. (However, the validity of that theorem is definitely shrouded in doubt.)

1. PROPOSITION. Let \mathscr{L}_C be the class of unitary rings C(X) of continuous real-valued functions with topological domains. Then the underlying set functor has a left adjoint (in particular there exists a free \mathscr{L}_C -algebra over a singleton); however no nontrivial ring in \mathscr{L}_C has fewer than c elements.

Proof. The reader is referred to [2] for ample background on rings of continuous functions.

Let *I* be a given set. Then we claim that $C(\mathbf{R}^{I})$ is the free \mathscr{L} -algebra over *I*, where \mathbf{R}^{I} is the *I*-fold Tichonov power of the real line **R**. To see this we need two standard facts which can be found in [2].

Received September 6, 1983.

(i) If $A \in \mathscr{L}_C$ then A = C(X) for some realcompact Tichonov space X.

(ii) If X and Y are realcompact Tichonov and $\phi: C(Y) \to C(X)$ is any unital ring homomorphism then there is a unique continuous $f: X \to Y$ such that, for any $g \in C(Y)$, $\phi(g) = g \circ f$ (i.e., $\phi = C(f)$).

Now let $A \in \mathscr{L}_C$ be C(X) for some realcompact Tichonov space X and let $g: I \to C(X)$ be given. The "insertion of generators" function is $p: I \to C(\mathbf{R}^I)$, given by p(i) = the i^{th} projection map $p_i: \mathbf{R}^I \to \mathbf{R}$. We need a unique unital ring homomorphism $\phi: C(\mathbf{R}^I) \to C(X)$ such that $g = \phi \circ p$. Now $g_i = g(i)$ is a continuous map from X to **R** for each $i \in I$, so there is a unique continuous $f: X \to \mathbf{R}^I$ such that $g_i = p_i \circ f, i \in I$. Let $\phi = C(f)$. Then

$$(\phi \circ p)(i) = \phi(p_i) = C(f)(p_i) = p_i \circ f = g(i),$$

so ϕ does what we want. The uniqueness of ϕ is ensured by (ii) above.

2 *Remark.* As noted before, if we were to weaken the hypotheses of Theorem 4.4 of [1] by insisting that \mathcal{L} also be either a *S*-class or an elementary class then the original proof would be valid. Moreover, that same proof would work with "compact Hausdorff" replaced by "real-compact Tichonov". Since the category of such spaces is dual to \mathcal{L}_C we see the necessity for some kind of subalgebra condition to obtain the conclusion.

REFERENCES

- P. Bankston, Some obstacles to duality in topological algebra, Can. J. Math. 34 (1982), 80-90.
- 2. L. Gillman and M. Jerison, Rings of continuous functions (Van Nostrand, Princeton, 1960).

Marquette University, Milwaukee, Wisconsin