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COARSE TOPOLOGIES IN NONSTANDARD EXTENSIONS VIA
SEPARATIVE ULTRAFILTERS

BY

PAUL BANKSTON

0. Introduction

Let * be a nonstandard extension (Ol-saturated will do) of a suitably
large ground model . If A then *A will denote the image of A in

* under the canonical embedding, and *[A] will denote the set {*a a
A}. If (X, -) is a topological space in then *[z] is in general no longer a
topology but is a basis for what we call the coarse topology on *X. This
is one of two natural topologies one could put on *X (the other, generated
by *z, is the "Q-topology" (see [1], [2], [4], [7], [8]) and is much finer)
and is closely related to the "S-topology" (see [6], [8]) used in monad
constructions in the setting of uniform spaces.
Our interest here is centered on the question of when *X (always with

the coarse topology) enjoys some of the usual separation properties. As an
example, if (R, v) denotes the real line with its usual topology then *R can
never be a To-space when * is e01-saturated. In fact, if* is an enlargement
(e.g. * is Il+-saturated) then *X is never To for infinite X.
As far as we know, it is an open question whether *X can be To when

X is infinite and * is Ol-saturated. However, with the help of extra set
theory (notably Martin’s Axiom (MA) and the Continuum Hypothesis (CH)),
we can construct extensions * in which *X can be To (even Tichonov)
for a large class of spaces X.
To begin with, we confine our attention to ultrapower extensions *

IIo() where D is a free (that is, nonprincipal) ultrafilter on a countable
set I. Then * is automatically e01-saturated (since D is countably incomplete)
and its elements are equivalence classes [f] [f]o of functions f d;

[30 {g " {i I" g(i) f(i)} D}.

In the case of the nonstandard real line, for example, we have [f] *< [g]
iff {i I "f(i) < g(i)} D. For topological spaces (X, z), if U z then
*U {If] {i f(i) U} D}. (Note that X and *IX] are naturally
homeomorphic (x *x is a homeomorphism) and that *[X] C_ *X is a dense
subset. This is true for any extension *.)
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The ultrafilters of special interest to us for the purposes of separation
properties are the so-called "separative" ultrafilters of B. Scott [10] and
will be discussed starting in 2. The reader is assumed to be conversant
with some of the more well known properties of ultrafilters on a countable
set (e.g., selective ultrafilters, P-points, etc.) as well as the Rudin-Keisler
order <n/ (see [3], [5], [9]). Our set theoretic notation is standard: IAI is
the cardinality of A, OA is the set of functions f: B A, and cardinals
are initial ordinals (which are the sets of their ordinal predecessors). Thus
a Ia[ for cardinals a,/3. As usual, to {0, 1, 2, ...}, and c 2.

I. General Properties of *X

We will assume always that * is an tOl-saturated extension (e.g., a
countably incomplete ultrapower extension) and that (X, ) is an infinite
topological space. By way of an introductory remark, it is easy to see that
*It] is not in general a topology, even though it is in natural one-one
correspondence with -. Indeed, let D be a free ultrafilter on to (in terms of
the Stone-tech functor/3, D /3(to) \ to, where to has the discrete topology),
and let - be the discrete topology on X to. Then

u {*{x} x x} *Ix]

since *[X] is countably infinite and members of *It] are either finite or of
cardinal c. (If a is a countably infinite set then I*al Ino(A)l c,
by a well known property of ultraproducts (see, e.g., [5]).) Thus *[-] is not
closed under arbitrary unions. It is also worthy of note that *[o’] needn"t
basically generate *[-] when o- is a basis for -. For let (X, -) be as above
and let tr {{x} x X}. Then tr is a basis for the discrete topology;
however any union of members of *[tr] will be a subset of *IX]. (The
situation is quite different in the case of the Q-topology" *tr is always a
basis for *- when cr is a basis for -.)
Our first proposition is an easy consequence of the definitions involved.

1.1 PROPOSITION. *X \ *IX] is nonempty and self-dense (i.e., without
isolated points). Thus *X is never discrete.

The following lemma is true for general to -saturated extensions, and is
a basic result of model theory (see, e.g., [5]).

1.2 LEMMA. Let (A. n < to) be a sequence of subsets of X and let
m < to. If [N,<k A.I > m for each k < to then IN< *A.I > m.

1.3 THEOREM. *X is a nonmetrizable Baire space which is LindelOfjust
in case it is compact.
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Proof. This kind of argument has been employed before (see [1], [2],
[5]), so we will only sketch it here.

To see that *X is Baire, let (M. n < to) be a family of dense open sub-
sets of *X, and let U " be nonempty. We show *U f3 (.<
First find nonempty U0 " such that *U0 C_ *U M0. Using induction,
we can find nonempty U.+ - such that *U.+ _C *U. (f3,. M,). By
(1.2), :/: n. *u. c_ n.
*X is nonmetrizable: for if y *X \ *IX] and if (U. n < o) z is

such that y .< *U. then for each k < o, . U. is infinite (since
*X \ *IX] is self-dense). Therefore by (1.2), [.< *U.[ > 2; so in fact,
*X fails strongly to be first countable.

Finally, suppose *X is Lindel6f, and let v be an open cover of *X. We
can assume v is countable and consists of basic open sets (*U. n <
Let A. X \ U.. Then n.< *A. , so by (1.2) there is a k < to with
n.< *A,, t. That is, (*U. n < k) is a finite subcover of v. I

A point x X is a weak-P-point if x is not in the closure of any countable
subset of X \ {x}. X is a weak-P-space if every point is a weak-P-point,
i.e., if all countable subsets are closed. Clearly, a weak-P-space is T and
"anticompact" (i.e., no infinite subset is compact); and a P-space which
is T is a weak-P-space. We will be concerned with these classes of spaces
in the next section; for now we record the following.

1.4 PROPOSITION. *X is not a weak-P-space.

Proof. Let A C_ X. Then *[A] is dense in *A C_ *X. If *[A] were closed
in *X then *[A] would equal *A, whence A would be finite.

1.5 PROPOSITION. If X is compact then *X is compact but not T.

Proof. Let (*U I) be a basic open cover of *X. Then (Ui I)
is an open cover of X. If U U, is a finite subcover then *X *(U
tO U U,) *U U U *U,, so *X is compact.

For each x X, let/x(x) n{*u x U z} denote the "monad"
of x. If *X were T then/x(x) would be {*x} for each x X; hence given
y *X \ *[X] and x X there would be a neighborhood U of x with
y q *U. By compactness, then, there would be a finite subcollection of
the U’s covering X; consequently y q *X, an absurdity. I

1.6 COROLLARY. If *X is T then X is anticompact.

Proof. Suppose A C_ X is compact. Then *A is compact T, whence A
is finite by (1.5).
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2. Separative Ultrapower Extensions

For the rest of the paper, we assume * Ho() for some
/3(1) \ I, I countable (discrete).

2.1 PROPOSITION. Suppose *X is To. Then D is "separative"" for each
pair offunctions f, g I which are distinct (rood D) (i.e., {i I f(i)
g(i)} D) there is a J D such that f[J] N g[J] O.

Proof. Separative ultrafilters are introduced and studied in [10]. Suppose
f, g I are distinct (mod D) and let h I - X be one-one. Then h f,
h g are distinct (mod D). Since *X is To, it is easy to see that there is a
set J D such that (h of)[J] f3 (h g)[j] . Thusf[J] g[J] O.

2.2 Remark. It is straightforward to show that D fl(I) is separative
iff whenever f, g I -- I are distinct (mod D) then their Stone-(ech liftings
disagree at D (i.e., fl(f)(D) fl(g)(D)). (This condition is in fact the definition
of separativity used in [10].)

We record the basic facts about separative ultrafilters which will be of
use to us here.

2.3 THEOREM (B. Scott [10]). (i) Selective ultrafilters are separative (hence
MA implies the existence of separative ultrafilters).

(ii) Separativity and being a P-point are not simply related.
(iii) If D is separative and E <Rr D then E too is separative.
(iv) If D and E are separative P-points and there is no F fl(1) \ I

with F RK D and F RK E then

D E {R C I I" {i {j" (i,j) R} E} D}

is separative (but not a P-point since D E is not minimal in the Rudin-
Frolik ordering: D <RF D E).

(v) D D is not separative.

By (2.1, 2.3(v)) we know immediately that *X is not To whenever X is
infinite and * IIo.o(). Since there is no known proof in ZFC that
separative ultrafilters exist, we do not know "absolutely" that coarse to-
pologies can ever have any reasonable separation properties. But, given
that D is a separative ultrafilter, quite a lot can be said in this connection.

2.4 PROPOSITION.
*X is Hausdorff.

If D is separative and X is a Hausdorff P-space then

Proof. Let [f], [g] be distinct and let J D be such that f[J] f)

g[J] . Since X is a Hausdorff P-space and f[J], g[J] are countable,
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there are disjoint open sets U, V C_ X with f[J] c_ U, g[J] C_ V. Thus [f]
*U, [g] *V, and *U f) *V 0.
Let X be any T-space and let w(X) denote the Wallman compactification

of X (see [11]). Points of w(X) are ultrafilters of closed subsets of X, and
basic open sets are of the form U {p w(X) U contains a member
of p} for U -. We identify x X with the fixed ultrafilter Px of closed
supersets of {x} and define (to) X -- w(X) by

(D, f) {A A C_ X is closed and f-l[A] D}
(easily seen to be a member of w(X)).

2.5 LEMMA. Let o oX ---> w(X) be given by o(f) 9(D, f). IfX is
a weak-P-space and D is a separative ultrafilter then o induces an embedding
of *X into w(X) which leaves the points ofX fixed (i.e., o(*x) Px).

Proof. Let f, g to ---> X be equal (mod D). If A 9o(f) then f-l[A]
D. Now g-l[A]

_
f-l[A] N {n "f(n) g(n)} D, so A 9o(g). Thus

o is well defined on *X. Let U -. Then [f] l[u*] iff there is closed
A C_ U such that f-1[A] D iff there is a closed A C_ U such that [f]
A iff [f] * U, sincef[to] is countable hence closed. Thus o is continuous.
To show o[*U] o[*X] fq U, we note that o([f]) o[*U] iff

there is a closed A C_ U such that f-[A] D iff o([f]) U#, again since
countable sets are closed.
We need to show o is one-one. Suppose f, g to -- X are distinct (mod

D) and let J D be such that 3’IJ] fq g[J] 0. Then J] o([f]) and
g[J] 9o([g]), whence these ultrafilters of closed sets are also distinct.

Finally, it is easy to see that points of X are fixed by o, so the proof
is complete.

2.6 THEOREM. Let D be a separative ultrafilter.
(i) IfX is a weak-P-space then *X is T.

(ii) IfX is a normal weak-P-space then *X is Tichonov.
(iii) IfX is a normal P-space then *X is "strongly O-dimensional" (i.e.,

disjoint zero sets are separable via clopen sets; equivalently, fl(X) is "0-
dimensional" in the sense of weak inductive dimension).

(iv) If X is an extremally disconnected normal weak-P-space then *X
is extremally disconnected.

Proof. (i) By (2.5), *X embeds in w(X), a compact T-space.
(ii) If X is normal then w(X) (X).
(iii) Regular P-spaces are strongly 0-dimensional, hence their Stone-

(ech compactifications are 0-dimensional. Now we can make believe that
X C_ *X C_/3(X). Thus fl(*X) fl(X), whence *X is strongly 0-dimensional.

(iv) /3(X) is extremally disconnected and *X is a dense subspace.
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2.7 Question. Can *X ever be Lindel/)f T0?
2.8 THEOREM. Let X be a normal weak-P-space such that *X is LindelOf

To. Then IxI > c,

Proof. Since *X is To, D is separative. Thus we can consider X C_ *X
C_ /3(X). By (1.3), *X is compact, hence equal to /3(X). Let A C_ X be
countable discrete. Then A is closed in X, hence C*-embedded there (see
[11]). This says that A is a countable C*-embedded subset of fl(X); whence
the closure of A in fl(X) is homeomorphic to fl(to),whose cardinality is well
known to be 2C. Thus I’X[ > 2c, so ISl > c.

2.9 Question. Is it possible for *X to be normal? Paracompact?

Motivated by this question, we now turn to the special case of spaces
*X where X is countable discrete (X to). First of all notice that by (2.1)
and (2.6), D is separative iff *to is To iff *to is an extremally disconnected
strongly 0-dimensional space iff/3(*to) =/3(to). (In [1] it is proved by contrast
that topological ultraproducts which are not discrete can never be extremally
disconnected unless their cardinalities exceed a measurable cardinal.) A
weak affirmative answer to (2.9) is the following.

2.10 THEOREM (CH). Let D be a separative P-point (e.g., a selective
ultrafilter). Then *to \ *[to] is hereditarily paracompact.

Proof. We first note that in the embedding o *to - fl(to), the image
of ,po is precisely {E fl(to) E <gr D}. (Indeed, J ,po([f]) iff f-[J]

D, SO D([f]) RK D. On the other hand, if E RK D then there is some
f to -- to such that J E iff f-[J] D. Hence E ,Po([f]).) Thus if
D is a P-point as well as being separative then *to \ *[to] is a P-space.
Now *to has an open basis of cardinality c tot, so every subset of *to
\ *[to] is a P-space which is "to-Lindel6f" (i.e., every open cover has a
subcover of cardinality less than or equal to to). We are done once we
prove the claim (also proved in [1]): If X is an to-Lindel6f regular P-space
then every open cover of X refines to an open partition of X. To see this,
simply take an open cover v which we can assume to consist of clopen
sets and to have cardinality to1; say v (U
(t2,< U,). Then (V : < tOl) is an open refinement of v, the members of
which are pairwise disjoint.

We close this section with a simple observation about covering properties
in *to for separative D.

2.11 PROPOSITION. IfD is separative then *to is anticompact, and neither
to nor *to \ *[to] is LindelOf.

Proof. A compact subset of *to is closed in fl(to), and infinite closed
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subsets of/3(to) are well known to have cardinality 2. Since [*to[ c, no
infinite subset can be compact.
Now one of *to, *to \ *[to] is Lindel6f just in case the other is. If *to

were Lindel6f, it would, by (1.3), be compact. Impossible.

3. Iterated Ultrapowers

Suppose D, E are free ultrafilters on (countable) sets I, J respectively
and let be given. Then, letting o) denote IIo() (to avoid confusion,
we replace asterisks with the ultrafilter in brackets) we can iterate the
extension process and ask whether o)e is an ultrapower extension of .
The answer is well known to be "yes"; oe is naturally isomorphic (as
a membership structure) to o.e. The isomorphism is defined as follows.
First define z(s) __> s by (f)((i, j)) f(i)(j). One can then check
quite easily that induces an isomorphism. (o)(eM ....> (o.eM, where q--([f]o)= [q(f)lo.e.

Now a natural question to ask is whether q further induces homeomorphisms
between corresponding coarse topologies (as is the case with the Q-topology
(see [1])). It is easy to see that, for U r, --[(eU] ((eU, so
((eX is a continuous bijection onto (’eX. In answer to the question of
whether ((eX is always a homeomorphism, we have the following.

3.1 PROPOSITION.
not an open map.

Let D, E be free ultrafilters on to. Then - )e)to is

Proof. Since to has the discrete topology, Ce)[to] t_J,<o e){n} is open
in Ce)to, hence )e)[to] is open in )e)to. Let f" to ---> Ce)to be given by f(m)

e)m. Then {m "f(m) Ce)[to]} to D, so [f]o o)e)to. Now ([f]o)
[g]o.e where g(m, n) m, and [h]z).e [o)e)[to]] iff

{m {n h(m, n) p} E for some p} D.

If o.e)j is any basic open set containing [g]o.e then J D, hence J is
infinite. Since both D and E are free ultrafilters, we can find k to to

---> J such that {m {n k(m, n) p} E for some p} q D. Thus
[)e)[to]], hence [)<e)[to]] is not an open set. 1

3.2 LEMMA.
regular space.

Let D, E be free ultrafilters on to. Then o)e)to is not a

Proof. Look at the proof of (3.1) above. If U is any basic neighborhood
of [f]o which is contained in )e)to then U must be of the form o)e)[j] for
some J D.. The closure of this set in o)e)to is easily seen to be
Again, since both D and E are free, we can find [g]o o)e)j such that
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{n g(n) is not constant (mod E)} D. Thus ()()[o)] is an. open set containing
[fo which does not contain the closure ofany open set containing [f]o.

The following shows that, under CH, ((eX and (eX can have easily
distinguishable topological types.

3.3 THEOREM (CH). There are ultrafilters D, E on to such that (o.e)to is
regular, but (D)(e)to is not regular.

Proof. Using CH and Theorem (9.13) of [5] there are nonisomorphic
selective ultrafilters D, E on to. Since both are minimal in the Rudin-Keisler
ordering, they satisfy the hypothesis of (2.3 (iv)). Thus D E is separative;
so by (2.6), (o.e)to is a Tichonov space. However, by (3.2), (D)(e)to fails to
be even regular.

3.4 Remark. Under the CH, the converses of (2.4) and (2.6 (i)) fail"
there is a Hausdorff space X, not a weak-P-space, and an ultrafilter D
/3(to) \ to such that )X is Hausdorff. For let D, E be as in (3.3), and let
X e)to. Since ’e)to is Tichonov, hence Hausdorff, and the natural bijection

(v)(e)o is continuous, we know that (Z))X is also Hausdorff. But X fails
to be a weak-P-space by (1.4).
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