Clopen Sets in Hyperspaces
Author(s): Paul Bankston
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2040804
Accessed: 16/02/2011 10:45

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
CLOPEN SETS IN HYPERSPACES

PAUL BANKSTON

Abstract. Let X be a space and let $H(X)$ denote its hyperspace ($= \text{all nonempty closed subsets of } X \text{ topologized via the Vietoris topology}$). Then X is Boolean ($= \text{totally disconnected compact Hausdorff}$) iff $H(X)$ is Boolean; and if B denotes the characteristic algebra of clopen sets in X then the corresponding algebra for $H(X)$ is the free algebra generated by B modulo the ideal which "remembers" the upper semilattice structure of B.

0. Introduction. This note concerns the algebraic topology of the hyperspace $H(X)$ of a compact Hausdorff space X. Two antithetical situations immediately arise, namely when X is connected (i.e., a continuum) and when X is totally disconnected (i.e., a Boolean space). In the first situation one can study the homotopy of $H(X)$. Indeed, in 1931 Borsuk and Mazurkiewicz [2] showed that $H(X)$ is path connected if X is metric; and in an unpublished paper, Banaschewski was able to remove the metrizability condition. Although the calculation of homotopy for $H(X)$ is still an open problem when X is a general continuum (even a metric continuum), the question has long been settled for X a Peano space ($= \text{locally connected metric continuum}$). In this case there is a beautiful succession of increasingly stronger results: $H(X)$ is Peano (Vietoris, 1923); $H(X)$ is contractible (Woydyslawski, 1938); $H(X)$ is an AR (Woydyslawski, 1939); and $H(X)$ is the Hilbert cube (Curtis and Schori, 1974). The historical details up to 1939 are in [2]; the last result is in [1]. Needless to say $H(X)$ has uninteresting homotopy when X is Peano.

Our interest here lies in the second of the above situations, that is where X is Boolean; and the algebraic object we study is the characteristic Boolean algebra $\chi(X)$ of clopen subsets of X. We then have a computational result which takes the following form: Let $B = \chi(X)$. Then $\chi(H(X))$ is the quotient of the free algebra generated by B divided by the ideal which "remembers" the upper semilattice structure of B. Although the theorem makes sense without requiring that $H(X)$ be Boolean, the proof we present requires this property; and in fact it is easy to show (modulo classical results) that X is Boolean iff $H(X)$ is Boolean as well.
1. Preliminaries on hyperspaces

1.1 Definition. Let X be a space, $S \subseteq X$. Define $S^1 = \{C : C \subseteq X \text{ closed nonempty}, C \subseteq S\}$, and $S^2 = \{C : C \subseteq X \text{ closed nonempty}, C \cap S \neq \emptyset\}$. The hyperspace $H(X)$ of X consists of all closed nonempty subsets of X topologized by taking subbasic sets of the form U_1, U_2 for $U \subseteq X$ open. The resulting topology is called the Vietoris topology.

An interesting and helpful fact is the following:

1.2 Lemma. Let $r = \{U_1, \ldots, U_m\}$ be a finite set of open subsets of X and denote by $r^\#_r$ the set $\{C \in H(X) : C \subseteq U_1 \cup \cdots \cup U_m, \text{ and for } 1 \leq k \leq m, C \cap U_k \neq \emptyset\}$. Then the collection of all such sets $r^\#_r$ forms a basis for the Vietoris topology.

Proof. Let $r = \{U_1, \ldots, U_m\}, s = \{V_1, \ldots, V_n\}$, with $U = \cup r, V = \cup s$; and let t be the set $\{U \cap V, U_1 \cap V, \ldots, U_m \cap V, U \cap V_1, \ldots, U \cap V_n\}$. Then $t^\# = r^\# \cap s^\#$, so the collection forms a basis for some topology τ. Now if $U \subseteq X$ is open then $U^1 = \{U\}^\#$, $U^2 = \{U,X\}^\#$, whence τ contains the Vietoris topology. On the other hand if $r = \{U_1, \ldots, U_m\}$ then $r^\# = \{U_1 \cup \cdots \cup U_m\}^1 \cap U_1^2 \cap \cdots \cap U_m^2$, so τ is in fact the Vietoris topology itself. \qed

Remarks. (i) For metrizable X, say with metric d, $H(X)$ is metrizable as well via the well-known Hausdorff metric over d; and the Vietoris topology is precisely the derived metric topology.

(ii) Let $f : X \to Y$ be a continuous closed map and define $H(f) : H(X) \to H(Y)$ in the obvious way, i.e. $H(f)(C) = f''C = \{f(x) : x \in C\}$. Then $H(f)$ is continuous, indeed

$$H(f)^{-1}(\{U_1, \ldots, U_m\}^\#) = \{f^{-1}(U_1), \ldots, f^{-1}(U_m)\}^\#.$$

$H(f)$ need not be a closed map, however.

Assume all spaces henceforth to be T_1. Then for each X there is a natural injection $i : X \to H(X)$ taking $x \in X$ to its singleton $\{x\}$. i is evidently a topological embedding (and in the metric case an isometry). Moreover, if X is Hausdorff then i is closed as well. For suppose $C \in H(X) - i''X$, with $a, b \in C$ distinct. Let $U = U(a), V = V(b)$ be a disjoint pair of open sets. Then $\{U, V, X\}$ is a nbd of C missing $i''X$.

Now a standard result of Vietoris (see [4]) is that X is compact Hausdorff iff $H(X)$ is compact Hausdorff. By extending this theorem we can easily prove that X is Boolean iff $H(X)$ is Boolean. To see this, assume $H(X)$ is Boolean. Then, since X embeds via i as a closed subset of $H(X)$, X is Boolean as well. Conversely if X is Boolean then X has a basis of clopen sets so that if $C_1, C_2 \in H(X)$ are distinct with, say, $a \in C_1 - C_2$, then there is a clopen U containing a and missing C_2. Thus $\{U, X\}^\#$ is a clopen nbd of C_1 missing C_2, proving that $H(X)$ is “ultra-Hausdorff” hence (in view of compactness) Boolean.

An alternative description of $H(X)$ for X Boolean goes as follows (the straightforward details being left to the reader): Let B be the algebra of clopen sets in X and let $\sigma^*(B)$ be the set of proper filters in B. For $s = \{b_1, \ldots, b_n\} \subseteq B$ let $s^\# = \{p \in \sigma^*(B) : b_1 \lor \cdots \lor b_n \in p\}$ and for $1 \leq k \leq n, b \in p,$
Then the sets $s^\#$ form a topological basis; and the resulting space is precisely $H(X)$. The proof of this fact hinges upon the Stone duality between the closed nonempty subsets of a Boolean space and the proper filters of the corresponding Boolean algebra.

2. The main theorem. Let BTop denote the category of Boolean spaces and continuous maps with Boo the category of Boolean algebras and homomorphisms. Let

$$\text{BTop} \xrightarrow{x} \text{Boo} \xleftarrow{\sigma} \text{BTop}$$

be the statement of Stone duality; where $x(X)$ is the characteristic algebra of clopen subsets of X, and $\sigma(B)$ is the Stone space of ultrafilters of B topologized by taking as basis sets all sets of the form $b^0 = \{ u \in \sigma(B) : b \subseteq u \}$ as b ranges over B. The Stone Duality Theorem says that x and σ are contravariant natural equivalences. Now if X is compact, Y is Hausdorff and $f: X \rightarrow Y$ continuous then f is automatically a closed map. Thus in particular the hyperspace operator $H: \text{BTop} \rightarrow \text{BTop}$ is functorial. A corollary of our theorem will be that there is an (algebraically defined) endofunctor $H': \text{Boo} \rightarrow \text{Boo}$ which makes the category-theoretic diagram

$$\begin{array}{ccc}
\text{BTop} & \xrightarrow{H} & \text{BTop} \\
\chi \downarrow \uparrow \sigma & & \chi \downarrow \uparrow \sigma \\
\text{Boo} & \xrightarrow{H'} & \text{Boo}
\end{array}$$

commutative.

We now define H'. Let B be a Boolean algebra. For ease of notation we will assume B to be a field of sets and so use the usual set-theoretic notation for the Boolean algebraic operations. Now let $F(B)$ denote the free Boolean algebra generated by the elements of B. In this context we will use the connectives of elementary logic to denote the operations in $F(B)$ and use square brackets to distinguish the set U in B from its “name” $[U]$ in $F(B)$. So if $B = x(X)$ for some $X \in \text{BTop}$ then $\{ \cup, \cap, X - (\cdot), \emptyset, X \}$ denote the Boolean operations in B, whereas $\{ \vee, \wedge, \neg, 0, 1 \}$ denote the corresponding “formal” operations in $F(B)$. Typical elements of $F(B)$ include words of the form $[X], [\emptyset], [U], [U \cap (X - V)] \vee \neg[W]$, etc.

Given $B = x(X)$ we define the ideals I_1, I_2 in $F(B)$ as follows:

I_1 is generated by the words $\{ [U] \land \neg[V] : U \subseteq V \text{ in } B \}$ and $\{ [U] \land [V] \land \neg[U \land V] : U, V \in B \}$.

I_2 is generated by the words $\{ [U] \land \neg[V] : U \subseteq V \text{ in } B \}$ and $\{ [U \lor V] \land \neg([U] \lor [V]) : U, V \in B \}$.

Intuitively I_1 (resp. I_2) “remembers” the lower (resp. upper) semilattice structure of B so that $F(B)/I_1$, say, “believes” that $[U] \subseteq [V]$ whenever $U \subseteq V$, and that $[U] \land [V] = [U \cap V]$.

Now define the homomorphisms h_1, h_2 from $F(x(X))$ to $x(H(X))$ as follows: Let $U \in x(X)$. Then we set $f_1(U) = U^1$, $f_2(U) = U^2$. (Note. U^1, U^2 are clopen in $H(X)$ since $H(X) - U^1 = (X - U)^2$, etc.) Since $F(x(X))$ is free, f_1, f_2 extend uniquely to homomorphisms h_1, h_2. We can now state our main theorem thusly:
2.1 Theorem. Let $X \in \text{BTop}$ with $h_1, h_2 : F(\chi(X)) \to \chi(H(X))$ given as above. Then:

(i) Both h_1, h_2 are epimorphisms.

(ii) Ker $h_1 = I_1$, Ker $h_2 = I_2$ whence

$$\chi(H(X)) \cong F(\chi(X))/I_1 \cong F(\chi(X))/I_2.$$

Thus if B is any Boolean algebra, if we let $H'(B)$ be either of the above quotients, and if $g : B_1 \to B_2$ is a homomorphism, let $H'(g)$ be the obvious quotient homomorphism. Then

(iii) The diagram

$$\begin{array}{ccc}
\text{BTop} & \overset{H}{\rightarrow} & \text{BTop} \\
\chi \downarrow \uparrow \sigma & & \chi \downarrow \uparrow \sigma \\
\text{Boo} & \overset{H'}{\rightarrow} & \text{Boo}
\end{array}$$

commutes (up to natural equivalences).

(iv) Let $j : F(\chi(X)) \to \chi(X)$ be the natural projection. Then Ker $j = I_1 \vee I_2$ = the ideal generated by $I_1 \cup I_2$.

Proof. (i) We show that the algebra A generated by the sets $U_1, U \in \chi(X)$, is all of $\chi(H(X))$. Indeed by compactness the sets $s^\#$ form a basis for $H(X)$ as s ranges over the finite subsets of $\chi(X)$. Also since

$$s^\# = \{U_1, \ldots, U_m\}^\# = (U_1 \cup \cdots \cup U_m)^1 \cap (U_1^2 \cap \cdots \cap U_m^2)$$

we have that the U_1's generate a basis for the Vietoris topology. Since every clopen set in $H(X)$ is compact and is a union of elements from A, it is a union of finitely many elements from A and is thus itself in A. Thus $A = \chi(H(X))$.

(ii) Since $\emptyset^1 = \emptyset, X^1 = X, U^1 \subseteq V^1$ for $U \subseteq V$, and $(U \cap V)^1 = U^1 \cap V^1$ for all $U, V \in \chi(X)$, we have Ker $h_1 \supseteq I_1$. Similarly Ker $h_2 \supseteq I_2$. Let $w \in F(\chi(X))$ and assume w is represented as a disjunction of conjunctions of generators and complements of generators. Such a conjunction we refer to as a minterm. If $w = w_1 \lor \cdots \lor w_n$ is a disjunction of minterms, and if the minterms of Ker h_1 are in I_1 then Ker $h_1 \subseteq I_1$. For $w \in \text{Ker } h_1 \Rightarrow w_k \in \text{Ker } h_1, \text{each } 1 \leq k \leq n$. Thus $w \in I_1$. So it suffices to prove the inclusion for minterms, of which there are three kinds: positive (only unnegated generators occur), negative, and mixed.

Positive. $w = [U_1] \land \cdots \land [U_m] \in \text{Ker } h_1$. Then $U_1 \cap \cdots \cap U_m = (U_1 \land \cdots \land U_m)^1 = \emptyset$ iff $U_1 \cap \cdots \cap U_m = \emptyset$. Now

$$([U_1] \land \cdots \land [U_m]) \land \neg[U_1 \land \cdots \land U_m]$$

$$= [U_1] \land \cdots \land [U_m] \land \neg[\emptyset] \in I_1.$$

But $[\emptyset] \in I_1$, so $[U_1] \land \cdots \land [U_m] \in I_1$ as well.

Negative. $w = \neg[V_1] \land \cdots \land \neg[V_n] \in \text{Ker } h_1$. Then $(X - V_1)^2 \cap \cdots \cap (X - V_n)^2 = \emptyset$ iff some $V_k = X$. But $\neg[X] \in I_1$, so $w \in I_1$ too.

Mixed. $w = [U_1] \land \cdots \land [U_m] \land \neg[V_1] \land \cdots \land \neg[V_n] \subseteq \text{Ker } h_1$. Then

$$(U_1 \cap \cdots \cap U_m)^1 \cap (X - V_1)^2 \cap \cdots \cap (X - V_n)^2 = \emptyset.$$
whence $U_1 \cap \cdots \cap U_m \subseteq V_l$ for some $1 \leq l \leq n$. Thus $[U_1 \cap \cdots \cap U_m] \land \neg[V_l] \in I_1$ so $([U_1] \land \cdots \land [U_m]) \land \neg[V_l] \in I_1$ and therefore $w \in I_1$.

The proof that $\ker h_2 = I_2$ is similar.

(iii) This follows straightforwardly from (ii).

(iv) This is proved in the same way as (ii). □

REFERENCES

1. D. Curtis and R. Schori, 2^x and $C(X)$ are homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc. 80 (1974), 927–931.

DEPARTMENT OF MATHEMATICS, McMaster University, Hamilton, Ontario, Canada