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DEFINING TOPOLOGICAL PROPERTIES VIA

INTERACTIVE MAPPING CLASSES

PAUL BANKSTON

Abstract. We show that a compactum is locally connected if and only
if every semimonotone mapping onto it is also monotone. If we put
open in place of monotone, we obtain the finite compacta; if we put in
confluent, we obtain a large class of compacta, the connected members
of which are connected im kleinen at each of their cut points.

1. introduction

In what follows, a compactum is a nonempty compact Hausdorff space and
a continuum is a compactum that is connected. We use the words map

and mapping to refer to continuous functions between topological spaces; a
mapping f : X → Y between compacta is:

• open if the image f [U ] of an open subset U of X is open in Y ;
• monotone if the pre-image f−1[K] of a subcontinuum K of Y is a

subcontinuum of X;
• semimonotone if whenever K is a subcontinuum of Y , there is a

subcontinuum C of X such that f [C] = K and such that f−1[U ] ⊆ C
for every open set U contained in K; and

• confluent if whenever K is a subcontinuum of Y , each component of
f−1[K] is mapped by f onto K.

Remark 1.1. Clearly monotone mappings are semimonotone and confluent;
and it is well known [11], if not obvious, that open mappings are confluent.
The definition of semimonotonicity seems to be new, and is motivated by
model-theoretic considerations. (See the discussion preceding Proposition
2.1.) Note that once the condition on open sets is removed, we obtain the
classical notion of weak confluence.
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Continuum theorists (see, e.g., [6] and [11]) have long been interested in
characterizing when a continuum is the image of other continua under map-
pings of only a certain kind. For example, there is the very satisfying result
that a (metrizable) continuum Y is only a confluent image of other (metriz-
able) continua if and only if Y is hereditarily indecomposable [10]. In this
paper, we extend this idea a little and introduce the notation Class (K;F,G),
where K is a class of compacta and F, G are classes of mappings, to indicate
those compacta Y ∈ K such that whenever X ∈ K and f : X → Y is a
surjective mapping in F, then f is also in G. In continuum theory, attention
has been traditionally confined to when K is the class of (metrizable) con-
tinua, F consists if the continuous functions, and G varies among important
subclasses of F that contain the monotone maps. [For example the notation
Class (C) is typically used to indicate this situation when G is the class of
confluent mappings.] In this paper we partially maintain the tradition; the
only deviation we make is to fix F as the class of semimonotone mappings.
In the next three sections, we then consider G to be the classes of monotone,
open, and confluent mappings, respectively.

2. when semimonotone mappings are monotone

Since we are taking F to be the semimonotone mappings, and since even
weakly confluent mappings both preserve and reflect connectedness, we
need only concern ourselves with fixing K to be the class of all compacta.
In this section we show that when G is the class of monotone mappings,
Class (K;F,G) is the class of locally connected compacta.

In [1] we introduced the co-existential mappings between compacta, in
precise dualized analogy with the existential embeddings between relational
structures in model theory. While existential embeddings are defined in
terms of the satisfaction relation, they may be characterized in terms of
ultrapowers (see, e.g., [5]). The ultrapower construction has a unique dual
construction in the compact Hausdorff context, namely the topological ul-
tracopower; and this enables the re-interpretation of existential embedding

as a special property of surjective mappings.
To begin, we may define the ultracopower in a familiar topological fashion

as follows. Given a compactum Y and a topologically discrete space I (the
index set), we let p : Y × I → Y and q : Y × I → I be the standard
projection maps. Then there are the Stone-Čech liftings pβ : β(Y × I) → Y
and qβ : β(Y × I) → β(I); and if D is an ultrafilter on I, i.e., a point in
β(I), we define the D-ultracopower YD to be the pre-image of {D} under
the mapping qβ. A closed-set ultrafilter µ ∈ β(Y × I) is in YD just in case⋃

i∈I(Ci ×{i}) ∈ µ for each I-indexed sequence 〈Ci : i ∈ I〉 of closed subsets

of Y for which {i ∈ I : Ci = Y } ∈ D. The restriction of pβ to YD is the
associated codiagonal mapping, denoted pD, and is indeed surjective.
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YD is very much “like” Y in certain ways (e.g., same covering dimension),
but remarkably “unlike” Y in certain others (e.g., higher weight). See [3]
for details.

A mapping f : X → Y is then called co-existential if there is an ultra-
copower YD of Y and a surjective map g : YD → X, such that f ◦ g = pD.
Trivially, codiagonal mappings are co-existential; the reader is referred to [4]
for a summary of the many ways in which co-existential mappings “occur in
nature.” A weak corollary of Theorem 2.4 in [2] is the following.

Proposition 2.1. Co-existential mappings are semimonotone.

The fact that co-existential mappings to locally connected compacta are
monotone has been known for years (see Theorem 2.7 in [2]); it is precisely
semimonotonicity that one needs. So the first half of our characterization
of local connectedness is as follows.

Proposition 2.2. Let f : X → Y be a semimonotone mapping between

compacta. If Y is locally connected, then f is monotone.

Proof. First note that, since Y is a compactum, all we have to do is show
f−1(y) (abbreviating f−1[{y}]) is connected for each y ∈ Y . So if Uy is an
open neighborhood base for y ∈ Y consisting of connected sets and U ∈ Uy,
we may use semimonotonicity to choose a subcontinuum CU ⊇ f−1[U ] such
that f [CU ] = U (overline denoting closure in Y ). Clearly f−1(y) ⊆

⋂
{CU :

U ∈ Uy}; if x /∈ f−1(y) then there is some V ∈ Uy with f(x) /∈ V . Thus
x /∈ CV , and we have x /∈

⋂
{CU : U ∈ Uy}. f−1(y) =

⋂
{CU : U ∈ Uy} is

therefore connected, since {CU : U ∈ Uy} is a family of subcontinua of X
that is directed under reverse inclusion. Indeed, if U, V ∈ Uy, we may pick

W ∈ Uy such that W ⊆ U ∩V . Then CW ⊆ f−1[U ∩V ] = f−1[U ]∩f−1[V ] ⊆
CU ∩ CV .

�

For the second half of our characterization, we need some notation. Suppose
〈Si : i ∈ I〉 is an I-indexed family of subsets of a compactum Y , with D an
ultrafilter on I. Then

∑
D

Si denotes the set of all µ ∈ YD such that some
member of µ is contained in

⋃
i∈I(Si × {i}). When each Si is closed in Y ,

∑
D

Si is the closed set YD∩
⋃

i∈I(Si × {i}) (where overline indicates closure
in β(Y × I)). If each Si is open in Y , so too is

∑
D

Si = YD \
∑

D
(Y \ Si).

If all sets Si are equal to one set S, then
∑

D
Si is denoted SD; if each

Si is a singleton consisting of one point xi, then
∑

D
Si is denoted

∑
D

xi.
(xD ∈ YD, then, has its obvious meaning for x ∈ Y .) Finally, if µ ∈ YD and
x ∈ Y , then x = pD(µ) if and only if, for each open neighborhood U of x in
Y , we have µ ∈ UD. So, not unexpectedly, pD(xD) = x.
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Proposition 2.3. Let Y be a compactum that is not locally connected. Then

there is an ultracopower of Y whose codiagonal mapping is not monotone.

Proof. Suppose Y is a compactum that is not locally connected. Then there
is a point x ∈ Y at which Y is not connected im kleinen (see, e.g., [9]).
This means there is an open neighborhood U of x such that for any open
neighborhood V of x contained in U , there is some y ∈ V such that no
subcontinuum of U contains both x and y. Fix open W such that x ∈ W ⊆
W ⊆ U . Then for any open V with x ∈ V ⊆ W , there is some yV ∈ V such
that no subcontinuum of W contains both x and yV . Now, since W is a
compactum, these points yV are not in the same quasicomponent of W as
is x. Thus for each V as above, there is a set HV , clopen in W , such that
yV ∈ HV and x 6∈ HV .

Now let 〈Vi : i ∈ I〉 be an indexed collection of all open neighborhoods of
x in X. Then, by the argument above, we have an open neighborhood W
of x and indexed collections 〈Hi : i ∈ I〉 and 〈yi : i ∈ I〉 such that, for each
i ∈ I: Hi is clopen in W ; yi ∈ Hi ∩ Vi; and x 6∈ Hi.

For each i ∈ I let i+ := {j ∈ I : Vj ⊆ Vi}. Then clearly, by the fact
that the sets Vi form a neighborhood base at x, the collection {i+ : i ∈ I}
satisfies the finite intersection property and is hence contained in an ultra-
filter D on I. It is now straightforward to show the following four assertions:

(1)
∑

D
Hi is a clopen subset of WD.

(2) p−1
D

(x) ⊆ WD.

(3) xD ∈ p−1
D

(x) \
∑

D
Hi.

(4)
∑

D
yi ∈ p−1

D
(x) ∩

∑
D

Hi.

Except for the assertion that
∑

D
yi ∈ p−1

D
(x), all the others hold just

because D is an ultrafilter on I. We infer that pD(
∑

D
yi) = x because if U

is any open neighborhood of x, say U = Vi0 , then {i ∈ I : yi ∈ U} ⊇ i+0 , and
thus is a member of D. So

∑
D

yi ∈ UD.

These four assertions immediately imply that p−1
D

(x) is disconnected;
hence the codiagonal mapping cannot be monotone.

�

3. when semimonotone mappings are open

Every mapping to a discrete space is open, and in the compact Hausdorff
setting, discrete means finite. Since this is a very restrictive class of spaces,
it is natural to ask whether infinite compacta always admit semimonotone
mappings that are not open. There are several possible arguments to show
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an affirmative answer; one of the simplest is the proof of the following.

Proposition 3.1. Let Y be an infinite compactum. Then there is an ultra-

copower of Y whose codiagonal mapping is not open.

Proof. Suppose Y is an infinite compactum. Then there is a point x ∈ Y
that is not isolated. Let 〈Vi : i ∈ I〉 be an indexed collection of all open
neighborhoods of x in Y ; for each i ∈ I, let i+ := {j ∈ I : Vj ⊆ Vi}.
As in the proof of Proposition 2.3, let D be an ultrafilter on I extending
{i+ : i ∈ I}. Then

∑
D

Vi is an open neighborhood of xD in YD. Suppose
µ ∈

∑
D

Vi. Let U be any open neighborhood of x; say U = Vi. Then
{j ∈ I : Vj ⊆ U} = i+ ∈ D, so

∑
D

Vj ⊆ UD. This tells us that pD(µ) = x;
hence the codiagonal map takes an open set to a nonisolated point and is
therefore not an open mapping.

�

4. when semimonotone mappings are confluent

When K is the class of all compacta, F the class of semimonotone map-
pings, and G the class of confluent mappings, Class (K;F,G) is a very large
subclass of K, which includes: (i) the locally connected compacta (from
Propositions 2.2 and 2.3); (ii) the zero-dimensional compacta (easy exer-
cise: a compactum is zero-dimensional if and only if every mapping from a
compactum onto it is confluent); and (iii) the hereditarily indecomposable
continua [10]. While we do not at present have anything like a character-
ization of Class (K;F,G), we do know it is not all of K. This is a trivial
consequence of the following analogue of Propositions 2.3 and 3.1, which
itself is both a strengthening and a simplification of Theorem 5.1 in [4]. Re-
call that a point c of a continuum Y is a cut point if Y \{c} is disconnected.

Proposition 4.1. Let Y be a continuum that is not connected im kleinen at

some of its cut points. Then there is an ultracopower of Y whose codiagonal

mapping is not confluent.

Proof. Suppose Y is a continuum that is not connected im kleinen (abbre-
viated c.i.k.) at a cut point c ∈ Y . If B is a clopen subset of Y \ {c}, then
B ∪ {c} is connected; hence we may write Y = M ∪N , where M and N are
nondegenerate subcontinua of Y , with M ∩ N = {c}.

Suppose, for the moment, that both M and N are c.i.k. at c. If U
is an open neighborhood of c in Y , then there are sets VM ⊆ U ∩ M and
VN ⊆ U∩N , open neighborhoods of c in M and N respectively, such that for
any x ∈ VM (resp., x ∈ VN ), there is a subcontinuum of U∩M (resp., U∩N)
that contains both c and x. But VM ∪ VN ⊆ U is an open neighborhood of
c in Y ; hence we have shown that Y is c.i.k. at c.
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So if Y fails to be c.i.k. at the cut point c, then either M or N does as
well; say it is M . By the proof of Proposition 2.3, there is an ultracopower
YD of Y such that p−1

D
(c)∩MD is disconnected. Now it is easy to show that

YD = MD ∪ ND and MD ∩ ND = {cD}. Hence pD maps a component of
p−1
D

[N ] to {c}, and thus cannot be confluent.
�

Remark 4.2. As mentioned earlier, ultracopowers of a compactum Y are
similar to Y in many respects, with one major exception being weight. In
particular, YD is almost never metrizable. This situation may be remedied
in Propositions 2.3, 3.1 and 4.1, however, with the aid of model-theoretic
techniques—particularly the Löwenheim-Skolem theorem—applied to lat-
tices of closed sets (see, e.g., Theorem 3.1 in [2]; also [7] and [8]). Instead
of ultracopower codiagonal maps, we obtain mappings f : X → Y , where
X is a compactum of the same weight as Y and f is “just as good as”
pD, in the sense that it is a co-elementary map: there is a homeomorphism
h : XD → YE of ultracopowers such that f ◦ pD = pE ◦ h.
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