Topology Proceedings

Vol. 34 (2009),39–45

DEFINING TOPOLOGICAL PROPERTIES VIA INTERACTIVE MAPPING CLASSES

PAUL BANKSTON

ABSTRACT. We show that a compactum is locally connected if and only if every semimonotone mapping onto it is also monotone. If we put *open* in place of *monotone*, we obtain the finite compacta; if we put in *confluent*, we obtain a large class of compacta, the connected members of which are connected *im kleinen* at each of their cut points.

1. INTRODUCTION

In what follows, a *compactum* is a nonempty compact Hausdorff space and a *continuum* is a compactum that is connected. We use the words *map* and *mapping* to refer to continuous functions between topological spaces; a mapping $f: X \to Y$ between compacta is:

- open if the image f[U] of an open subset U of X is open in Y;
- monotone if the pre-image $f^{-1}[K]$ of a subcontinuum K of Y is a subcontinuum of X;
- semimonotone if whenever K is a subcontinuum of Y, there is a subcontinuum C of X such that f[C] = K and such that $f^{-1}[U] \subseteq C$ for every open set U contained in K; and
- confluent if whenever K is a subcontinuum of Y, each component of $f^{-1}[K]$ is mapped by f onto K.

Remark 1.1. Clearly monotone mappings are semimonotone and confluent; and it is well known [11], if not obvious, that open mappings are confluent. The definition of semimonotonicity seems to be new, and is motivated by model-theoretic considerations. (See the discussion preceding Proposition 2.1.) Note that once the condition on open sets is removed, we obtain the classical notion of *weak confluence*.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C10; Secondary 03C20,54F15.

Key words and phrases. co-existential maps, monotone maps, semimonotone maps, open maps, confluent maps, ultracopowers, locally connected compacta.

PAUL BANKSTON

Continuum theorists (see, e.g., [6] and [11]) have long been interested in characterizing when a continuum is the image of other continua under mappings of only a certain kind. For example, there is the very satisfying result that a (metrizable) continuum Y is only a confluent image of other (metrizable) continua if and only if Y is hereditarily indecomposable [10]. In this paper, we extend this idea a little and introduce the notation Class $(\mathfrak{K}; \mathfrak{F}, \mathfrak{G})$, where \mathfrak{K} is a class of compacta and $\mathfrak{F}, \mathfrak{G}$ are classes of mappings, to indicate those compacta $Y \in \mathfrak{K}$ such that whenever $X \in \mathfrak{K}$ and $f: X \to Y$ is a surjective mapping in \mathfrak{F} , then f is also in \mathfrak{G} . In continuum theory, attention has been traditionally confined to when \mathfrak{K} is the class of (metrizable) continua, \mathfrak{F} consists if the continuous functions, and \mathfrak{G} varies among important subclasses of \mathfrak{F} that contain the monotone maps. For example the notation Class (C) is typically used to indicate this situation when \mathfrak{G} is the class of confluent mappings.] In this paper we partially maintain the tradition; the only deviation we make is to fix \mathfrak{F} as the class of semimonotone mappings. In the next three sections, we then consider \mathfrak{G} to be the classes of monotone, open, and confluent mappings, respectively.

2. WHEN SEMIMONOTONE MAPPINGS ARE MONOTONE

Since we are taking \mathfrak{F} to be the semimonotone mappings, and since even weakly confluent mappings both preserve and reflect connectedness, we need only concern ourselves with fixing \mathfrak{K} to be the class of all compacta. In this section we show that when \mathfrak{G} is the class of monotone mappings, Class ($\mathfrak{K}; \mathfrak{F}, \mathfrak{G}$) is the class of locally connected compacta.

In [1] we introduced the co-existential mappings between compacta, in precise dualized analogy with the existential embeddings between relational structures in model theory. While existential embeddings are *defined* in terms of the satisfaction relation, they may be *characterized* in terms of ultrapowers (see, e.g., [5]). The ultrapower construction has a unique dual construction in the compact Hausdorff context, namely the topological ultracopower; and this enables the re-interpretation of *existential embedding* as a special property of surjective mappings.

To begin, we may define the ultracopower in a familiar topological fashion as follows. Given a compactum Y and a topologically discrete space I (the index set), we let $p: Y \times I \to Y$ and $q: Y \times I \to I$ be the standard projection maps. Then there are the Stone-Čech liftings $p^{\beta}: \beta(Y \times I) \to Y$ and $q^{\beta}: \beta(Y \times I) \to \beta(I)$; and if \mathcal{D} is an ultrafilter on I, i.e., a point in $\beta(I)$, we define the \mathcal{D} -ultracopower $Y_{\mathcal{D}}$ to be the pre-image of $\{\mathcal{D}\}$ under the mapping q^{β} . A closed-set ultrafilter $\mu \in \beta(Y \times I)$ is in $Y_{\mathcal{D}}$ just in case $\bigcup_{i \in I} (C_i \times \{i\}) \in \mu$ for each I-indexed sequence $\langle C_i: i \in I \rangle$ of closed subsets of Y for which $\{i \in I: C_i = Y\} \in \mathcal{D}$. The restriction of p^{β} to $Y_{\mathcal{D}}$ is the associated codiagonal mapping, denoted $p_{\mathcal{D}}$, and is indeed surjective. $Y_{\mathcal{D}}$ is very much "like" Y in certain ways (e.g., same covering dimension), but remarkably "unlike" Y in certain others (e.g., higher weight). See [3] for details.

A mapping $f: X \to Y$ is then called *co-existential* if there is an ultracopower $Y_{\mathcal{D}}$ of Y and a surjective map $g: Y_{\mathcal{D}} \to X$, such that $f \circ g = p_{\mathcal{D}}$. Trivially, codiagonal mappings are co-existential; the reader is referred to [4] for a summary of the many ways in which co-existential mappings "occur in nature." A weak corollary of Theorem 2.4 in [2] is the following.

Proposition 2.1. Co-existential mappings are semimonotone.

The fact that co-existential mappings to locally connected compacta are monotone has been known for years (see Theorem 2.7 in [2]); it is precisely semimonotonicity that one needs. So the first half of our characterization of local connectedness is as follows.

Proposition 2.2. Let $f : X \to Y$ be a semimonotone mapping between compacta. If Y is locally connected, then f is monotone.

Proof. First note that, since Y is a compactum, all we have to do is show $f^{-1}(y)$ (abbreviating $f^{-1}[\{y\}]$) is connected for each $y \in Y$. So if \mathcal{U}_y is an open neighborhood base for $y \in Y$ consisting of connected sets and $U \in \mathcal{U}_y$, we may use semimonotonicity to choose a subcontinuum $C_U \supseteq f^{-1}[U]$ such that $f[C_U] = \overline{U}$ (overline denoting closure in Y). Clearly $f^{-1}(y) \subseteq \bigcap \{C_U : U \in \mathcal{U}_y\}$; if $x \notin f^{-1}(y)$ then there is some $V \in \mathcal{U}_y$ with $f(x) \notin \overline{V}$. Thus $x \notin C_V$, and we have $x \notin \bigcap \{C_U : U \in \mathcal{U}_y\}$. $f^{-1}(y) = \bigcap \{C_U : U \in \mathcal{U}_y\}$ is therefore connected, since $\{C_U : U \in \mathcal{U}_y\}$ is a family of subcontinua of X that is directed under reverse inclusion. Indeed, if $U, V \in \mathcal{U}_y$, we may pick $W \in \mathcal{U}_y$ such that $\overline{W} \subseteq U \cap V$. Then $C_W \subseteq f^{-1}[U \cap V] = f^{-1}[U] \cap f^{-1}[V] \subseteq C_U \cap C_V$.

For the second half of our characterization, we need some notation. Suppose $\langle S_i : i \in I \rangle$ is an *I*-indexed family of subsets of a compactum *Y*, with \mathcal{D} an ultrafilter on *I*. Then $\sum_{\mathcal{D}} S_i$ denotes the set of all $\mu \in Y_{\mathcal{D}}$ such that some member of μ is contained in $\bigcup_{i \in I} (S_i \times \{i\})$. When each S_i is closed in *Y*, $\sum_{\mathcal{D}} S_i$ is the closed set $Y_{\mathcal{D}} \cap \overline{\bigcup_{i \in I} (S_i \times \{i\})}$ (where overline indicates closure in $\beta(Y \times I)$). If each S_i is open in *Y*, so too is $\sum_{\mathcal{D}} S_i = Y_{\mathcal{D}} \setminus \sum_{\mathcal{D}} (Y \setminus S_i)$. If all sets S_i are equal to one set *S*, then $\sum_{\mathcal{D}} S_i$ is denoted $S_{\mathcal{D}}$; if each S_i is a singleton consisting of one point x_i , then $\sum_{\mathcal{D}} S_i$ is denoted $\sum_{\mathcal{D}} x_i$. $(x_{\mathcal{D}} \in Y_{\mathcal{D}}, \text{then}, \text{ has its obvious meaning for } x \in Y$.) Finally, if $\mu \in Y_{\mathcal{D}}$ and $x \in Y$, then $x = p_{\mathcal{D}}(\mu)$ if and only if, for each open neighborhood *U* of *x* in *Y*, we have $\mu \in U_{\mathcal{D}}$. So, not unexpectedly, $p_{\mathcal{D}}(x_{\mathcal{D}}) = x$.

PAUL BANKSTON

Proposition 2.3. Let Y be a compactum that is not locally connected. Then there is an ultracopower of Y whose codiagonal mapping is not monotone.

Proof. Suppose Y is a compactum that is not locally connected. Then there is a point $x \in Y$ at which Y is not connected *im kleinen* (see, e.g., [9]). This means there is an open neighborhood U of x such that for any open neighborhood V of x contained in U, there is some $y \in V$ such that no subcontinuum of U contains both x and y. Fix open W such that $x \in W \subseteq$ $\overline{W} \subseteq U$. Then for any open V with $x \in V \subseteq \overline{W}$, there is some $y_V \in V$ such that no subcontinuum of \overline{W} contains both x and y_V . Now, since \overline{W} is a compactum, these points y_V are not in the same quasicomponent of \overline{W} as is x. Thus for each V as above, there is a set H_V , clopen in \overline{W} , such that $y_V \in H_V$ and $x \notin H_V$.

Now let $\langle V_i : i \in I \rangle$ be an indexed collection of all open neighborhoods of x in X. Then, by the argument above, we have an open neighborhood W of x and indexed collections $\langle H_i : i \in I \rangle$ and $\langle y_i : i \in I \rangle$ such that, for each $i \in I$: H_i is clopen in \overline{W} ; $y_i \in H_i \cap V_i$; and $x \notin H_i$.

For each $i \in I$ let $i^+ := \{j \in I : V_j \subseteq V_i\}$. Then clearly, by the fact that the sets V_i form a neighborhood base at x, the collection $\{i^+ : i \in I\}$ satisfies the finite intersection property and is hence contained in an ultra-filter \mathcal{D} on I. It is now straightforward to show the following four assertions:

- (1) $\sum_{\mathcal{D}} H_i$ is a clopen subset of $\overline{W}_{\mathcal{D}}$.
- (2) $p_{\mathcal{D}}^{-1}(x) \subseteq \overline{W}_{\mathcal{D}}.$
- (3) $x_{\mathcal{D}} \in p_{\mathcal{D}}^{-1}(x) \setminus \sum_{\mathcal{D}} H_i.$
- (4) $\sum_{\mathcal{D}} y_i \in p_{\mathcal{D}}^{-1}(x) \cap \sum_{\mathcal{D}} H_i.$

Except for the assertion that $\sum_{\mathcal{D}} y_i \in p_{\mathcal{D}}^{-1}(x)$, all the others hold just because \mathcal{D} is an ultrafilter on I. We infer that $p_{\mathcal{D}}(\sum_{\mathcal{D}} y_i) = x$ because if Uis any open neighborhood of x, say $U = V_{i_0}$, then $\{i \in I : y_i \in U\} \supseteq i_0^+$, and thus is a member of \mathcal{D} . So $\sum_{\mathcal{D}} y_i \in U_{\mathcal{D}}$.

These four assertions immediately imply that $p_{\mathcal{D}}^{-1}(x)$ is disconnected; hence the codiagonal mapping cannot be monotone.

3. WHEN SEMIMONOTONE MAPPINGS ARE OPEN

Every mapping to a discrete space is open, and in the compact Hausdorff setting, discrete means finite. Since this is a very restrictive class of spaces, it is natural to ask whether infinite compact always admit semimonotone mappings that are not open. There are several possible arguments to show

4

an affirmative answer; one of the simplest is the proof of the following.

Proposition 3.1. Let Y be an infinite compactum. Then there is an ultracopower of Y whose codiagonal mapping is not open.

Proof. Suppose Y is an infinite compactum. Then there is a point $x \in Y$ that is not isolated. Let $\langle V_i : i \in I \rangle$ be an indexed collection of all open neighborhoods of x in Y; for each $i \in I$, let $i^+ := \{j \in I : V_j \subseteq V_i\}$. As in the proof of Proposition 2.3, let \mathcal{D} be an ultrafilter on I extending $\{i^+ : i \in I\}$. Then $\sum_{\mathcal{D}} V_i$ is an open neighborhood of $x_{\mathcal{D}}$ in $Y_{\mathcal{D}}$. Suppose $\mu \in \sum_{\mathcal{D}} V_i$. Let U be any open neighborhood of x; say $U = V_i$. Then $\{j \in I : V_j \subseteq U\} = i^+ \in \mathcal{D}$, so $\sum_{\mathcal{D}} V_j \subseteq U_{\mathcal{D}}$. This tells us that $p_{\mathcal{D}}(\mu) = x$; hence the codiagonal map takes an open set to a nonisolated point and is therefore not an open mapping.

4. WHEN SEMIMONOTONE MAPPINGS ARE CONFLUENT

When \mathfrak{K} is the class of all compacta, \mathfrak{F} the class of semimonotone mappings, and \mathfrak{G} the class of confluent mappings, Class $(\mathfrak{K}; \mathfrak{F}, \mathfrak{G})$ is a very large subclass of \mathfrak{K} , which includes: (i) the locally connected compacta (from Propositions 2.2 and 2.3); (ii) the zero-dimensional compacta (easy exercise: a compactum is zero-dimensional if and only if every mapping from a compactum onto it is confluent); and (iii) the hereditarily indecomposable continua [10]. While we do not at present have anything like a characterization of Class $(\mathfrak{K}; \mathfrak{F}, \mathfrak{G})$, we do know it is not all of \mathfrak{K} . This is a trivial consequence of the following analogue of Propositions 2.3 and 3.1, which itself is both a strengthening and a simplification of Theorem 5.1 in [4]. Recall that a point c of a continuum Y is a *cut point* if $Y \setminus \{c\}$ is disconnected.

Proposition 4.1. Let Y be a continuum that is not connected im kleinen at some of its cut points. Then there is an ultracopower of Y whose codiagonal mapping is not confluent.

Proof. Suppose Y is a continuum that is not connected *im kleinen* (abbreviated c.i.k.) at a cut point $c \in Y$. If B is a clopen subset of $Y \setminus \{c\}$, then $B \cup \{c\}$ is connected; hence we may write $Y = M \cup N$, where M and N are nondegenerate subcontinua of Y, with $M \cap N = \{c\}$.

Suppose, for the moment, that both M and N are c.i.k. at c. If U is an open neighborhood of c in Y, then there are sets $V_M \subseteq U \cap M$ and $V_N \subseteq U \cap N$, open neighborhoods of c in M and N respectively, such that for any $x \in V_M$ (resp., $x \in V_N$), there is a subcontinuum of $U \cap M$ (resp., $U \cap N$) that contains both c and x. But $V_M \cup V_N \subseteq U$ is an open neighborhood of c in Y; hence we have shown that Y is c.i.k. at c.

PAUL BANKSTON

So if Y fails to be c.i.k. at the cut point c, then either M or N does as well; say it is M. By the proof of Proposition 2.3, there is an ultracopower $Y_{\mathcal{D}}$ of Y such that $p_{\mathcal{D}}^{-1}(c) \cap M_{\mathcal{D}}$ is disconnected. Now it is easy to show that $Y_{\mathcal{D}} = M_{\mathcal{D}} \cup N_{\mathcal{D}}$ and $M_{\mathcal{D}} \cap N_{\mathcal{D}} = \{c_{\mathcal{D}}\}$. Hence $p_{\mathcal{D}}$ maps a component of $p_{\mathcal{D}}^{-1}[N]$ to $\{c\}$, and thus cannot be confluent.

Remark 4.2. As mentioned earlier, ultracopowers of a compactum Y are similar to Y in many respects, with one major exception being weight. In particular, $Y_{\mathcal{D}}$ is almost never metrizable. This situation may be remedied in Propositions 2.3, 3.1 and 4.1, however, with the aid of model-theoretic techniques—particularly the Löwenheim-Skolem theorem—applied to lattices of closed sets (see, e.g., Theorem 3.1 in [2]; also [7] and [8]). Instead of ultracopower codiagonal maps, we obtain mappings $f: X \to Y$, where X is a compactum of the same weight as Y and f is "just as good as" $p_{\mathcal{D}}$, in the sense that it is a *co-elementary* map: there is a homeomorphism $h: X_{\mathcal{D}} \to Y_{\mathcal{E}}$ of ultracopowers such that $f \circ p_{\mathcal{D}} = p_{\mathcal{E}} \circ h$.

References

- P. Bankston, A hierarchy of maps between compacta, J. Symbolic Logic, 64 (1999), 1628–1644.
- [2] _____, Some applications of the ultrapower theorem to the theory of compacta, Applied Categorical Structures, 8 (2000) (special issue in honour of the 70th birthday of Bernhard Banaschewski), 45–66.
- [3] _____, A survey of ultraproduct constructions in general topology, Topology Atlas Invited Contributions 8 (2003), 1–32 (http://at.yorku.ca/t/a/i/c/48.htm).
- [4] _____, Not every co-existential map is confluent, Houston J. Math. (to appear). (http://mscs.mu.edu/~paulb/Paper/conf.pdf)
- [5] C[hen] C[hung] Chang and H. J. Keisler, *Model Theory*, third ed., North Holland, Amsterdam, 1990.
- [6] J. Grispolakis and E. D. Tymchatyn, Continua which admit only certain classes of onto mappings, Topology Proceedings, 3, (1978), 347–362.
- [7] R. Gurevič, On ultracoproducts of compact Hausdorff spaces, J. Symbolic Logic, 53 (1988), 240–300.
- [8] K. P. Hart, *Elementarity and dimensions*, Mathematical Notes, **78** (2005), 264–269.
- [9] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, MA, 1961.
- [10] A. Lelek and D. R. Read, Compositions of confluent mappings and some other classes of functions, Colloq. Math. 29 (1974), 101–112.
- [11] S. B. Nadler, Jr., Continuum Theory, an Introduction, Marcel Dekker, New York, 1992.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, MARQUETTE UNIVERSITY, MILWAUKEE, WI 53201-1881, U.S.A.

E-mail address: paulb@mscs.mu.edu