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The following quotient theorem is well known: Every (not necessarily metrizable) 
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infinite cardinal α, we may arrange for Y to have at least α composants. 
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add that Y has as many composants as it has points. Another ultracoproduct 
argument allows us to conclude that each nondegenerate continuum X is a co-
elementary image of a continuum Y with at least two nonblock points. And if we 
invoke GCH, we may arrange for Y to be spanned by its set of nonblock points. We 
also pay attention to the “size” of the continuum Y , relative to that of X (and α).
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1. Introduction

In the present context, continua are connected compact Hausdorff spaces that are not necessarily metriz-
able. By a quotient theorem for continua we mean a statement of the rough form: Every continuum X (with 
restrictions possible) is a “special image” of a “special continuum” Y .

Quotient theorems are dual (in the category-theoretic sense) to embedding theorems; here are some 
classical examples. (Please refer to Section 2 for specialized terminology.)

Theorem 1.1.

(1) [19, Theorem 2] Every continuum X is a retractive image of a continuum Y which is indecomposable 
and has ≥ 2 composants.

(2) [30, Theorem 2 and Corollary 2.1] For a given infinite cardinal α, every continuum X is a retractive 
image of a continuum Y which is indecomposable and has ≥ α composants.

(3) [20, Theorem 4.4] Every continuum X is a weakly confluent image of a continuum Y which is hereditarily 
indecomposable, has dimension one, and has weight equal to the weight w(X) of X.

This article presents four new quotient results; i.e., Theorems 1.2, 1.4, 1.8, and 1.9. The first two of these 
address the composant structure of continuum Y in item (3) above.

Theorem 1.2. For a given infinite cardinal α, every continuum X is a weakly confluent image of a con-
tinuum Y which is hereditarily indecomposable, has dimension one, has ≥ 2α composants, and has weight 
≤ 2(α·2w(X)).

Remarks 1.3.

(1) A metrizable version of Theorem 1.1 (1) was first proved by Bellamy in [12]. Bellamy’s pre-image Y is 
metrizable too–i.e., w(Y ) = w(X)-however, the version given by Gordh in [19] does not specify w(Y ). A 
cursory analysis of his construction yields w(Y ) ≤ |X|, but Smith [33] has recently been able to tweak 
the argument to obtain w(Y ) = w(X): where a well ordering of the points of X was originally used 
to create a “long line” as part of the construction, it is possible to well order a dense subset of X, of 
cardinality w(X), to the same end.

(2) In Smith’s construction proving Theorem 1.1 (2), an inverse limit involving the initial ordinal α as an 
index set is used, and Y actually has ≥ 2α composants. Moreover, an analysis of the construction reveals 
that w(Y ) ≤ α · w(X) (which, in ZFC, is just max{α, w(X)}).

(3) Theorems 1.1 (1, 2) may also be viewed as embedding theorems, as any retractive map entails an 
embedding in the opposite direction. Therefore it is not possible to place a blanket restriction on the 
dimension of the pre-image (à la Theorem 1.1 (3)) because the dimension of Y dominates that of (its 
closed subspace) X.

(4) The metrizable instance of Theorem 1.1 (3) was first proved by Maćkowiak and Tymchatyn in [25].
(5) The weakly confluent quotient map in Theorem 1.1 (3) cannot be upgraded to be retractive or confluent, 

as both kinds of mapping preserve hereditary indecomposability. If we restrict X to be hereditarily 
indecomposable, though, the map we get from Theorem 1.1 (3) is automatically confluent because all
mappings from continua onto hereditarily indecomposable continua are confluent [18]. The quotient 
cannot be retractive, even in this case, because of item (3) above.

Our second quotient theorem presents a version of Theorem 1.1 (3) in which the number of composants of 
Y is large, relative to the size of Y itself. Decomposable continua have at most three composants; hence only 
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indecomposable continua have any chance at possessing many. Since the composants of an indecomposable 
continuum form a partition, this suggests defining a continuum Y to be fine (resp., w-fine) if the number of 
its composants is the cardinality |Y | of Y (resp., ≥ w(Y )). For example, in Theorem 1.2, with α ≥ 2w(X), 
we see that Y is w-fine. Also, in Theorem 1.1 (2) (see Remark 1.3 (2)), with α ≥ w(X), the continuum Y
is of weight ≤ α and has ≥ 2α composants. Thus Y is fine.

Nondegenerate metrizable continua have weight ω and cardinality c := 2ω. Janiszewski and Kuratowski 
used a Baire category argument to prove–in the premier issue of Fundamenta Mathematicae [21]–that 
nondegenerate indecomposable metrizable continua have uncountably many composants, and are a fortiori
w-fine. A few years later, Mazurkiewicz [26] showed that the number of composants is actually c; hence 
we know that, for nondegenerate metrizable continua, the properties of being fine, being w-fine, and being 
indecomposable are equivalent.

On the other hand it is possible for an indecomposable nonmetrizable continuum to have just one or just 
two composants [13,31]. In addition, while it is unknown whether a nondegenerate hereditarily indecompos-
able continuum can have just one composant, it can have just two [32]. In view of this, we may safely add 
that Y is fine in the conclusion of Theorem 1.1 (3) in the metrizable case only.

The argument we use to prove Theorem 1.2 is inadequate for producing a continuum Y that is fine. In 
order to ensure this property, a very different approach–one involving the generalized continuum hypothesis 
(GCH)–seems to be required. And even with this powerful axiom we cannot add fineness of the pre-image 
to the conclusion of Theorem 1.1 (3) without a weight adjustment.

This brings us to the second of our quotient theorems.

Theorem 1.4. (GCH) For a given infinite cardinal α, every continuum X is a weakly confluent image of a 
continuum Y which is hereditarily indecomposable, has dimension one, is fine, and has weight 2(α·w(X)).

Remark 1.5. Fineness in a nonmetrizable continuum can be axiom-sensitive: Consider the Stone-Čech re-
mainder H∗ of the ray H := [0, ∞). This continuum is well known to be indecomposable, with weight c and 
cardinality 2c. If we assume the continuum hypothesis (CH) H∗ has 2c composants, and is therefore fine. 
[29]. However, under the near coherence of filters axiom (NCF, also equiconsistent with ZFC), there is but 
one composant [27]. In this set-theoretic universe, H∗ is very “coarse” indeed. (See also [15, Theorem 4.1].)

Before leaving the topic of Theorem 1.1 and its possible variants, there is another classical quotient 
theorem, related to Theorem 1.1 (2), but with the number of composants of the pre-image continuum being 
small rather than large. We include it here for its intrinsic interest.

Theorem 1.6. [31, Main Theorem] Every continuum X is a retractive image of a continuum Y which is 
indecomposable and has exactly one composant (or exactly two composants).

Remark 1.7. The metrizable instance of Theorem 1.6 was first proved by Bellamy in [13] (see the Corollary 
after Lemma 2). There is no mention of w(Y ) in that paper or in the general version given by Smith in 
[31]; however, Professor Smith [33] has since made a more careful analysis of the ω1-indexed inverse limit 
constructions used in both papers to conclude that w(Y ) = ω1 · w(X).

Our last two quotient theorems concern relative composants. Call a continuum X totally unblocked (resp., 
point-unblocked) if for each proper (resp., degenerate) subcontinuum K ⊆ X there is a point a ∈ X such 
that the relative composant κ(K; a), namely the union of all subcontinua of X containing K and missing a, 
is dense in X.

Theorem 1.8. Every nondegenerate continuum X is a co-elementary image of a continuum Y which is 
point-unblocked and of weight ≤ 2(2w(X)).
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As our final quotient theorem, we strengthen the conclusion above by again assuming GCH.

Theorem 1.9. (GCH) Every nondegenerate continuum X is a co-elementary image of a continuum Y which 
is totally unblocked and of weight 2w(X).

Bing showed [14, Theorem 5] that all metrizable continua are totally unblocked; however even being 
point-unblocked in general is consistently false [2, Theorem 4.8]. If the point a ∈ X is such that κ(K; a)
is dense for some subcontinuum K, then a is called a nonblock point. Nonblock points are “at the edge” 
of a continuum; in particular they are special noncut points (see [1–3,11,16,24]). If X is totally unblocked, 
then it is clearly spanned by its set of nonblock points; i.e., no proper subcontinuum of X contains all these 
points. If X is nondegenerate and merely point-unblocked, then it has at least two nonblock points: first 
arbitrarily pick x ∈ X; then let a ∈ X be such that κ({x}; a) is dense in X; finally let b ∈ X be such that 
κ({a}; b) is dense. Then a and b are distinct nonblock points of X.

Thus we have some immediate corollaries of Theorems 1.8 and 1.9.

Corollary 1.10.

(1) Every nondegenerate continuum X is a co-elementary image of a continuum Y which has at least two 
nonblock points.

(2) (GCH) Every nondegenerate continuum X is a co-elementary image of a continuum Y which is spanned 
by its set of nonblock points.

Remarks 1.11.

(1) If we take X above to be locally connected, then the co-elementary map is also monotone [7, Proposition 
2.1]. Co-elementary maps need not be monotone in general–or even confluent [10]–but they are always 
weakly confluent.

(2) As usually stated, the noncut point existence theorem asserts that each nondegenerate continuum 
contains at least two noncut points. However, as an immediate consequence of the standard proof [35], 
the set of noncut points of a continuum is always a spanning set.

(3) The results 1.8, 1.9, and 1.10 are not true for X a degenerate continuum, as co-elementary maps preserve 
nondegeneracy.

The main tool in producing our continua Y in the theorems above is the topological ultracoproduct con-
struction. We make explicit use of regular ultrafilters in proving Theorems 1.2 and 1.8; and in Theorems 1.4
and 1.9, good ultrafilters are featured. Also, in Theorems 1.2 and 1.8, we use classical results from model 
theory; namely the Löweinheim-Skolem theorem and the Keisler-Shelah isomorphism theorem.

The method of proof of Theorem 1.1 (1) uses a clever ad hoc construction; that of (2) involves inverse 
limits via an uncountable directed index set. This is also true of the proof of Theorem 1.6, but the proof 
of Theorem 1.1 (3) uses a mix of general topology and model theory. Our ultracoproduct method generally 
makes things bigger; hence it is useless as a method for proving results like Theorem 1.6.

Questions 1.12.

(1) Is there a version of Theorem 1.1 (3) where the weight of the hereditarily indecomposable pre-image Y
is (say) ω1 · w(X) and the number of composants of Y is guaranteed to be “small”?

(2) Is it possible to obtain smaller values for w(Y ) in Theorems 1.4, 1.8 and 1.9?
(3) Can one prove (without recourse to GCH) the existence of nonmetrizable fine continua that are heredi-

tarily indecomposable?
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2. Preliminaries

Our background set theory is ZFC, Zermelo-Fraenkel set theory plus the axiom of choice. In this setting 
it makes sense to speak of the cardinality |X| of a set X.

Infinite ordinals are indicated using lower-case Greek letters; as usual, cardinals are initial ordinals (i.e., 
not equinumerous with any smaller ordinal). The smallest infinite ordinal is ω := {0, 1, 2, . . . }, also a 
cardinal. Successive cardinals are denoted ω1, ω2, etc. If α is an infinite cardinal, 2α denotes the cardinality 
of the power set ℘(S) of any set S of cardinality α; on the other hand, α+ is the cardinal successor of α.

A fundamental truth is that the inequality α+ ≤ 2α always holds, but that the corresponding equality 
may fail. We use the symbol GCHα to express this equality. As usual, the continuum hypothesis (CH) is the 
statement GCHω; and the generalized continuum hypothesis (GCH) is the statement that asserts GCHα for 
all infinite cardinals α. Each GCHα is called an instance of GCH.

For a topological space X, w(X) denotes its weight; i.e., the least infinite cardinal λ such that X has an 
open-set (or closed-set) base of cardinality ≤ λ.

We use the term compactum to refer to a nonempty compact Hausdorff topological space; a compactum 
is a continuum if it is also connected. A (proper) subcompactum/subcontinuum of a space X is a (proper) 
subset which is a compactum/continuum in its subspace topology. A topological space with just one point 
is termed degenerate; it is nondegenerate if it has at least two points.

A subset S of a continuum X spans X (or, X is irreducible about S) if no proper subcontinuum of X
contains S. A continuum is irreducible if it has a two-point spanning set.

A continuous map f : Y → X between compacta is retractive if there is a continuous g : X → Y such 
that f ◦ g is the identity map on X. The map f is weakly confluent if each subcontinuum of X is the image 
under f of a subcontinuum of Y . Clearly retractive maps are weakly confluent, but the converse is easily 
shown to be false. As for co-elementary maps, these are “dual” to elementary embeddings in model theory 
and will be defined in the next section. Suffice it to say that co-elementary maps are weakly confluent maps 
(but not retractive in general) that preserve a host of properties of compacta.

Throughout this paper, dimension always refers to covering dimension, defined as follows. Given n ∈ ω, 
a compactum X is of dimension ≤ n if for each open cover U of X, there is a finite open cover V that refines 
U , and is such that each point of X lies in ≤ n + 1 sets in V. If compactum X is of dimension ≤ n for some 
n ∈ ω, then the least such n is the dimension of X. Having dimension zero is equivalent to being a Boolean 
space; for a nondegenerate continuum X, having dimension ≤ 1 is equivalent to being of dimension one.

A continuum is decomposable if it is the union of two of its proper subcontinua; indecomposable otherwise. 
The continuum is hereditarily indecomposable if each of its subcontinua is indecomposable; equivalently if 
any two of its subcontinua are either disjoint or setwise comparable.

Given a proper subcontinuum A of continuum X and S ⊆ X \ A, the composant at A relative to S is 
the union

κ(A;S) :=
⋃

{K : K is a proper subcontinuum of X and A ⊆ K ⊆ X \ S}.

The composant at a proper subcontinuum A is κ(A) := κ(A; ∅). As a consequence of boundary bumping 
[23, Theorem §47,III,4], the composant at any proper subcontinuum of X is dense in X. A composant of 
X is a composant at a point of X. Note that a continuum is irreducible if and only if it has at least two 
composants.

Clearly, if A ⊆ B are subcontinua, with B proper, then κ(A; S) ⊇ κ(B; S) for any S ⊆ X \B. Hence the 
composant at a proper subcontinuum is contained in the composant at any point of the subcontinuum.

If X is an indecomposable continuum and A is a proper subcontinuum, then κ(A) = κ(a) for any a ∈ A. 
(We drop curly brackets when either A or S is a singleton.) In this case the composants partition the 
continuum into dense subsets; the number of these subsets in nondegenerate metrizable continua is the 
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cardinality c := 2ω of the reals [26, Théorème 1]. In indecomposable continua of weight as “little” as ω1, 
however, the number of composants can be one or two (see [13,31,32]).

When κ(A; a) fails to be dense in X, we say a blocks A. If a blocks every subcontinuum of X \ {a}, then 
a is a block point of X; otherwise a is a nonblock point.

If each a ∈ X \A blocks A, we say that A is blocked; otherwise A is said to be unblocked.2 A continuum 
X is totally (un)blocked if each of its proper subcontinua is (un)blocked. The continuum is point-unblocked
if each of its degenerate subcontinua is unblocked.

An indecomposable continuum with at least two composants is totally unblocked, as any proper subcon-
tinuum must lie in one of the composants and no point from a different composant can block it. As mentioned 
in the paragraph following Theorem 1.9 above, all metrizable continua are totally unblocked; however this 
condition is consistently false [2, Theorem 4.8] in general: under NCF, the Stone-Čech remainder H∗, while 
being indecomposable, has but one composant and is also totally blocked. (On the other hand, a theorem 
of Rudin says that, under CH, H∗ has 2c composants–see [29], also [34, Theorem 9.23])–and is a fortiori
totally unblocked.)

3. The ultraproduct and ultracoproduct constructions

We employ the notation and terminology of [11] and related papers. Given a space X, we denote by F (X)
its bounded lattice of closed subsets, and by B(X) the sublattice of clopen subsets. A bounded sublattice A
of F (X) is a lattice base for X if each member of F (X) is an intersection of sets in A. So a compactum X is 
a Boolean space precisely when B(X) is a lattice base, and is a continuum precisely when B(X) = {∅, X}.

The topological ultraproduct/ultracoproduct constructions give us an important source of nonmetrizable 
topological spaces; they also provide an avenue for bringing model-theoretic methods into topology.

Definition 3.1.

(1) (Ultraproducts of Sets): Start with an infinite index set I (always assumed to be topologically discrete) 
and let �X = 〈Xi : i ∈ I〉 be an I-sequence of sets, with D an ultrafilter on I. A typical element of the 
Cartesian product of this I-sequence is itself an I-sequence of the form �x := 〈xi : i ∈ I〉, where xi ∈ Xi

for each i. If �x, �y are two such I-sequences, we write �x ∼D �y to mean that {i ∈ I : xi = yi} ∈ D. The 
∼D-equivalence class containing 〈xi : i ∈ I〉 is denoted �xD (or 

∏
D xi); the D-ultraproduct, denoted �XD

(or 
∏

D Xi), comprises these equivalence classes. If Ai ⊆ Xi for each i ∈ I, then �AD =
∏

D Ai has its 
obvious meaning, and is commonly referred to as an ultrabox in �XD. We thus identify �xD with 

∏
D{xi}.

(2) (Ultraproducts of Spaces): If each Xi is a topological space and �A = 〈Ai : i ∈ I〉 is an I-sequence 
of sets where each Ai is open/closed in Xi, then �AD is called an open/closed ultrabox. The topolog-
ical D-ultraproduct–also denoted �XD–has 

∏
D Xi for underlying set and all open ultraboxes for an 

open-set base; equivalently, all closed ultraboxes for a closed-set base. The assignment �x �→ �xD is a 
continuous open map from the Cartesian product–endowed with the box topology–onto the topological 
D-ultraproduct.

(3) (Ultracoproducts of Compacta): Let each Xi now be a compactum, with Ai a lattice base for Xi. Being a 
lattice base for a compactum is a first-order property of lattices (see [8]), and hence the Łoś ultraproduct 
theorem [17] tells us that the ultraproduct lattice 

∏
D Ai is a lattice base for a compactum X. Following 

the well-known Wallman construction, points of X are maximal filters of the lattice 
∏

D Ai. For each 
ultrabox 

∏
D Si in 

∏
D Xi, let (

∏
D Si)� be the set of μ ∈ X such that some member of μ is contained 

in 
∏

D Si. Then a typical basic closed set for X is of the form (
∏

D Ai)�, where 
∏

D Ai ∈
∏

D Ai. 
(
∏

D Ai is naturally identified with ultraboxes taken from the respective lattice bases.) Each inclusion 

2 Unblocked is also called coastal in [1,2,11].
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map Ai ⊆ F (Xi) induces a homeomorphism between the Wallman constructions based on 〈Ai : i ∈ I〉
and 〈F (Xi) : i ∈ I〉, respectively. Hence the construction is independent of choice of constituent lattice 
bases, and we now refer to it as the topological D-ultracoproduct �XD =

∑
D Xi of the I-sequence �X. 

For any �xD ∈ �XD, (�xD)� consists of exactly one point, which we denote �xD =
∑

D xi. The assignment 
�xD �→ �xD defines a topological embedding from �XD onto a dense subset of �XD. In this way we may 
view �XD as a dense subspace of �XD (or �XD as a compactification of �XD). Finally, when each closed 
Fi ⊆ Xi is regarded as a compactum, the closed set (

∏
D Fi)�, as a subspace, is naturally homeomorphic 

to the ultracoproduct 
∑

D Fi.

When each Xi is the same compactum X, then 
∏

D Xi and 
∑

D Xi are respectively known as the
D-ultrapower XD and the D-ultracopower XD of X. In this case there is a continuous surjection 
pD : XD → X, known as the codiagonal map: for μ ∈ XD, x = pD(μ) if and only if for each open 
neighborhood U of x in X, we have μ ∈ (UD)�. There is also a diagonal map dD : X → XD, defined 
by x �→ xD, the single element of {x}D. This function, rarely continuous, is a right-inverse for pD; i.e., 
pD(dD(x)) = x, for all x ∈ X. In the context of nonstandard analysis, the restriction of pD to XD is known 
as the standard part map from XD onto X.

A map f : X → Y is co-elementary if there are ultrafilters D and E , and a homeomorphism h : XD →
YE such that f ◦ pD = pE ◦ h. Prototypical examples of co-elementary maps are the codiagonal maps. 
Co-elementary maps preserve dimension, (hereditary) decomposability, and (hereditary) indecomposability. 
With the exception of hereditary decomposability, all these properties are also reflected (see [9]).

Remark 3.2. As the terminology suggests, ultracoproducts and ultraproducts are dual notions from the 
viewpoint of category theory (see [7,8]): while ultraproducts may be described as “direct limits of products,” 
ultracoproducts may be described dually as “inverse limits of coproducts.”

The following is a basic fact about ultracoproducts of compacta.

Lemma 3.3. [6, Lemma 4.6] Let 〈Xi : i ∈ I〉 be an I-sequence of compacta, with D an ultrafilter on I. Then: 
B(

∑
D Xi) is isomorphic to 

∏
D B(Xi). Consequently:

(1)
∑

D Xi is a Boolean space if and only if

{i ∈ I : Xi is a Boolean space} ∈ D.

(2)
∑

D Xi is a continuum if and only if

{i ∈ I : Xi is a continuum} ∈ D.

While many properties of compacta/continua fail to carry over to ultracoproducts–e.g., metrizability, 
number of composants–there are some key properties that do.

Lemma 3.4. Let 〈Xi : i ∈ I〉 be an I-sequence of compacta, with D an ultrafilter on I and n ∈ ω. Then:

(1) [9, Proposition 3.2]
∑

D Xi has dimension ≤ n if and only if

{i ∈ I : Xi has dimension ≤ n} ∈ D.

(2) [9, Theorems 4.5, 4.9]
∑

D Xi is an (hereditarily) indecomposable continuum if and only if

{i ∈ I : Xi is an (hereditarily) indecomposable continuum } ∈ D.
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4. Proof of Theorem 1.2

Lemma 4.1. Let Z be a continuum. Then there is an ultrafilter E, on an index set of cardinality 2w(Z), and 
a metrizable continuum M such that XE and ME are homeomorphic.

Proof. We refer the reader to the proof of [11, Theorem 4.7]. First one takes a lattice base A for Z, of 
cardinality w(Z), and then–by the Löweinheim-Skolem theorem [17, Theorem 3.1.6]–lets B be a countable 
elementary sublattice of A. Since being a lattice base for a compactum is a first-order property of lattices, 
there is a metrizable continuum M with a lattice base isomorphic to B. Both Z and M have elementarily 
equivalent lattice bases; hence, by the Keisler-Shelah isomorphism theorem (see [17, Theorem 6.1.15 and 
Exercise 6.1.11]), there is an ultrafilter E , on an index set of cardinality 2w(Z), such that ZE and ME are 
homeomorphic. �

Start with the nondegenerate continuum X, and apply Theorem 1.1 (3) to obtain g : Z → X, where Z
is hereditarily indecomposable, of dimension one, of weight w(X), and g is a weakly confluent map.

Lemma 4.2. There is an ultrafilter E such that ZE is an hereditarily indecomposable continuum, of dimension 
one, with infinitely many composants and weight ≤ 2(2w(X)).

Proof. Using Lemma 4.1, find an ultrafilter E , on an index set of cardinality 2w(X), and a metrizable 
continuum M such that ZE and ME are homeomorphic. Clearly we have w(ZE) ≤ 2(2w(X)).

By Lemma 3.4, M is an hereditarily indecomposable continuum of dimension one. Since M is also 
metrizable, it has infinitely many composants, so let T be a an infinite set which is a partial transversal; 
i.e., no two points of T lie in the same composant of M . (T may miss some composants.)

Consider the set T E ⊆ ME ⊆ ME . This set is infinite, and we are done once we prove it is a partial 
transversal for the continuum ME (also hereditarily indecomposable, of dimension one).

The continuum M is irreducible about any two points of T . Thus [11, Proposition 3.11] ME is irreducible 
about any two points of T E , and we conclude that ZE has infinitely many composants. �

An ultrafilter D on an infinite index set I is free if I \ {i} ∈ D for each i ∈ I; equivalently, if D consists 
of infinite sets only. The ultrafilter is countably incomplete if it is not closed under countable intersections; 
equivalently, if there is a nested sequence I0 ⊇ I1 ⊇ . . . of sets in D such that 

⋂∞
n=0 In = ∅. The ultrafilter 

D is regular if there exists a subfamily S ⊆ D such that |S| = |I| and {J ∈ S : i ∈ J} is finite for each 
i ∈ I. Regular ultrafilters are known to exist in abundance; each regular ultrafilter is countably incomplete, 
and each countably incomplete ultrafilter is free. If the index set is countable, all three notions coincide (see 
[17]).

Lemma 4.3. Suppose D is a regular ultrafilter on an index set of infinite cardinality λ.

(1) [17, Proposition 43.7] If S is an infinite set, then |SD| = |S|λ.
(2) [7, Theorem 2.3.3] If X is an infinite compactum, then w(XD) = w(X)λ.

To finish the proof, fix an infinite cardinal α, and let ZE be as in Lemma 4.2. The codiagonal map 
pE : ZE → Z is weakly confluent–indeed K = pE [KE ] for any subcontinuum K ⊆ Y –and so the composition 
g ◦ pE : ZE → X is also weakly confluent.

Let D now be a regular ultrafilter on an index set of cardinality α, with T ⊆ ZE a countably infinite partial 
transversal. Let Y be the iterated ultracopower (ZE)D, with f = g ◦ pE ◦ pD : Y → X. Then, by remarks 
above, Y is hereditarily indecomposable, of dimension one, and f is weakly confluent. Furthermore, TD is a 
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partial transversal for Y , and its cardinality is–by Lemma 4.3 (1)–2α. Thus Y has at least 2α composants. 
Moreover, w(Y ) ≤ w(ZE)α ≤ 2(α·2w(X)), completing the proof of Theorem 1.2. �
Remarks 4.4.

(1) The iterated ultracopower in the proof above is actually an ultracopower: if D and E are ultrafilters 
on index sets I and J respectively, the Fubini product F = D · E is an ultrafilter on I × J , and there 
is a homeomorphism h : ZF → (ZE)D, such that pF = pE ◦ pD ◦ h (see [7, Theorem 2.1.1]). This is an 
analogue of a well-known result about finite iterations of ultrapowers in model theory.

(2) In the last line of the proof above, w(Y ) actually equals w(ZE)α because of Lemma 4.3 (2). But this is 
moot because the ultrafilter in the (GCH-free) Shelah proof of the isomorphism theorem is not apparently 
regular. Hence we cannot claim w(ZE) = 2(2w(X)) in Lemma 4.2.

(3) In the argument above for Theorem 1.2, we cannot get the number of composants of Y to exceed its 
weight. Hence there seems to be no–even consistent–way to get Y to be fine without an entirely new 
argument.

5. Proof of Theorem 1.4

In order to obtain a version of Theorem 1.1 (3) where the pre-image is fine, we mimic the Baire cate-
gory approach from Janiszewski-Kuratowski [21]. But first we will need to examine some cardinal-indexed 
properties of topological ultra(co)products.

If α is an infinite cardinal and X is a topological space, a ∈ X is a Pα-point if for any collection U of at 
most α open neighborhoods of a, we have a ∈ (

⋂
U)◦. (The interior and closure of a set A ⊆ X are denoted 

A◦ and A−, respectively.) A space is a Pα-space if each of its points is a Pα-point; equivalently if whenever 
U is a family of ≤ α open subsets, 

⋂
U is open as well. When α = ω, Pα-points (Pα-spaces) are referred to 

as P -points (P -spaces).

Lemma 5.1. Suppose D is a regular ultrafilter on an index set I of cardinality α. Then the following state-
ments hold.

(1) Every D-ultraproduct of topological spaces is a Pα-space.
(2) Every D-ultracoproduct of compacta has a dense set of Pα-points.

Proof. The first statement follows immediately from [4, Theorem 4.1]. As for the second, suppose �XD is an 
ultracoproduct of compacta, where D is regular. By Definition 3.1 (3), �XD is a dense subspace of XD. By 
(1) above, �XD is also a Pα-space. We need to show that each �xD ∈ �XD is a Pα-point in the ultracoproduct.

Let U be a family of ≤ α open neighborhoods of �xD in �XD. Without loss of generality, we may take each 
member of U to be basic open. Thus there is a family V of ≤ α open ultraboxes in �XD such that U consists 
of sets (

∏
D Ui)�, where 

∏
D Ui ∈ V.

Note that we may regard 
∏

D Ui as (
∏

D Ui)� ∩ �XD. Because �XD is a Pα-space, there is an open ultrabox ∏
D Vi with �xD ∈

∏
D Vi ⊆

⋂
V. Hence we have �xD ∈ (

∏
D Vi)� ⊆

⋂
U . �

Corollary 5.2. Let D be a free ultrafilter on a countable index set. Then each topological D-ultraproduct is a 
P -space, and each topological D-ultracoproduct possesses a dense set of P -points.

One more important condition on ultrafilters, stronger than regularity, is goodness. Let ℘ω(I) := {s ∈
℘(I) : s is finite}. The ultrafilter D on I is good if: (1) D is countably incomplete; and (2) whenever 
f : ℘ω(I) → D is such that s ⊆ t implies f(s) ⊇ f(t), there exists g : ℘ω(I) → D such that g(s ∪t) = g(s) ∩g(t)
for all s, t ∈ ℘ω(I) and also such that g(s) ⊆ f(s) for s ∈ ℘ω(I).
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Good3 ultrafilters on an infinite index set I are regular; when I is countable, all free ultrafilters are good. 
Keisler originally used a GCH argument to prove the existence of good ultrafilters on any infinite index set, 
and Kunen [22] later provided a GCH-free proof. (Indeed, there are 2(2α) good ultrafilters on an index set of 
cardinality α; details may also be found in [17].) The main use of good ultrafilters was to create a maximum 
amount of saturatedness in ultraproducts of relational structures; a purely combinatorial–but topologically 
important–version of this is the following. First recall that a family of sets satisfies the finite intersection 
property if each finite subfamily has nonempty intersection.

Lemma 5.3. [5, Proposition 1.5] Suppose I is an index set of infinite cardinality α, with �X an I-sequence of 
sets and D a good ultrafilter on I. Let S be a family of ≤ α ultraboxes in �XD, and assume S satisfies the 
finite intersection property. Then 

⋂
S �= ∅.

Remark 5.4. Lemma 5.3 is a stripped-down version of Theorem 6.1.8 in [17]. In the parlance of model theory, 
S is a finitely satisfiable 1-type.

Good ultrafilters confer additional important cardinal-indexed properties on topological ultra(co)prod-
ucts. If α is an infinite cardinal and X is a topological space, X is an almost Pα-space if whenever U is 
a family of ≤ α open subsets of X and 

⋂
U �= ∅, then (

⋂
U)◦ �= ∅ as well. Clearly each Pα-space is an 

almost Pα-space. And while a compactum cannot be a P -space without being finite, infinite compacta can 
be almost Pα-spaces for any cardinal α.

Lemma 5.5. Suppose D is a good ultrafilter on an index set I of cardinality α. Then every D-ultracoproduct 
of compacta is an almost Pα-space.

Proof. Let �XD be an ultracoproduct of compacta, where D is a good ultrafilter on I. Let α = |I|, and 
suppose U is a family of ≤ α open subsets of �XD, with 

⋂
U �= ∅. It is easy to see that we lose no generality 

in assuming each member of U is basic open.
So, as in the proof of Lemma 5.1, we have a family V of ≤ α open ultraboxes in �XD, such that U consists 

of sets (
∏

D Ui)�, where 
∏

D Ui ∈ V. We generally cannot infer that 
⋂
V is nonempty just because 

⋂
U is, 

but the fact that 
⋂
U is nonempty immediately gives us that U satisfies the finite intersection property. 

By straightforward facts about ultraproducts, we can then infer that V also satisfies the finite intersection 
property. Hence, by Lemma 5.3, there is a point �xD in 

⋂
V. But now we have �xD ∈

⋂
U . Good ultrafilters 

are regular; so, by Lemma 5.1, �xD is a Pα-point of XD. From this we infer that (
⋂
U)◦ �= ∅. �

Corollary 5.6. Let D be a free ultrafilter on a countable index set. Then all topological D-ultracoproducts are 
almost P -spaces.

Remarks 5.7.

(1) Lemma 5.5 is stated, with the weaker hypothesis that the ultrafilter is merely regular, as Theorem 2.3.7 
in [7]. The proof is incorrect, however, as it infers a space to be an almost Pα-space from the fact that it 
has a dense set of Pα-points. For a simple counterexample to this assertion, consider the ordinal space 
X = ω + 1: Each point of the dense subset ω = {0, 1, . . . } is isolated in X, hence a P -point. On the 
other hand, let Un = {n, n + 1, . . . , ω}, n ∈ ω. Then U = {Un : n ∈ ω} is a countable family of open 
sets, 

⋂
U = {ω} is nonempty, but (

⋂
U)◦ = ∅. Hence X is not an almost P -space.

3 The definition of good often does not include countable incompleteness (see [17]), but we have no present use for this weaker 
notion.



P. Bankston / Topology and its Applications 268 (2019) 106907 11
(2) While it is true that a continuum is an almost Pα-space if it has an α-saturated lattice base, it seems 
likely that a proof of this would require an argument similar to that of Lemma 5.5 above.

The last cardinal-indexed property we will need is the following: for an infinite cardinal α, a topological 
space X is α-Baire if whenever U is a family of ≤ α dense open subsets of X, we have that 

⋂
U is dense 

in X. Compacta are always ω-Baire, by the Baire category theorem. In [5] Theorem 2.2 says that if D is a 
good ultrafilter on an index set of cardinality α, then all topological D-ultraproducts are α-Baire.4 In the 
case of ultracoproducts of compacta, we can get a higher degree of Baireness. The proof follows along the 
lines of usual Baire category arguments, with a couple of modifications.

Lemma 5.8. Let α be an infinite cardinal. If a compactum is an almost Pα-space, then it is α+-Baire.

Proof. Let the compactum X be an almost Pα-space, with U a family of ≤ α+ dense open subsets of X. 
Let V ⊆ X be nonempty open; we need to show V ∩ (

⋂
U) �= ∅.

First let 〈Uξ : ξ < α+〉 be a well-ordering of U . Using transfinite induction, we construct a sequence 
〈Bξ : ξ < α+〉 of nonempty open sets as follows: Define B0 = V ; and assume, for fixed 0 < δ < α+, that 
〈Bξ : ξ < δ〉 has been defined so that (

⋂
ξ<δ Bξ) ∩ (

⋂
ξ<δ Uξ) �= ∅. Let F = {Bξ : ξ < δ} ∪ {Uξ : ξ < δ}. 

Then |F| ≤ α and 
⋂
F �= ∅. Since X is an almost Pα-space, 

⋂
F has nonempty interior; so let Bδ be any 

nonempty open set such that B−
δ ⊆

⋂
F . To finish the induction step, note that (

⋂
ξ<δ+1 Bξ) ∩(

⋂
ξ<δ+1 Uξ) =

Bδ ∩
⋂

F ∩ Uδ = Bδ ∩ Uδ �= ∅, since Uδ is dense in X. This completes the construction of 〈Bξ : ξ < α+〉.
Clearly 〈B−

ξ : ξ < α+〉 is a nested sequence of nonempty closed subsets of the compactum X; hence 
there is a point x in its intersection. Thus x ∈ V . Also, for fixed δ < α+, we have x ∈ Bδ+1 ⊆ Uδ; so 
x ∈ V ∩

⋂
U . �

The following is a slight generalization of a result [28, Proposition 11.14] that is well known in the context 
of metrizable continua.

Lemma 5.9. Let X be a continuum, with a ∈ X. Then κ(a) is a union of ≤ w(X) proper subcontinua, each 
containing a.

Proof. Let U be an open-set base for X \ {a}, consisting of w(X) nonempty sets. For each U ∈ U , let 
CU be the component of X \ U containing a. Then CU is a proper subcontinum of X containing a; hence ⋃
{CU : U ∈ U} ⊆ κ(a). On the other hand, if x ∈ κ(a), then there is a proper subcontinuum K ⊆ X

with a, x ∈ K. Since U is an open base, there is some U ∈ U such that U ⊆ X \K. Both K and CU are 
subcontinua of X \ U containing a; hence K ⊆ CU . This shows that

κ(a) =
⋃

{CU : U ∈ U},

a union of ≤ w(X) proper subcontinua, each containing a. �
We are now ready to finish the proof of Theorem 1.4. Let X be a continuum, and α an infinite cardinal. 

By Theorem 1.1 (3), there is a weakly confluent g : Z → X, where Z is an hereditarily indecomposable 
continuum of dimension one, and w(Z) = w(X).

Now, fix a good ultrafilter D on an index set of cardinality λ = α · w(Z). Let Y = ZD, with f = g ◦ pD. 
Then, as argued in the last section, we know that: (1) Y is hereditarily indecomposable, of dimension one; 
and (2) f : Y → X is weakly confluent.

4 In [5] “α-Baire” means intersections of < α (not ≤ α) dense open sets are dense.
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Furthermore we know: (3) w(Y ) = w(X)λ = 2λ, by Lemma 4.3 (2); and (4) Y is an almost Pλ-space, by 
Lemma 5.5. Thus Y is λ+-Baire, by Lemma 5.8. So assume GCHλ. Then, by Lemma 5.9, and because proper 
subcontinua of indecomposable continua are nowhere dense, we know that any union of ≤ λ+ composants 
of Y has empty interior. Hence Y has at least λ++ composants. Now, |Y | ≤ 2(λ+). Hence, if GCHλ+ also 
holds, then Y is fine. This finishes the proof of Theorem 1.4. �
6. Proof of Theorem 1.8

Lemma 6.1. [11, Theorem 5.5] Let 〈Xi : i ∈ I〉 be an I-sequence of totally unblocked continua, with D an 
ultrafilter on I. Then �XD is point-unblocked.

Remark 6.2. Theorem 5.5 in [11] uses total unblockedness in the factor continua to show that each proper 
subcontinuum of �XD is unblocked if it intersects �XD. That fact is then used to infer that the ultracoproduct 
is point-unblocked.

So if we start with a nondegenerate continuum X, use Lemma 4.1 to obtain a metrizable continuum 
M and homeomorphic ultracopowers XD and MD, where D is an ultrafilter on an index set of cardinality 
2w(X). Since M is metrizable, Bing’s [14, Theorem 5] tells us M is totally unblocked. But then Lemma 6.1
says that XD is point-unblocked; moreover, it has weight ≤ 2(2w(X)). So let Y = XD, with f = pD. This 
finishes the proof of Theorem 1.8. �
7. Proof of Theorem 1.9

Given the intermediate results of Section 5, this is now an almost trivial consequence of Bing’s theorem 
[14, Theorem 5].

A topological space X is a wb-space if it is w(X)-Baire. The proof of Bing’s theorem, showing each 
metrizable continuum to be totally unblocked, hinges on the fact that every metrizable continuum is a 
wb-space, and may be easily modified to show the following.

Lemma 7.1. Every wb-continuum is totally unblocked.

Remarks 7.2.

(1) Recall that the density d(X) of a space X is the least infinite cardinal α such that X has a dense 
subset of cardinality ≤ α; X is a db-space if it is d(X)-Baire. Clearly every wb-space is a db-space, and 
D. Anderson has improved significantly on the lemma above by showing [1, Corollary 5.10] that every 
db-continuum is totally unblocked. (We do not need this extra strength for our argument, however.)

(2) A point a in continuum X is called a shore point if for any finite family U of nonempty open subsets 
of X, there is a subcontinuum of X \ {a} which meets every set in U . Bing’s theorem was used in 
[24] to prove that all nondegenerate metrizable continua have at least two shore points. Shore points 
are obviously noncut, and nonblock points are easily shown to be shore [16]. Hence the fact that each 
metrizable continuum is spanned by its set of shore points is immediate.

So we fix our nondegenerate continuum X. Setting λ = w(X), we choose a good ultrafilter D on an index 
set of cardinality λ. Set Y = XD. Then w(Y ) = 2λ, by Lemma 4.3 (2); and, by Lemmas 5.5 and 5.8, Y is 
λ+-Baire. So if GCHλ holds, then Y is a wb-space. We set f = pD : Y → X. Then Y is totally unblocked, 
by Lemma 7.1, and f is co-elementary. This finishes the proof of Theorem 1.9. �
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Parting Question 7.3. We were intrigued by the fact that the proof of Theorem 1.4–unlike that of Theo-
rem 1.9–apparently requires two instances of GCH (after initial conditions are set). In particular, can one 
prove–in ZFC + CH–that each metrizable continuum is a weakly confluent image of a continuum which is 
hereditarily decomposable, of dimension one, fine, and of weight c?
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