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1. Epsilons and Deltas

In this course we take the overarching view that the mathematical study called
topology grew out of an attempt to make precise the notion of continuous function
in mathematics. This is one of the most difficult concepts to get across to beginning
calculus students, not least because it took centuries for mathematicians themselves
to get it right. The intuitive idea is natural enough, and has been around for at
least four hundred years. The mathematically precise formulation dates back only
to the ninteenth century, however. This is the one involving those pesky epsilons
and deltas, the one that leaves most newcomers completely baffled. Why, many
ask, do we even bother with this confusing definition, when there is the original
intuitive one that makes perfectly good sense? In this introductory section I hope
to give a believable answer to this quite natural question.

Let us begin with the classical intuitive definition of what it means for a real-
valued function of a real variable to be continuous at a point. By way of notation,
we write f : X → Y to denote such a function. (Often the word map is used instead
of function; the two words are regarded as synonymous in these Notes.) X and
Y are sets, in this case Y is the real line R and X is a subset of R, X is called
the domain of the function, Y is called the range of the function, and f assigns
exactly one point y ∈ Y to each point x ∈ X. We usually write y = f(x) to say
this. (This is the familiar way; actually, to be precise, f is a set of ordered pairs
〈x, y〉 from the cartesian product X ×Y such that, for any x ∈ X there is a unique
y ∈ Y such that 〈x, y〉 ∈ f .)

Definition 1.1 (Continuity at a Point: Intuitive). Let X be a set of real numbers,
x0 ∈ X, and f : X → R a function. f is continuous at x0 if, whenever x ∈ X
is close to x0, then f(x) is close to f(x0). f is discontinuous at x0 if f is not
continuous at x0.

At first glance, this is quite appealing. However, upon a second look, the def-
inition begs the question of what we mean by the expression close to. Without a
precise explication of when one point is close to another, this definition of continuity
is a castle in the air, not very useful for teasing out the finer points of continuous
behavior. The amazing fact is that it actually served for centuries as the main
working explication of continuity. Generations of mathematicians made use of it;
the good ones were able to discover important results anyway, the mediocre ones
made lots of mistakes. The most accurate conception of a function that was con-
tinuous at each point of a real interval appears to have lain in the view that the
graph of the function had no “gaps,” it was “all of one piece.” Nevertheless there
seemed to be fairly wide-spread confusion between continuity and differentiability,
well into the 1800s.

This is where epsilons and deltas come in. By the early 1800s developing stan-
dards of mathematical rigor made it imperative to get a firmer handle on continuity.
The big breakthrough came with the realization, largely attributed to Augustin-
Louis Cauchy (1789–1857) in the 1820s, that one didn’t need an absolute notion of
closeness, only a relative one. So, by making x close enough to x0 in response to
a given standard of closeness (to f(x0)), one could guarantee that f(x) would fall
within that standard of closeness to f(x0).
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The idea can be likened to a problem in archery. Suppose you’re trying to aim
an arrow to hit a circular target that’s four feet across and one hundred feet down
range. Assuming the existence of an ideal aim that will send the arrow to the exact
center of the target, how much could you be off that aim and still send the arrow
somewhere onto the target?

Where the epsilon ǫ comes in is the standard of closeness you have to meet (get-
ting the arrow within two feet of dead center), where the delta δ comes in is as a
measure of how far off perfect aim you can be and still meet the ǫ-standard. So,
given that you’re within δ of perfect aim, your result will be within ǫ of dead center.
Now let’s try this idea in mathematical language.

Definition 1.2 (Continuity at a Point: Precise). Let X be a set of real numbers,
x0 ∈ X, and f : X → R a function. f is continuous at x0 if, whenever ǫ is a pos-
itive real number, there exists a positive real number δ (depending, possibly, on both
ǫ and the point x0) such that: if x ∈ X and |x − x0| < δ, then |f(x) − f(x0)| < ǫ.
f is discontinuous at x0 if f is not continuous at x0. f is continuous on X if
f is continuous at each point of X.

But wait! Isn’t this another castle in the air? Don’t we need to define precisely
what all the symbols mean? Well, yes indeed. But this is not too difficult, given a
calculus student’s basic understanding of the real line. Let’s work an example.

Example 1.3 (Continuity of Affine Functions). Let m and b be fixed real numbers,
and define f(x) := mx + b. (f is called an affine map.) We show f is continuous
at any x0 as follows: Given ǫ > 0, we wish to find δ > 0 such that, if |x − x0| < δ,
then |f(x) − f(x0)| = |(mx + b) − (mx0 + b)| = |m(x − x0)| = |m||x − x0| < ǫ.
Clearly, if m 6= 0, then setting δ = ǫ

|m| (or anything smaller) will work; otherwise

f is constantly b, and we may choose δ to be anything we like. (Note that, in the
case m 6= 0, δ depends on ǫ, but is independent of x0. In the case m = 0, δ is
independent even of ǫ.)

Of course we are glossing over some important details, namely the precise set-
theoretic construction of the real line as a mathematical entity. Such a construction
can be done, and it is highly instructive for a student to see it, but we don’t need
to go into the details here. (The interested reader may consult any of the many
textbooks on beginning real analysis for an exhaustive treatment.) What is im-
portant for our purposes is that the usual algebraic and order-theoretic structure
of the real line makes it into a complete Archimedean ordered field. Let’s consider
briefly what these words mean before going further. First, the usual addition and
multiplication operations on R satisfy the field axioms:

(F1) The associative laws (x + y) + z = x + (y + z) and (xy)z = x(yz) hold.
(F2) The commutative laws x + y = y + x and xy = yx hold.
(F3) The distributive law, x(y + z) = xy + xz, of multiplication over addition

holds.
(F4) 0 and 1 are, respectively, the additive and multiplicative identity elements;

i.e., the laws x + 0 = x = x1 hold.
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(F5) Every real number x has an additive inverse −x; i.e., the law x + (−x) = 0
holds.

(F6) Every nonzero real number x has an multiplicative inverse x−1; i.e., the
law xx−1 = 1 holds.

Next, there are the order axioms, most conveniently given by saying there is a
designated subset P of R, the set of positive elements of the field, satisfying:

(O1) 1 ∈ P and 0 /∈ P .
(O2) If x and y are in P , then so are x + y and xy.
(O3) If x 6= 0, then either x ∈ P or −x ∈ P .

We write x > 0 as an abbreviation for x ∈ P , and x < y as an abbreviation
for y − x > 0. Finally we have the two axioms for ordered fields that, in fact,
characterize the real line:

(O4) (Archimedean Property) Given any real number x, there is a natural number
n such that x ≤ n. Equivalently, given any x > 0, there is a natural number
n > 0 such that 1

n
< x. (In the context of abstract ordered fields, it is more

proper to say that x ≤ (1 + · · · + 1), where we take the sum of n copies of
the multiplicative identity element.)

(O5) (Least Upper Bound (Completeness) Property) Given any nonempty subset
X ⊆ R, if X is bounded above; i.e., if there is some upper bound for X, an
element b such that x ≤ b for all x ∈ X, then there is a least upper bound
b0 for X (i.e., b0 is an upper bound for X, but no smaller real number is
an upper bound for X).

Remark 1.4. (For the reader with some algebraic background.) The real line is
unique as a complete Archimedean ordered field. That is, if F is any ordered field
with addition +F , multiplication ∗F , identity elements 0F and 1F , and set PF of
positive elements, then there is a one-one map ϕ from R onto F such that both
ϕ and its function inverse ϕ−1 are ordered field isomorphisms. I.e., ϕ(0) = 0F ,
ϕ(1) = 1F , ϕ(x + y) = ϕ(x) +F ϕ(y), ϕ(xy) = ϕ(x) ∗F ϕ(y), and ϕ(x) ∈ PF for all
x > 0.

The main point of difference between Definitions 1.1 and 1.2 is that there is a
satisfactory explication of all the symbols and words used in defining “continuous
at x0” in the latter case, but not in the former. The notion “x is close to x0” is
merely subjective; there are no truly infinitesimal real numbers, other than zero
itself. This forces us to conclude that “close” must mean “equal,” that Definition
1.1 merely restates that f is a function, and absolutely nothing new gets defined.

Here’s a slightly more sophisticated argument for why there can be no resurrect-
ing Definition 1.1. Suppose there were some way of defining close to on the real line
so that the same functions would come up continuous, regardless of which definition
you used. For simplicity, we write x ∼ y to mean x is “close” to y, however we
may have come up with such a notion. By the very intended nature of a close-to
relation, it is entirely reasonable to insist that x ∼ x always holds (the reflexivity
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condition), and that y ∼ x holds whenever x ∼ y holds (the symmetry condition).
That said, pick an arbitrary x0 ∈ R, and suppose there is some x1 6= x0 such that
x1 ∼ x0. (Either there is such an x1 or there isn’t; say for this particular x0 there
is.) With these two points chosen, let y1 be any real number, and define f(x) to be
the affine map whose graph is the straight line going through the points 〈x0, x0〉 and

〈x1, y1〉. This line has slope m =
y1 − x0

x1 − x0
, well defined because the denominator is

nonzero. f is continuous at x0, in the sense of Definition 1.2, as was demonstrated
in Example 1.3. Assuming f is also continuous at x0 in the sense of Definition
1.1, and since x1 ∼ x0, we have that f(x1) ∼ f(x0) too. But f(x1) = y1 and
f(x0) = x0, so this says that y1 ∼ x0. Since y1 may be chosen arbitrarily, once we
have x0 and x1, we infer the following from this argument: If there are two distinct
points that are close to one another, then every point is close to every other point.

So there are only two possibilities for the closeness relation: either all points
are close to all other points, or no point is close to any point other than itself. In
either case, every function is continuous at each point in its domain, in the sense
of Definition 1.1. Since there are discontinuous functions in the sense of Definition
1.2 (see Exercise 1.6 (4) below), we have obtained a contradiction. Hence: There
can be no relation of closeness on the real line that captures the notion of continuity
put forward in Definition 1.2.

We conclude this introductory section with a promise. One of the goals of this
course is to prove the following two supremely important theorems of elementary
analysis, underpinning all the major theoretical results of first-semester calculus.
These theorems, though easy to state and intuitively appealing, are notoriously
difficult to prove from first principles; and are therefore taken on faith, even in rea-
sonably rigorous calculus courses. By the time we develop the necessary machinery,
though, the theorems will fall out as easy corollaries.

Theorem 1.5 (Twin Pillars of Single-Variable Calculus). Suppose X = [a, b]; i.e.,
X is the bounded closed interval consisting of real numbers x such that a ≤ x ≤ b.
Suppose f : X → R is continuous on X.

(i) (Extreme Value Theorem): There exist c, d ∈ [a, b] such that, for all x ∈
[a, b], f(c) ≤ f(x) ≤ f(d). (I.e., f achieves an absolute maximum and an
absolute minimum on [a, b].)

(ii) (Intermediate Value Theorem): If d lies between f(a) and f(b), then there
exists some c ∈ [a, b] such that f(c) = d. (I.e., if f takes on two given
values, then it takes on all values in between.)

Exercises 1.6. (Throughout these Notes, the more challenging exercises are pre-
ceded with an asterisk.)

(1) Show that f : R → R, defined by f(x) := x2, is continuous at x0 = 1.

(2) * Show that the squaring map f in Exercise 1.6 (1) is continuous on R

(Note how your choice of δ depends on both x0 and ǫ.)

(3) Let X be a subset of R. A point x0 ∈ X is an isolatated point of X if
there is some ǫ > 0 such that no point of X lies within ǫ of x0 (i.e., if
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|x−x0| < ǫ and x ∈ X, then x = x0). Let f : X → R be any function, with
x0 an isolated point of X. Show f is continuous at x0.

(4) Let f : R → R be defined by saying f(x) = 0 if x < 0, and f(x) = 1
otherwise. Show that f is not continuous on R.

(5) Suppose X = (a, b); i.e., X is the open interval consisting of real numbers
x such that a < x < b. Suppose x0 ∈ X and f : X → R is such that the

derivative f ′(x0) := lim
x→x0

f(x) − f(x0)

x − x0
exists at x0. Show that f is contin-

uous at x0.

(6) Given x0 ∈ R, find a function f : R → R that is discontinuous at x0 only.

(7) Review the proof of the mean value theorem from calculus, and check where
Theorem 1.5 is used. After that, look how it enters into the development of
the Riemann integral for continuous functions. Even such a basic fact as
the one saying a function with zero derivative on an open interval must be
constant relies on Theorem 1.5.

(8) Consider the set Q of rational numbers, those real numbers that can be
represented as fractions of integers. Then, by restricting addition, multipli-
cation, and order to Q, we get an ordered field. Show that the ordered field
of rational numbers is Archimedean, but not complete.

(9) * Consider the set C of complex numbers. This consists of all formal sums
a+ ib (or,equivalently, ordered pairs 〈a, b〉 where a and b are real numbers),
with addition and multiplication defined by the laws (a + ib) + (c + id) :=
(a + c) + i(b + d) and (a + ib)(c + id) := (ac − bd) + i(ad + bc). (Think
of i = 〈0, 1〉 as the “imaginary unit,” chosen to satisfy i2 = −1. Then it
makes sense to multiply two complex numbers as if they were “binomials,”
and collect terms. The operations of addition and multiplication may be
formally defined in the plane without reference to imaginary numbers, but
it’s less well motivated that way.) Show that the field axioms are satisfied,
but that it is impossible to specify a set P of “positive” complex numbers,
in such a way that C becomes an ordered field.

(10) In this, as well as the following two exercises, refer to the least upper bound
property (O5) above. Formulate a “greatest lower bound” property. Show
that, given R has the least upper bound property, R also has the greatest
lower bound property. [Hint: If A ⊆ R is bounded below, let LA be the set
of lower bounds of A.]

(11) Show that least upper bounds are unique when they exist. I.e., show a set
cannot have two least upper bounds.

(12) If a < b in R and A is either the closed interval [a, b] or the open interval
(a, b), show that the least upper bound of A is b.
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2. Distance Functions in Euclidean Space

What makes Definition 1.2 work is that the real line is equipped with a well-defined
notion of distance between points x and y, namely |x − y|. This is called the eu-
clidean distance on the real line, is based on the algebraic structure of the reals,
and can be readily extended to higher-dimensional euclidean space. The best way
to introduce the euclidean distance on n-space Rn is to use some elementary linear
algebra and first define the dot product between vectors x = 〈x1, . . . , xn〉 and
y = 〈y1, . . . , yn〉 in Rn via the formula

x · y :=

n
∑

i=1

xiyi

From this notion, one defines the euclidean norm |x| of a vector x to be√
x · x, and the euclidean distance between vectors x and y to be |x − y|. This

is the straight-line distance between the two points, as can be justified using the
Pythagorean theorem of classical geometry. Note that in the case n = 1, the dot
product is just the usual product of real numbers and the euclidean norm is the
absolute value. In the case n = 2, when complex numbers are identified with points
in the plane, the euclidean norm amounts to the complex modulus.

Technically, each distinct n gives rise to a different operation of vector sum, dot
product, etc. However, since corresponding operations are so closely related as we
pass from one euclidean space to another, we use the same notation throughout for
the sake of simplicity. You should bear in mind nevertheless that when we write a
relation such as |x · y| ≤ |x||y|, the vertical bars on the left apply to real numbers,
those on the right to vectors.

With this machinery now in place, the corresponding notion of continuity of
functions taking points in one euclidean space to points in another is almost a ver-
batim restatement of Definition 1.2.

Definition 2.1 (Continuity at a Point in Euclidean Space). Let X be a subset of
real m-space Rm, x0 ∈ X, and f : X → Rn a function. f is continuous at x0

if, whenever ǫ is a positive real number, there exists a positive real number δ such
that: if x ∈ X and |x − x0| < δ, then |f(x) − f(x0)| < ǫ.

Note that, in this definition, the function f takes points in euclidean m-space to
points in euclidean n-space, and m need not equal n. Thus we are dealing with two
distinct (but closely related) distance functions. We take this moment to isolate
the salient properties, the metric properties, of the euclidean distance.

Theorem 2.2 (Metric Properties of Euclidean Distance). For any x, y, z in Rn

we have:

(i) (Positivity) |x − y| ≥ 0; |x − y| = 0 if and only if x = y.
(ii) (Symmetry) |x − y| = |y − x|.
(iii) (Triangle Inequality) |x − y| ≤ |x − z| + |z − y|.

Proof. Positivity is just a consequence of the facts that a sum of squares of real
numbers is always nonnegative, and that if a sum of squares of real numbers is zero,
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then all those real numbers must be zero too. Symmetry is even easier to prove.
As for the triangle inequality, which says, roughly, that the shortest path between
two points is a straight line, a small amount of work is required.

Recall from beginning linear algebra that if x and y are two nonzero vectors in
Rn, and if 0 ≤ θ ≤ π is the angle at which they meet, then x ·y = |x||y| cos θ. (This
follows from the parallelogram law of vector addition, plus the law of cosines from
classic trigonometry.) In particular, because the cosine function is bounded above
by 1, we infer that |x · y| ≤ |x||y|. This inequality (called the Cauchy-Schwarz
inequality, after Augustin-Louis Cauchy and, later, Herman Schwarz (1843–1921))
even holds if one or more of the vectors is zero because both sides then evaluate to
zero.

Now, given two vectors x and y in Rn, we have: |x + y|2 = (x + y) · (x + y) =
(x ·x)+2(x ·y)+ (y ·y) ≤ |x|2 +2|x ·y|+ |y|2 ≤ |x|2 +2|x||y|+ |y|2 = (|x|+ |y|)2.
Observing that if a and b are nonnegative real numbers, then a2 ≤ b2 if and only if
a ≤ b, we conclude that |x + y| ≤ |x| + |y| always holds.

Finally, suppose x, y and z in Rn are given. Then, from the previous paragraph,
we may write: |x − y| = |(x − z) + (z − y)| ≤ |x − z| + |z − y|, and the proof is
complete.

�

The importance of Theorem 2.2 is that it acts as a bridge to more abstract set-
tings: it isolates the salient features of euclidean distance that provide a reasonable
explication of continuity. It so happens there are lots of other “distance functions”
that also satisfy the conclusions of Theorem 2.2. Let’s first consider two classic
examples before crossing the bridge in the next section.

Example 2.3 (The Taxicab Distance Function). In R2, let’s define the taxicab
norm |x|t for x = 〈x1, x2〉 to be |x1|+|x2|. Then, following the definition of the eu-
clidean distance function from the euclidian norm, we define the taxicab distance
between x and y to be |x − y|t. (Imagine that the plane is laid out in a grid, with
“streets” that go only north-south and east-west. To get from one point to another,
you have to follow a “street route.”) It is a complete triviality to show that the
taxicab distance satisfies the positivity and symmetry conditions of Theorem 2.2; it
is only slightly less trivial to show that |x + y|t ≤ |x|t + |y|t (see Exercise 2.5 (1)
below), from which the triangle inequality instantly follows, exactly as in the proof
of Theorem 2.2.

Example 2.4 (The Discrete Distance Function). Let’s stick with R2, but now de-
fine the discrete norm |x|d for x to be 0 if x = 0, and to be 1 otherwise. I.e.,
|x|d is either 0 or 1, depending upon whether or not x is the zero vector. Then,
following the definition of the euclidean (resp., taxicab) distance function from the
euclidian (taxicab) norm, we define the discrete distance between x and y to be
|x− y|d. Positivity and symmetry are obvious, as before, and it is an easy exercise
to show (see Exercise 2.5 (7) below) that |x+y|d ≤ |x|d + |y|d. Again, the triangle
inequality instantly follows.
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Exercises 2.5. (1) Prove the following assertion about the taxicab norm: |x+
y|t ≤ |x|t + |y|t.

(2) Define the max norm |x|m of a point x = 〈x1, x2〉 in R2 to be max{|x1|, |x2|}.
Then define the max distance, after the fashion of the euclidean and taxi-
cab distances, and show that the conclusion of Theorem 2.2 holds for this
new distance function.

(3) For any x ∈ R2, prove that |x|m ≤ |x| ≤ |x|t ≤ 2|x|m.

(4) In R2, graph the solution sets of the inequalities |x| < 1, |x|t < 1, and
|x|m < 1.

(5) Define the square norm |x|2 of a point x = 〈x1, x2〉 in R2 to be x2
1 + y2

1.
Then define the square distance, after the fashion of the euclidean and
taxicab distances, and show that the conclusion of Theorem 2.2 does not
necessarily hold for this new distance function.

(6) In R2, graph the solution sets of the inequalities |x|d < 1 and |x|d <
1.000001.

(7) Prove the following assertion about the discrete norm: |x+y|d ≤ |x|d+|y|d.
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3. Metrics and Metric Spaces

As mentioned in the previous section, Theorem 2.2 provides us with a bridge to a
more abstract (and therefore more widely applicable) setting in which to talk about
continuity. That theorem may be viewed as a litmus test whose only criterion for
the suitability of any given distance function is whether or not it satisfies the metric
conditions of positivity, symmetry, and the triangle inequality. All the examples
considered in Section 2 ultimately arise from the very rich algebraic and order-
theoretic structure of the real line. But all the extra structure that happens to
support the definition of a given distance function is irrelevant for the purposes of
applying the litmus test. At the end of the day, what matters is whether the three
metric conditions have been met.

The study of topology is very firmly rooted in set theory. For this reason it
is time to pause for a little explanation of set-theoretic notions we use in this
course. (We don’t bring them in all at once, only just as we need them.) The
notion of set is taken to be primitive. Intuitively it is a family (or collection,
or aggregate) of elements; the statement that x is an element of the set X is
denoted x ∈ X. Two sets are defined to be equal if and only if they have the
same elements. (So the usual way to show, say, X = Y is: first, pick x ∈ X
arbitrarily and show x ∈ Y ; then pick y ∈ Y arbitrarily and show y ∈ X.) If every
element of X is also an element of Y , we say X is a subset of Y (in symbols,
X ⊆ Y ). If a set X has just x1, . . . , xn for elements, we use curly bracket notation
and write X = {x1, . . . , xn}. If X consists of all elements y ∈ Y such that some
condition . . . y . . . holds, then we write X = {y ∈ Y : . . . y . . . }. For example,
given that the set of natural numbers is N := {0, 1, 2, . . . }, the set of even natural
numbers is {x ∈ N : x = 2y, for some y ∈ N}. If the universal set Y is clear
from the context, we sometimes suppress its mention in the notation. (So, with
some care, we may write the set of even natural numbers in the simplified notation
{x : x = 2y, for some y ∈ N}.

The cartesian product X × Y of two sets X and Y is defined to be the set of
all ordered pairs 〈x, y〉, where x ∈ X and y ∈ Y . This, of course, begs the question
of just what exactly is an ordered pair. 〈x, y〉 should itself be a set that depends
on x and y only, and in that order. You want to be able to say that pairs 〈x, y〉
and 〈u, v〉 are equal just in case x = u and y = v. One way to do this is to define
〈x, y〉 := {{x}, {x, y}} (see Exercise 3.9 (1) below).

This leads us to our first truly abstract definition, partially weaning us from the
real numbers and euclidean space.

Definition 3.1 (Metric Space). Let X be a set. By a metric on X, we mean a
two-place real-valued function d : X × X → R satisfying, for all x, y, z ∈ X:

(i) (Positivity) d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y.
(ii) (Symmetry) d(x, y) = d(y, x).
(iii) (Triangle Inequality) d(x, y) ≤ d(x, z) + d(z, y).

A metric space is a pair 〈X, d〉, where X is a set (the underlying set of points)
and d is a metric on X.

Examples 3.2. (i) The pairs 〈Rn, d〉 are metric spaces, where n ≥ 1 and d is
the corresponding euclidean distance function (Theorem 2.2).
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(ii) The pairs 〈R2, d〉 are metric spaces, where d is the taxicab (resp., max,
discrete) distance function (Example 2.3 and Exercise 2.5 (2)).

(iii) The pair 〈R2, d〉, where d is the square distance function of Exercise 2.5
(5), is not a metric space, because the triangle inequality is not satisfied.

(iv) The pair 〈X, d〉, where d(x, y) is 0 if x = y, and 1 otherwise, is a metric
space (see Exercise 3.9 (6) below). d is called the discrete metric on X.

Definition 3.3 (The Subspace Metric). Let 〈X, d〉 be a metric space, A a subset
of X. Then it makes sense to restrict d : X ×X → R to A×A ⊆ X ×X. This re-
stricted distance function, defined for pairs of points from A and denoted d|A (i.e.,
for 〈x, y〉 ∈ A × A, (d|A)(x, y) := d(x, y)), still satisfies the metric conditions of
Definition 3.1. d|A is called the metric on A ⊆ X induced by d, more succinctly
the subspace metric on A. And the metric space 〈A, d|A〉 is called a metric
subspace of 〈X, d〉.

Example 3.4 (Great Circle Distance). Consider the earth as a perfect spherical
ball, sitting in euclidean 3-space. The shortest practical distance between two points
on the surface of the earth is the so-called great circle distance; i.e., the length of
the shortest arc of a circle lying on the sphere, of maximal radius and containing
the two points. This is never the distance induced by the euclidean metric in R3. In
order to achieve a shortest-distance path between two points on the surface of the
earth, one would need to burrow underground. The nautical mile is based on the
lengths of arcs of great circles. The great circle arc length subtended by an angle of
one minute (i.e., one-sixtieth of a degree) is the definition of a nautical mile, and
measures out to just over 6000 feet.

The reason for introducing metric subspaces at this point is to remove a bit of
complexity in Definition 2.1, where the domain of the map in question is a subset
X of Rm, equipped with the euclidean metric. In terms of Definition 3.3, X is a
metric subspace of Rm. Once we know what the metric on X actually is, there is
no need to consider Rm at all. The following is practically a verbatim restatement
of Definition 2.1, but is incredibly more wide reaching. It is of fundamental im-
portance to note that Definitions 1.2, 2.1, and 3.5 are saying essentially the same
thing, only in increasingly broader contexts.

Definition 3.5 (Continuity at a Point in Metric Space). Let 〈X, d〉 and 〈Y, e〉 be
metric spaces, x0 ∈ X, and f : X → Y a function. f is continuous at x0 if,
whenever ǫ is a positive real number, there exists a positive real number δ such that:
if x ∈ X and d(x, x0) < δ, then e(f(x), f(x0)) < ǫ. f is continuous on X if f is
continuous at each point of X.

By way of a simple exercise in the use of Definition 3.5, let’s prove the following.

Proposition 3.6. Suppose 〈X, d〉 and 〈Y, e〉 are metric spaces, and f : X → Y is
a function for which there is a constant C > 0 such that e(f(x), f(y)) ≤ Cd(x, y)
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for all x, y ∈ X. Then f is continuous.

Proof. Pick x0 ∈ X, and let ǫ > 0 be given. Since we want e(f(x), f(x0)) to be
< ǫ, and we already know that e(f(x), f(x0)) ≤ Cd(x, x0), it suffices to make sure
Cd(x, x0) < ǫ. So, if we make δ any positive number not exceeding ǫ

C
(well definied

because C is assumed to be positive), and if d(x, x0) < δ, then Cd(x, x0) < Cδ ≤
C ǫ

C
= ǫ, as desired. (Note that, just as in the argument in Example 1.3, the choice

of δ does not depend on the particular point x0. Note also that this proposition
includes constant functions, for then e(f(x), f(y)) is always zero.)

�

In the study of continuity, the particular values that a metric takes on are far
less important than how distances relate to one another. As an illustration of this
slightly vague statement (which will be made precise in Section 6), let us show that
continuity of real-valued functions defined on the plane is unaffected as we move
between the euclidean and the taxicab metrics.

Example 3.7 (Change of Metric on the Plane). Let f : R2 → R be a function,
and suppose we fix the euclidean metric on R. Then f is continuous at a point
with respect to the euclidean metric if and only if f is continuous at that point
with respect to the taxicab metric of Example 2.3. To see this, pick x0 ∈ R2, and
ǫ > 0. Assuming that f is continuous at x0 with respect to the euclidean metric,
we know that there is a δ > 0 such that, if |x − x0| < δ, then |f(x) − f(x0)| < ǫ.
Now, by Exercise 2.5 (3), we know that |y| ≤ |y|t ≤ 2|y| always holds. Thus, if
|x−x0|t < δ, then |x−x0| < δ as well, and therefore |f(x)−f(x0)| < ǫ, as desired.
This tells us that f is continuous at x0 with respect to the taxicab metric. For the
other direction, suppose there is a δ > 0 such that |f(x) − f(x0)| < ǫ whenever
|x−x0|t < δ. Thus if |x−x0| < δ

2 , then |x−x0|t < 2 δ
2 = δ, and |f(x)−f(x0)| < ǫ.

This tells us that f is continuous at x0 with respect to the euclidean metric.

We end this section with an important metric example from real analysis. Cer-
tain well-known theorems from calculus are assumed without proof; we promise to
prove them later in the course.

Example 3.8 (Function Space). We denote by [0, 1] the closed unit interval in
the real line; i.e., [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}. We then denote by C([0, 1])
the set of all functions f : [0, 1] → R such that f is continuous with respect to the
euclidean metric in both domain and range. (So elements are continuous real-valued
functions.) Now, given f ∈ C([0, 1]), define the (generalized) taxicab norm |f |t
as a Riemann integral:

|f |t :=

∫ 1

0

|f(x)| dx

Two comments are in order:

(i) |f |t is always well defined because of the fact, based on the extreme value
theorem (Theorem 1.5 (i)), that says continuous real-valued functions on
bounded closed intervals are Riemann integrable.
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(ii) The taxicab norm makes sense in the setting of any euclidean space, just
let |x|t equal the sum of the absolute values of the coordinates of x. Since
x ∈ Rn may be thought of as a function from the set {1, 2, . . . , n} to R,
and since the Riemann integral is a “continuous version of summing,” it
is reasonable to apply the modifier taxicab in defining |f |t, for f ∈ C([0, 1]).

So, as in Example 2.3, let’s define the taxicab distance between f and g in
C([0, 1]) to be |f − g|t (where, as in calculus, (f − g)(x) := f(x) − g(x)). Is
this a bona fide metric on C([0, 1])? Let’s check symmetry first: |f − g|t =
∫ 1

0
|f(x) − g(x)| dx =

∫ 1

0
|g(x) − f(x)| dx = |g − f |t. That was easy; now let’s

see about the triangle inequality. This follows immediately if we can show that

|f +g|t ≤ |f |t + |g|t always holds. But the left-hand side is
∫ 1

0
|f(x)+g(x)| dx. Now

the integrand |f(x) + g(x)| is always ≤ the integrand |f(x)| + |g(x)|; so, by famil-

iar properties of the Riemann integral, we have: |f + g|t =
∫ 1

0
|f(x) + g(x)| dx ≤

∫ 1

0
(|f(x)| + |g(x)|) dx =

∫ 1

0
|f(x)| dx +

∫ 1

0
|g(x)| dx = |f |t + |g|t. Finally, having

saved the best for last, let’s check positivity. Interestingly enough, this turns out
to be the most difficult condition to verify. Of course |f − g|t is always ≥ 0, but
what if |f − g|t = 0. Does that imply that f and g are the same function? We
can easily answer this question in the affirmative if we can show the following: If
f : [0, 1] → R is a continuous function such that f(x) ≥ 0 for all x ∈ [0, 1], and if

f(x0) > 0 for some x0 ∈ [0, 1], then
∫ 1

0
f(x) dx > 0. This fact depends crucially on

the continuity of f at x0. Suppose f(x0) = ǫ > 0. Then there is a δ > 0 such that,
if x ∈ [0, 1] and |x−x0| < δ, then |f(x)−f(x0)| = |f(x)−ǫ| < ǫ. That implies that,
for all x ∈ [0, 1] within δ of x0, we have f(x) > ǫ

2 . Thus the graph of f lies above
the horizontal line y = ǫ for x lying in an interval, of positive width, containing x0.

Since f(x) ≥ 0 for all x ∈ [0, 1], we infer that
∫ 1

0
f(x) dx is at least as large as the

area of a rectangle of positive width and height.

Exercises 3.9. (1) Defining the ordered pair 〈x, y〉 to be the set {{x}, {x, y}},
show that, for any u, v, s, t, 〈u, v〉 = 〈s, t〉 if and only if u = s and v = t.

(2) Refer to Example 3.7, and show that the same conclusion obtains if we re-
place the taxicab metric with the max metric of Exercise 2.5 (2).

(3) Refer to Example 3.8, and find the generalized taxicab distance between f
and g, where f(x) := x2 and g(x) := sin(π

2 x).

(4) * Refer to Example 3.8, and define the (generalized) max norm |f |m of
f ∈ C([0, 1]) to be the absolute maximum value that |f(x)| takes. (In sym-
bols, |f |m := max{|f(x)| : x ∈ [0, 1]}.) Justify this definition, show the cor-
responding distance function to be a metric, and verify that |f |t is always
≤ |f |m. Show by example that for any ǫ > 0 there exists some f ∈ C([0, 1])
such that |f |m = 1 and |f |t < ǫ. (Compare with the statement of Exercise
2.5 (3).)
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(5) Refer to Example 3.8, and define the (generalized) dot product f · g of

f, g ∈ C([0, 1]) to be the integral
∫ 1

0
f(x)g(x) dx, and then define the (gen-

eralized) euclidean norm |f | (also called the L2-norm) to be
√

f · f . Use
the (generalized) Cauchy-Schwarz inequality |f · g| ≤ |f ||g| to prove that
the corresponding distance function is a metric. How do |f | and |f |m (see
Exercise 3.9 (4)) generally compare?

(6) Refer to Example 3.2 (iv), and show that the discrete metric really is a
metric (compare with Example 2.4). If 〈X, d〉 and 〈Y, e〉 are metric spaces,
and d is the discrete metric, what does it mean for a function f : X → Y
to be continuous?

(7) * Let 〈X, d〉 and 〈Y, e〉 be metric spaces, with f : X → Y a function. Let
A ⊆ X be equipped with the induced (subspace) metric, and consider the
restriction f |A of f to A (i.e., f |A : A → Y , and (f |A)(x) := f(x), for
x ∈ A. Show that if x0 ∈ A and f is continuous at x0, then f |A is contin-
uous at x0. Is the converse always true? More precisely, if x0 ∈ A and f
is discontinuous at x0, does it necessarily follow that f |A is discontinuous
at x0?

(8) Let 〈X, d〉 be a metric space, with x0 ∈ X fixed. Define f : X → R by the
rule f(x) := d(x, x0), and show f is continuous as a function from 〈X, d〉
to R (equipped with the euclidean metric).
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4. Some Topology of Metric Spaces

One of the popular definitions of topology is “rubber sheet geometry,” and sug-
gests the operations you could perform on a plane geometric figure, a triangle, say,
(viewed as a union of three line segments, not as the enclosed area) and keep the
“essential” qualities of that figure intact. In ordinary plane geometry, these oper-
ations are quite restricted; namely you’re allowed translations and rotations only.
A sequence of such operations is commonly called a rigid motion; the result of a
rigid motion on a triangle is precisely another triangle of the same shape and size
(but possibly moved over and upside down). In this situation the two triangles are
said to be congruent. In “rubber sheet” geometry, the class of admissible oper-
ations is much broader than just the rigid motions. As the word rubber suggests,
you’re allowed lots of stretching and bending (but no tearing). While preserving all
the euclidean features of a plane figure is summed up in the word congruent, the
preservation of all the topological features of that figure is summed up in the word
homeomorphic. In this course we will see that three-corneredness is not a topolog-
ical property of a triangle because a square, even a circle, is homeomorphic to a
triangle. What is a topological property is the fact that a triangle is connected ; i.e.,
comes in “one piece.” Even after cutting the triangle by removing a point, you still
have something that is connected. However, upon the removal of any two points,
the result is two connected pieces. This tells us that a triangle, a line segment, and
a figure-eight are all in distinct homeomorphism classes; i.e., no two of these three
plane figures are topologically “the same.”

With the help of topology, we can make all these vague intuitive ideas crystal
clear. As a first step, we introduce the basic topological features of metric spaces.

Definition 4.1 (Neighborhood of a Point). suppose 〈X, d〉 is a metric space, x0

is a point of X, and ǫ > 0. We denote by Bd(x0, ǫ) the set {x : d(x, x0) < ǫ},
the d-ball neighborhood with center x0 and radius ǫ. (When the metric d is
understood, we often drop the subscript and simply write B(x0, ǫ).) If x0 ∈ X and
A ⊆ X are given, we say A is a d-neighborhood of x0 if there is some ǫ > 0 such
that Bd(x0, ǫ) ⊆ A. (When confusion is not likely to arise, we suppress mention of
the metric; also we frequently abbreviate neighborhood with nbd.)

Example 4.2. In the plane R2, let e and t be the euclidean and taxicab metrics,

respectively. Then Be(0, 1) = {〈x, y〉 :
√

x2 + y2 < 1}, i.e., the open disk, of radius
1, centered at the origin. On the other hand, Bt(0, 1) = {〈x, y〉 : |x|+ |y| < 1}. The
easiest way to graph this is to consider each quadrant separately and graph the cor-
responding equality. In the first quadrant, for example, the bounding line segment
is given by x + y = 1; in the second quadrant the relevant equality is −x + y = 1.
The resulting ball then has the shape of a diamond (not including the boundary
segments).

Let us now recast the definition of continuity at a point in the language of neigh-
borhoods. To begin, we introduce some notation regarding functions. Given a
function f : X → Y between sets and a subset A of X, the image of A under f
is the set f [A] := {f(x) : x ∈ A}. If B is now a subset of Y , the inverse image
of B under f is the set f−1[B] := {x : f(x) ∈ B}. The following is a simple, but
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very important, rewording of Definition 3.5.

Theorem 4.3 (Neighborhood Characterization of Continuity at a Point). Let
〈X, d〉 and 〈Y, e〉 be metric spaces, x0 ∈ X, and f : X → Y a function. Then
f is continuous at x0 if and only if whenever E is a nbd of f(x0) in Y , there is a
nbd D of x0 in X such that f [D] ⊆ E.

Proof. Suppose first that f is continuous at x0, and that E is any given nbd of f(x0).
Then there is some ǫ > 0 such that Be(f(x0), ǫ) ⊆ E. By continuity, we know there
exists a δ > 0 such that whenever x ∈ Bd(x0, δ), we have that f(x) ∈ Be(f(x0), ǫ).
That is, f [Bd(x0, δ)] ⊆ Be(f(x0), ǫ) ⊆ E. D := Bd(x0, δ) is the nbd of x0 we want.
For the converse, let ǫ > 0 be given, and set E := Be(f(x0), ǫ). Then there is a
nbd D of x0 such that f [D] ⊆ E. Let δ > 0 be such that Bd(x0, δ) ⊆ D. Then
f [Bd(x0, δ)] ⊆ Be(f(x0), ǫ).

�

Definition 4.4 (Open Sets and Closed Sets in Metric Spaces). Let 〈X, d〉 be a
metric space, with U ⊆ X. U is a d-open set (or, simply, an open set) if U is a
neighborhood of each of its elements. A set C ⊆ X is a closed set if the comple-
ment of C (i.e., X \ C := {x ∈ X : x /∈ C}) is open.

So, to check whether U ⊆ X is an open set, one generally picks arbitrary x0 ∈ U
and tries to find some ǫ > 0 such that Bd(x0, ǫ) ⊆ U . The usual procedure for
checking whether C ⊆ X is closed is to pick x0 ∈ X outside C (but arbitrary
otherwise) and to try to find ǫ > 0 such that Bd(x0, ǫ) misses C altogether. (When
sets A and B fail to share any points, they are said to be disjoint. This says their
intersection is empty; in symbols, A ∩ B = ∅.)

Theorem 4.5 (Topological Properties of Metrics). Let 〈X, d〉 be a fixed metric
space.

(i) The empty set ∅ and the universal set X are both open and closed.
(ii) If A and B are both open (resp., closed) sets, then A ∩B (resp., A ∪B) is

also open (resp., closed).
(iii) If {Ai : i ∈ I} is any family of open (resp., closed) sets, then the union

⋃

i∈I Ai (resp., the intersection
⋂

i∈I Ai) is also open (resp., closed).
(iv) For any x0 ∈ X and ǫ > 0, B(x0, ǫ) is an open set.
(v) For any x0 ∈ X and ǫ > 0, B[x0, ǫ] := {x : d(x, x0) ≤ ǫ} is a closed set

containing B(x0, ǫ).
(vi) Every finite subset of X is closed.

Proof. Ad (i): See Exercise 4.11 (1) below.

Ad (ii): Assume A and B are both open sets. We need to show that A ∩ B is
a nbd of each of its points. Given x0 ∈ A ∩ B, we have, since A is a nbd of x0,
some ǫA > 0 such that B(x0, ǫA) ⊆ A. Similarly, there is some ǫB > 0 such that
B(x0, ǫB) ⊆ B. These two ball neighborhoods are concentric. Hence, if we let ǫ be
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the minimum of ǫA and ǫB , we find that B(x0, ǫ) is contained in both A and B.
Therefore B(x0, ǫ) ⊆ A ∩ B.

Now suppose A and B are both closed sets. Then, by definition, X \A and X \B
are both open sets; so, by the paragraph above, (X \A)∩ (X \B) is also open. By
the classic DeMorgan laws of basic set theory (see Exercise 4.11 (7) below), this
intersection is X \ (A ∪ B). This tells us A ∪ B is closed.

Ad (iii): Assume, for each i in our (possibly infinite) index set I, Ai is an open
set. If x0 ∈ ⋃

i∈I Ai, then, by definition of set union, there is some i0 ∈ I such that
x0 ∈ Ai0 . Since Ai0 is a nbd of x0, there is some ǫ > 0 with B(x0, ǫ) ⊆ Ai0 . But
Ai0 is contained in the big union; hence B(x0, ǫ) ⊆

⋃

i∈I Ai.
If each Ai is now assumed to be closed, we use the DeMorgan laws again; i.e.,

X \ (
⋂

i∈I Ai) =
⋃

i∈I(X \ Ai).

Ad (iv): Suppose x ∈ B(x0, ǫ). We must find a δ > 0 such that B(x, δ) ⊆
B(x0, ǫ). Let d(x, x0) = η. Then 0 < η < ǫ, so δ := ǫ − η > 0. If y ∈ B(x, δ), then
d(y, x) < δ. So, by the triangle inequality, d(y, x0) ≤ d(y, x) + d(x, x0) < δ + η = ǫ;
so y ∈ B(x0, ǫ).

Ad (v): Containment is obvious; what is less clear is the assertion of closedness.
If x /∈ B[x0, ǫ], then we have η := d(x, x0) > ǫ. If we let δ := η − ǫ > 0, then we
claim that B(x, δ)∩B[x0, ǫ] = ∅. Indeed, suppose not. Then we have some y in the
intersection; so d(y, x0) ≤ ǫ and d(y, x) < δ. But then, using the triangle inequality
again, we have η = d(x, x0) ≤ d(x, y) + d(y, x0) < δ + ǫ = η. A real number cannot
be strictly less than itself, so we have a contradiction.

Ad (vi): If {x1, . . . , xn} is a finite subset of X and x0 is not in this set, let
ǫ > 0 be the minimum of all the finitely many positive distances from x0 to each
xi, 1 ≤ i ≤ n. Then B(x0, ǫ) is disjoint from {x1, . . . , xn}.

�

Example 4.6 (Infinite Intersections of Open Sets). Although finite intersections
of open sets are open, infinite intersections hardly ever are. Consider a metric
space 〈X, d〉, with x0 ∈ X, and consider the infinite family B(x0,

1
k
), k = 1, 2, . . . .

Because of the Archimedean property of the reals, there is no positive real num-
ber that is less than 1

k
for every positive natural number k; hence we know that

⋂

k≥1 B(x0,
1
k
) = {x0}. While it is possible for a singleton subset to be open, it

is usually not the case. For example, this never happens in Rn with the euclidean
metric.

Definition 4.7 (Limit/Isolated Point of a Set). Let 〈X, d〉 be a metric space, A a
subset of X, and x0 a point of X (not necessarily of A). x0 is called a limit point
of A if every nbd of x0 contains points of A other than x0 itself. If x0 ∈ A but x0

is not a limit point of A, we call x0 an isolated point of A.

The use of the word limit in Definition 4.7 may ring some bells: does this have
anything to do with limits of sequences? The answer is yes, and we will have more
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to say on the subject when we talk about convergence in Section 10.

Examples 4.8 (Sets in the Real Line). Let us consider various examples of sets
in the real line R, equipped with the usual (euclidean) metric.

(i) The open intervals (a, b) are open sets because they are ball neighborhoods
of their midpoints (see Theorem 4.5 (iv)). Unbounded open intervals, like
(a,∞), are open sets as well because they are unions of bounded ones. I.e.,
(a,∞) =

⋃

n∈N
(a, a + n). Every point of [a, b] is a limit point of (a, b). No

point of an interval of positive length is an isolated point of that interval.
(ii) Intervals that include their endpoints are closed, but not open. For example,

[a, b] is closed because its complement in R is (−∞, a)∪(b,∞), an open set.
[a, b] is not open because it is not a nbd of either of its endpoints. ([a, b] is
a nbd of each of its other points, though.)

(iii) The set Q of rational numbers (i.e., those real numbers that are repre-
sentable as fractions of integers) is neither open nor closed. This follows
from the facts that:
(a) between any two real numbers lies a rational number; and
(b) between any two real numbers lies an irrational number.

For the same reason, every real number is a limit point of Q.
(iv) The set Z if integers is closed, but not open. Furthermore, each integer

point is an isolated point of Z. (See Exercise 4.11 (9) below.)

We now return to our main theme, continuity. The following characterization
of continuity at a point most closely resembles our original intuitive treatment in
Definition 1.1.

Theorem 4.9 (Limit Point Characterization of Continuity at a Point). Let 〈X, d〉
and 〈Y, e〉 be metric spaces, x0 ∈ X, and f : X → Y a function. Then f is contin-
uous at x0 if and only if whenever A is a subset of X such that x0 is a limit point
of A, we have that f(x0) is either a limit point of f [A] or a member of f [A].

Proof. Assuming f is continuous at x0, suppose A ⊆ X has x0 as a limit point. If
f(x0) is neither a limit point of f [A] nor a member of f [A], then there is some nbd
E of f(x0) that is disjoint from f [A]. Using Theorem 4.3, and by continuity of f
at x0, there is some nbd D of x0 such that f [D] ⊆ E. Since x0 is a limit point of
A, there must be some x ∈ D ∩ A, hence f(x) ∈ f [D ∩ A]. But (see Exercise 4.11
(5) below) f [D ∩ A] ⊆ f [D] ∩ f [A], which, in turn, is contained in E ∩ f [A] = ∅.
This is a contradiction.

For the converse, suppose x0 ∈ X and E is a nbd of f(x0). We need to find a
nbd D of x0 such that f [D] ⊆ E. Suppose no such D exists (heaven forbid). Then,
for each natural number k ≥ 1, we have f [Bd(x0,

1
k
)] not contained in E. For each

k ≥ 1, then, let yk ∈ f [Bd(x0,
1
k
)]\E witness this noncontainment. And, once we’ve

done this, pick xk ∈ Bd(x0,
1
k
) such that yk = f(xk). No xk is x0 because the points

f(xk) lie outside of E, for k ≥ 1. Since every nbd of x0 contains Bd(x0,
1
k
) for some

suitably large k (the Archimedean property again), we infer that A := {x1, x2, . . . }
has x0 for a limit point. But then it is not the case that f(x0) ∈ f [A]; nor is it the
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case that f(x0) is a limit point of f [A]. This gives us a contradiction.
�

We are now in a position to characterize continuity in terms of several different
topological notions.

Theorem 4.10 (Characterizations of Continuity). Let 〈X, d〉 and 〈Y, e〉 be metric
spaces, with f : X → Y a function. The following are equivalent:

(a) f is continuous on X.
(b) For every U ⊆ Y that is e-open, f−1[U ] ⊆ X is d-open.
(c) For every C ⊆ Y that is e-closed, f−1[C] ⊆ X is d-closed.

Proof. Ad ((a) =⇒ (b)): Assume that U ⊆ Y is e-open. It suffices to prove that
f−1[U ] is a nbd of each of its points. So let x0 be arbitrily chosen from f−1[U ].
Then, by definition, f(x0) ∈ U . Now U is a nbd of f(x0); so, by the assumption
(a), in the form of Theorem 4.3, there is a nbd D of x0 such that f [D] ⊆ U . But
then D ⊆ f−1[U ]. Any superset of a nbd of a point is also a nbd of the point. Thus
f−1[U ] is a nbd of x0.

Ad ((b) =⇒ (c)): Supposed C ⊆ Y is e-closed. Then Y \ C is e-open. By
assumption (b), f−1[Y \C] is d-open. By elementary Boolean properties of inverse
images of functions, this set is also X \ f−1[C]. Thus f−1[C] is d-closed.

Ad ((c) =⇒ (b)): This is almost exactly the same as the argument in the last
paragraph.

Ad ((b) =⇒ (a)): It suffices to show that f is continuous at each point x0 of
X. So let ǫ > 0 be given. Then, by Theorem 4.5 (iv), Be(f(x0), ǫ) is an e-open
set. By assumption (b), f−1[Be(f(x0), ǫ)] is a d-open set containing x0. Hence
there is a δ > 0 such that Bd(x0, δ) ⊆ f−1[Be(f(x0), ǫ)]. This now implies that
f [Bd(x0, δ)] ⊆ Be(f(x0), ǫ), completing the proof.

�

Exercises 4.11. (1) Show that the empty set and the universal set are always
open subsets of any metric space.

(2) Suppose that 〈X, d〉 is a metric space, where d is the discrete metric. What
exactly are the open sets in this case? What are the closed sets? What does
it mean for a point to be a limit point of a set in the discrete context?

(3) Let e and t be the euclidean and the taxicab metrics on the plane R2. Show
that every e-open set is a t-open set, and vice versa. If d is now the discrete
metric, show every e-open set is a d-open set, but not vice versa.

(4) Let 〈X, d〉 be a metric space, with x and y distinct points of X. Show there
are open sets U containing x and V containing y, such that U∩V = ∅. This
is called the Hausdorff property of metric spaces (after Felix Hausdorff
(1868–1942)).
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(5) * Suppose f : X → Y is a function between sets, and that {Ai : i ∈ I} is a
family of subsets of X.
(a) Show f [

⋃

i∈I Ai] =
⋃

i∈I f [Ai].
(b) Show f [

⋂

i∈I Ai] ⊆
⋂

i∈I f [Ai], but that equality need not hold, even in
the case I has just two indices.

(c) If A ⊆ X, show by a single example that f [X \A] and Y \f [A] need not
be set-theoretically related (i.e., neither need be a subset of the other).

(6) Suppose f : X → Y is a function between sets, and that {Bi : i ∈ I} is a
family of subsets of Y .
(a) Show f−1[

⋃

i∈I Bi] =
⋃

i∈I f−1[Bi].

(b) Show f−1[
⋂

i∈I Bi] =
⋂

i∈I f−1[Bi].

(c) If B ⊆ Y , show that f−1[Y \ B] = X \ f−1[B].

(7) Let X be a set, with {Ai : i ∈ I} a family of subsets of Y . Prove the
following two DeMorgan laws:
(a) X \ (

⋃

i∈I Ai) =
⋂

i∈I(X \ Ai).
(b) X \ (

⋂

i∈I Ai) =
⋃

i∈I(X \ Ai).

(8) Refer to Theorem 4.9 and discuss the effect of replacing “either a limit point
of f [A] or a member of f [A]” with the shorter “a limit point of f [A].”

(9) Show that the set Z if integers is closed, but not open, as a subset of R,
equipped with the usual metric. Show further that each integer point is an
isolated point of Z.
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5. Topologies and Topological Spaces

Given any metric space 〈X, d〉, there is the associated family of d-open sets, as
discussed in the last section. All the related notions of closed set, neighborhood of
a point, limit point of a set, and so on, may be defined in terms of the open sets
alone. (For example, x ∈ X is a limit point of A ⊆ X if and only if every open set
containing x also contains points of A other than x.) Just as Theorem 2.2 singled
out the metric properties of distance functions needed to free up the definition of
continuity from the euclidean context, Theorem 4.5 (i, ii, iii) showed us the purely
topological features of metrics. Theorems 4.3, 4.9, and 4.10 then served to show us
how to to wean continuity notions completely from all dependence on the structure
of the real line.

Our first definition parallels Definition 3.1, in that it uses a theorem as its mo-
tivation. Essential features of euclidean distance were abstracted to constitute the
definition of metric and of metric space. Now we abstract essential features of met-
rics to constitute the definition of topology and topological space.

Definition 5.1 (Topological Space). Let X be a set. By a topology on X, we
mean a family T of subsets of X (the T -open sets) satisfying the following:

(T1) The empty set ∅ and the universal set X are members of T .
(T2) If A and B are both members of T , then so is the intersection A ∩ B.
(T3) If {Ai : i ∈ I} is any family of members of T , then so is the union

⋃

i∈I Ai.

A topological space is a pair 〈X, T 〉, where X is a set (the underlying set of
points) and T is a topology on X.

Remark 5.2 (On Terminology). The use of the word topology to denote both a
mathematical subject area and an object of mathematical study may seem a bit pe-
culiar. It seems to be a historical accident that someone coined the word “topology”
to apply to the collection of open sets; maybe it would have been better called a
“topo,” so that the study of such things would be properly called topology (or maybe
“topo space theory”). Go figure!

Examples 5.3. (i) Suppose 〈X, d〉 is a metric space. Then the collection Td

of d-open sets forms a topology on X, called the metric topology induced
by d. If 〈X, T 〉 is such that T = Td for some metric d on X, we say that
〈X, T 〉 is a metrizable topological space. (It often happens that a topology
on a set is defined using no mention of a metric, yet is indeed metrizable.
A fundamental problem in general topology is to provide purely topological
criteria on a topological space that ensure metrizability.)

(ii) Let X be any set, and define T to be the two-set family {∅,X}. Then this
family satisfies the conditions for being a topology; it’s called the trivial
topology, and includes only those sets it’s required to. At the opposite ex-
treme is to define T to be the family of all subsets of X. This is called the
discrete topology: every set is open in this topology. The discrete topol-
ogy is precisely Td, where d is the discrete metric. (See Exercise 5.12 (1)
below.)

(iii) Let X be any set, and define a subset A of X to be cofinite in X if X \A
is finite. We now define T to be the family consisting of the empty set,
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plus all the sets cofinite in X. This is called the cofinite (or sometimes
the finite-complement) topology. Of course, if X is itself finite, then the
cofinite topology is just the discrete topology since every subset of a finite
set is cofinite in the set. Checking that this is indeed a topology in all cases
is straightforward (see Exercise 5.12 (6) below); in the case X is an infinite
set, the cofinite topology is not metrizable. To see this, recall Exercise 4.11
(4). Every metrizable topology satisfies the Hausdorff property; i.e., when
x and y are two distinct points, there exist open sets U and V such that
x ∈ U , y ∈ V , and U ∩ V = ∅. However, if X is infinite, and U and V are
disjoint nonempty open (i.e., cofinite) sets, then V is a subset of X \ U ,
which is finite. That is a contradiction; hence all nonempty open sets in
this topology must overlap.

(iv) Suppose we start with a topological space 〈X, T 〉, with Y a fixed subset of
X. We now form the family TY , consisting of sets U ∪A, where U ∈ T and
A ⊆ Y . This is a new topology on X. Every T -open set U is also TY -open
because U = U ∪ ∅ and ∅ ⊆ Y . Let’s check the Boolean closure conditions
for being a topology. If U ∪A and V ∪B are arbitrary members of TY , then
so is (U ∪A) ∩ (V ∪B) = (U ∩ V ) ∪ ((U ∩B) ∪ (A ∩ V ) ∪ (A ∩B)). Simi-
larly, if {Ui ∪Ai : i ∈ I} is a family of members of TY , then so is the union
⋃

i∈I(Ui∪Ai) = (
⋃

i∈I Ui)∪(
⋃

i∈I Ai). If Y = ∅, we get TY = T ; if Y = X,
we get the discrete topology on X. The prototypical example of this phe-
nomenon is popularly called the Michael line (after Ernest A. Michael):
〈X, T 〉 is the usual (i.e., euclidean-metric-induced) topology on the real line,
and Y is the set of irrational numbers. (In particular, all irrational single-
ton sets are open, but no rational singletons are.) This topological space is
an important source of examples in more advanced courses.

Definition 5.4 (The Subspace Topology). Let 〈X, T 〉 be a topological space, A a
subset of X. Then it makes sense to intersect each U ∈ T with A. The resulting
collection, denoted T |A := {U ∩ A : U ∈ T } is easily seen to satisfy the conditions
for being a topology on A, and is called the topology on A induced by T , or the
subspace topology on A. The pair 〈A, T |A〉 is called a topological subspace of
〈X, T 〉; a set of the form U ∩ A, where U ∈ T , is frequently called open in A (or
open relative to A).

Just in case you were wondering, the subspace metric gives rise to the subspace
topology. We take this up in Section 6.

Exactly as with the topological study of metric spaces, we have the same derived
notions of neighborhood, closed set, etc. For future reference, we collect them here.

Definition 5.5 (Derived Topological Notions). Let 〈X, T 〉 be a fixed topological
space.

(i) (Neighborhood of a Point) If x ∈ X and A ⊆ X, we say A is a neighbor-
hood (abbreviated nbd) of x if there is some U ∈ T , with x ∈ U ⊆ A. (So
the open sets are precisely the nbds of each of their points.)

(ii) (Closed Set) Let A ⊆ X. A is a closed set if X \ A ∈ T .
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(iii) (Limit Point of a Set) If x ∈ X and A ⊆ X, we say x is a limit point of
A if every nbd of x has points, other than x, in common with A.

(iv) (Isolated Point of a Set) if x ∈ X and A ⊆ X, we say x is an isolated
point of A if U ∩ A = {x}, for some nbd U of x.

We now have what amounts to a reiteration of Theorem 4.5; its proof is a straight-
forward use of the DeMorgan laws.

Theorem 5.6 (Boolean Properties of the Collection of Closed Sets). Let 〈X, T 〉
be a fixed topological space.

(i) Both ∅ and X are closed.
(ii) If A and B are both closed sets, then so is the union A ∪ B.
(iii) If {Ai : i ∈ I} is any family of closed sets, then so is the intersection

⋂

i∈I Ai.

In addition to the notions in Definition 5.5, essentially repetitions of what was
defined in Section 4, we introduce the three new, but highly important ideas of
closure, interior, and boundary. These owe their definitions to Theorem 5.6.

Definition 5.7 (Closure, Interior, and Boundary of a Set). Let 〈X, T 〉 be a fixed
topological space, A a subset of X.

(i) (Closure) The intersection of all closed sets containing A is a closed set,
called the closure of A and denoted ClT (A); it is the smallest (in the sense
of set inclusion) closed set containing A. A point x is in ClT (A) just in
case either x ∈ A or x is a limit point of A.

(ii) (Interior) The union of all open sets contained in A is an open set, called
the interior of A and denoted IntT (A); it is the largest (in the sense of
set inclusion) open set contained in A. A point x is in IntT (A) just in case
some nbd of x is a subset of A.

(iii) (Boundary) ClT (A)∩ClT (X\A) is a closed set, and is called the boundary
of A. This set is denoted BdT (A). A point x is in BdT (A) just in case
every nbd of x intersects both A and X \ A.

(When confusion is unlikely to arise, we drop the subscripts that specify which
topology the closures, etc. are relative to.) The Boolean properties of the closure
and interior operators behave rather predictably; there is less that can be said about
the boundary operator.

Theorem 5.8 (Boolean Properties of Closure, Interior, and Boundary). Let 〈X, T 〉
be a fixed topological space, with {Ai : i ∈ I} a fixed family of subsets of X.

(i) Cl(A) = Int(A) = A and Bd(A) = ∅ whenever A is either ∅ or X.
(ii) X \ Cl(A) = Int(X \ A) and X \ Int(A) = Cl(X \ A), for any A ⊆ X.
(iii)

⋃

i∈I Cl(Ai) ⊆ Cl(
⋃

i∈I Ai). Equality holds if I is finite; equality needn’t
hold otherwise.

(iv)
⋂

i∈I Cl(Ai) ⊇ Cl(
⋂

i∈I Ai). Equality needn’t hold, even if I is finite.
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(v)
⋂

i∈I Int(Ai) ⊇ Int(
⋂

i∈I Ai). Equality holds if I is finite; equality needn’t
hold otherwise.

(vi)
⋃

i∈I Int(Ai) ⊆ Int(
⋃

i∈I Ai). Equality needn’t hold, even if I is finite.
(vii) Bd(A) = Bd(X \ A) for any A ⊆ X.
(viii) Bd(A ∪ B) ⊆ (Bd(A) ∩ Cl(X \ B)) ∪ (Bd(B) ∩ Cl(X \ A))
(ix) Bd(A ∩ B) ⊆ (Bd(A) ∩ Cl(B)) ∪ (Bd(B) ∩ Cl(A))

Proof. Ad (i): This is immediate, because both the empty set and the universal set
are open and closed relative to any topology.

Ad (ii): X \ Cl(A) is an open set contained in X \ A, and is hence contained in
Int(X \A) (= the largest open set contained in X \A). On the other hand, a point
x in Int(X \ A) has a nbd that is contained in X \ A; hence x has a nbd that is
disjoint from A. For x to be in Cl(A), it is necessary for every nbd of x to inter-
sect A. Thus x /∈ Cl(A); i.e., x ∈ X\Cl(A). The second equality is proved similarly.

Ad (iii): Suppose x ∈ ⋃

i∈I Cl(Ai). Then x ∈ Cl(Aj) for some j ∈ I. So if U is
a nbd of x, then U must intersect Aj . Thus U must intersect

⋃

i∈I Ai. This tells
us that x ∈ Cl(

⋃

i∈I Ai).
To see that the containment can be proper (i.e., that equality needn’t hold

always), let our topological space be the real line with the usual topology. Let
I := {2, 3 . . . }, and set Ai := [1

i
, 1], for i ∈ I. Then

⋃

i∈I Cl(Ai) = (0, 1] (:= {x ∈
R : 0 < x ≤ 1}); however Cl(

⋃

i∈I Ai) = [0, 1]. (See Exercise 5.12 (2) below.)
To see that equality does hold when I is finite, let’s assume I := {1, . . . , n}.

We’ve already shown that Cl(A1) ∪ · · · ∪Cl(An) ⊆ Cl(A1 ∪ · · · ∪An), so let’s show
the reverse inclusion. But each Cl(Ai) is a closed set containing Ai, and a finite
union of closed sets is a closed set. Thus Cl(A1) ∪ · · · ∪ Cl(An) is a closed set con-
taining A1 ∪ · · · ∪An. Since Cl(A1 ∪ · · · ∪An) is the smallest closed set containing
A1 ∪ · · · ∪ An, we infer that Cl(A1) ∪ · · · ∪ Cl(An) ⊇ Cl(A1 ∪ · · · ∪ An), and so
equality holds.

Ad (iv): Each Cl(Aj) is a closed set containing
⋂

i∈I Ai; hence
⋂

i∈I Cl(Ai) is a
closed set containing

⋂

i∈I Ai. It therefore contains the closure of the intersection.
To see that equality needn’t hold, even when the index set is finite, let our topo-

logical space again be the real line with the usual topology, and put A := [0, 1) and
B := (1, 2] (usual half-open interval notation). Then A ∩ B = ∅, so Cl(A ∩ B) = ∅
too. On the other hand, Cl(A) ∩ Cl(B) = [0, 1] ∩ [1, 2] = {1}.

Ad (v): This is similar to the proof of (iii) above.

Ad (vi): This is similar to the proof of (iv) above.

Ad (vii): This is immediate from the definition of the boundary operator.

Ad (viii): Bd(A ∪ B) = Cl(A ∪ B) ∩ Cl(X \ (A ∪ B)) = (Cl(A) ∪ Cl(B)) ∩
Cl((X \ A) ∩ (X \ B)), by (iii) above, plus an application of the DeMorgan laws.
Now, by (iv) above, the right-hand side is contained in (Cl(A) ∪ Cl(B)) ∩ Cl(X \
A)∩Cl(X \B). Using the Boolean distributive law of intersection over union, and
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using the definition of the boundary operator, the right-hand side is now equal to
(Bd(A) ∩ Cl(X \ B)) ∪ (Bd(B) ∩ Cl(X \ A)).

Ad (ix): This is similar to (viii) above.
�

Examples 5.9. (i) If T is the discrete topology on X, then Cl(A) = Int(A) =
A and Bd(A) = ∅, for each A ∈ X.

(ii) If T is the usual topology on R, then Cl((a, b]) = [a, b], Int((a, b]) = (a, b),
and Bd((a, b]) = {a, b}. Furthermore, Cl(Q) = Bd(Q) = R and Int(Q) = ∅.

(iii) If 〈X, d〉 is a metric space, it is tempting to conjecture that Cl(Bd(x0, ǫ))
is always equal to Bd[x0, ǫ] (recall Theorem 4.5 (v)). While the former is
always contained in the latter, and equality does indeed hold when d is the
euclidean metric in Rn, strict inequality can occur. For example, let d be a
discrete metric and let ǫ = 1 (See Exercise 5.12 (7) below).

Armed with Theorem 4.3, we are now in a position to give a definition of con-
tinuity in the general topological context, and to characterize continuity in various
topological terms.

Definition 5.10 (Continuity at a Point in Topological Space). Let 〈X, T 〉 and
〈Y,U〉 be topological spaces, x0 ∈ X, and f : X → Y a function. f is continuous
at x0 if, whenever E is a nbd of f(x0) in Y , there is a nbd D of x0 in X such that
f [D] ⊆ E. f is continuous on X if f is continuous at each point of X.

The following improves on Theorem 4.10; its proof is almost identical.

Theorem 5.11 (Characterizations of Continuity). Let 〈X, T 〉 and 〈Y,U〉 be topo-
logical spaces, with f : X → Y a map. The following are equivalent:

(a) f is continuous on X.
(b) For every U ⊆ Y that is U-open, f−1[U ] ⊆ X is T -open.
(c) For every C ⊆ Y that is U-closed, f−1[C] ⊆ X is T -closed.
(d) For every A ⊆ X, f [ClT (A)] ⊆ ClU (f [A]).

Proof. The equivalence of (a), (b), and (c) is an almost word-for-word repeat of the
proof of Theorem 4.10. Let’s now prove the equivalence of (a) and (d).

Ad ((a) =⇒ (d)): Let A ⊆ X be given, and suppose y0 ∈ f [ClT (A)]. Then
we may choose x0 ∈ ClT (A) such that y0 = f(x0). Let’s assume, for the sake of
contradiction, that y0 /∈ ClU (f [A]). Then there is a nbd E of y0 in Y such that
E∩f [A] = ∅. By continuity at x0, there is a nbd D of x0 in X such that f [D] ⊆ E.
This is a contradiction, since x0 ∈ ClT (A), and so D must intersect A. This proves
that f [ClT (A)] ⊆ ClU (f [A]).

Ad ((d) =⇒ (a)): Let x0 ∈ X be given, with E a nbd of f(x0) in Y . We
need to find a nbd D of x0 with f [D] ⊆ E. Assuming this is not the case, we
have, for each nbd D of x0, a point xD ∈ D such that f(xD) /∈ E. Let A := {xD :
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D is a nbd of x0}. Then every nbd D of x0 contains xD (at least), so must intersect
A. Thus x0 ∈ ClT (A). By our assumption (d), though, we have f(x0) ∈ ClU (f [A]).
But E is a nbd of f(x0) that is disjoint from f [A], by the definition of the points
xD that constitute A. This is a contradiction. Hence there must be some nbd D
of x0 such that f [D] ⊆ E.

�

Exercises 5.12. (1) Show that the discrete metric on a set X (as defined in
Example 3.2 (iv)) gives rise to the discrete topology on X (as defined in
Example 5.3 (ii)). Is there another metric that gives rise to the discrete
topology?

(2) Give R the usual topology, and show that Cl(
⋃

n≥2(
1
n
, 1]) = [0, 1].

(3) * Show by example that the equalities Bd(A ∪ B) = Bd(A) ∪ Bd(B) and
Bd(A ∩ B) = Bd(A) ∩ Bd(B) need not always hold.

(4) An open set in a topological space is called regular-open if it is the interior
of its own closure. Give an example of an open set in the real line that is
regular-open, and an example of an open set in the real line that is not.
How are U and Int(Cl(U)) generally related when U is open?

(5) A subset D of a topological space X is dense in X if every nonempty open
set intersects D. Show that Q is a dense subset of R, in the usual topol-
ogy, and that the intersection of two dense open sets is generally a dense
open set. Show further that the intersection of two dense sets can be empty.

(6) Refer to Example 5.3 (iii) and show that, for any set X, the collection of
cofinite subsets, together with the empty set, constitute a topology on X.

(7) Refer to Example 5.9 (iii) and show that the equality Cld(Bd(x0, ǫ)) =
Bd[x0, ǫ] need not always hold for metric spaces. How are the two sets
related in general?

(8) Let X be a two-element set. How many families of subsets are there? Which
ones are topologies? Now repeat the exercise when X is a three-element set.

(9) Let 〈X, T 〉 be a topological space, with A ⊆ X. Show all T |A-closed subsets
of A to be of the form C ∩A, where C is a T -closed subset of X. Further-
more, if B ⊆ A, show ClT |A(B) = ClT (B) ∩ A.

(10) Let 〈X, T 〉 be a topological space, with A ⊆ X. Show that if A is T -open
(resp., T -closed) and B ⊆ A is T |A-open (resp., T |A-closed), then B is
T -open (resp., T -closed).
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6. Comparison of Topologies on a Set

As we have seen, a topology on a set is a particularly well-behaved collection of
subsets of that set. So far we have seen topologies arising from metrics; also,
with the definition of the cofinite topology on an infinite set, we have examples
of topologies that don’t arise in this way. In later sections we will explore other
important ways of devising topologies; before we do, however, we must take the
time to consider the very important issue of how two topologies on the same set
may be compared.

Given a set X, denote by ℘(X) the collection of all subsets of X, the power
set of X. We have seen this collection before, under a different name: the discrete
topology on X. The discrete topology on X is the largest topology on X, in the
sense that every topology on X (indeed, every collection of subsets of X, topology
or not) is a subset of ℘(X). Another word to be used in this context beside largest
is finest. Here is the official definition.

Definition 6.1 (Comparison of Topologies). If T and U are two topologies on a
set X, we say T is coarser than U (equivalently, U is finer than T ) if T ⊆ U .

When T is coarser than U , every T -open set is a U-open set, but not necessarily
vice versa. One way to detect this is to proceed as follows: First arbitrarily pick
a point x ∈ X and a T -open nbd V of x. Next, try to find a U-open set U with
x ∈ U ⊆ V . If this is always possible, we have each T -open set represented as a
union of U-open sets, and hence itself a U-open set.

Examples 6.2. (i) The trivial topology {∅, {X}} is coarser than every topol-
ogy on X, the discrete topology ℘(X) finer.

(ii) Let d be any metric on X, with T the cofinite topology on X. Then T
is coarser than Td. Indeed, if x ∈ V ∈ T , then there is some finite set
F := {x1, . . . , xn} such that V = X \F . Let ǫ := min{d(x, xi) : 1 ≤ i ≤ n}.
Then ǫ > 0 and we have x ∈ Bd(x, ǫ) ⊆ V . If X is infinite, then (see Ex-
ample 5.3 (iii)) any two nonempty T -open sets must overlap; so T is not
metrizable, since it does not satisfy the Hausdorff property (see Exercise
4.11 (4)). In particular, T is strictly coarser than Td.

Definition 6.3 (Comparison of Metrics). Let d and e be two metrics on a set X.
We say d is coarser (resp., finer) than e if Td is coarser (resp., finer) than Te.
We say d and e are equivalent metrics if each is coarser than the other.

Example 6.4 (Equivalence of Metrics in the Plane). We recall Example 3.7. There
we showed that a real-valued function defined on R2 is continuous with respect to the
euclidean metric e if and only if it is continuous with respect to the taxicab metric
t. Here we show that that is true precisely because the two metrics are equivalent, a
fact that also depends on the result of Exercise 2.5 (3), namely that the inequalities
|x| ≤ |x|t ≤ 2|x| always hold.

Given the e-open set U and x ∈ U , first pick ǫ > 0 such that Be(x, ǫ) ⊆ U . Then
Bt(x, ǫ) ⊆ Be(x, ǫ). Since (Theorem 4.5 (iv)) t-ball nbds are t-open sets, we have
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shown that Tt is finer than Te. The opposite direction is shown similarly (here we
use Be(x, ǫ

2 ) ⊆ Bt(x, ǫ)), so we infer that Tt = Te.

Given a metric space 〈X, d〉 and a subset A of X, there are two clear ways of
obtaining a “subspace topology” on A. First we could restrict d to A and then take
the topology from the restricted metric; second we could take the metric topology
associated with d and then restrict that topology to A. The happy news is that we
get the same topology on A either way.

Theorem 6.5 (Subspace Metric vs Subspace Topology). Let 〈X, d〉 be a metric
space, A a subset of X. Then the metric topology on A induced by d|A coincides
with the subspace topology on A induced by the metric topology on X. In symbols,
Td|A = Td|A.

Proof. By the definition of restricted metric, if x ∈ A and ǫ > 0, then Bd|A(x, ǫ) =
Bd(x, ǫ) ∩ A. So suppose U ∈ Td|A, with x ∈ U . Then there is some ǫ > 0 with
Bd(x, ǫ) ∩ A ⊆ U . Since Bd(x, ǫ) ∩ A is Td|A-open, we infer that Td|A ⊆ Td|A. The
reverse inclusion is just as easy.

�

In analysis the concept of boundedness is of central importance; its definition is
most easily couched in the language of metric spaces.

Definition 6.6 (Bounded Sets and Bounded Metrics). Let 〈X, d〉 be a metric space,
A a subset of X. Then A is d-bounded if A is contained in some d-ball neighbor-
hood. d is a bounded metric if d[X × X] is a set of real numbers that is bounded
with respect to the euclidean metric on R.

Examples 6.7. (i) While each two points are a finite distance apart in Rn

with the euclidean metric e, there is no upper bound to how far apart points
can be. Thus e is an unbounded metric; Rn itself is an unbounded set in
this metric.

(ii) The discrete metric d on a set X is a bounded metric; Bd(x, ǫ) = X just in
case ǫ > 1 (or X consists of a single point and ǫ is arbitrary).

The message of the next result is that boundedness is not “topological.”

Theorem 6.8 (Existence of Bounded Metrics). Let 〈X, d〉 be a metric space. then
there is a bounded metric d on X that is equivalent to d; i.e., such that Td = Td.

Proof. Given d, we simply define d as a “truncated” version of d: if d(x, y) < 1,
d(x, y) := d(x, y); otherwise, d(x, y) := 1.

Let’s first show d is a metric. Clearly positivity and symmetry give us no
problem, but the triangle inequality needs some scrutiny. Suppose we’re given
x, y, z ∈ X; let’s show d(x, y)) > d(x, z) + d(z, y) can never hold. Indeed, the
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only time d(x, y) differs from d(x, y) is when d(x, y) ≥ 1 and d(x, y) = 1. Since
the triangle inequality holds for d, the only way the contrary inequality above can
occur is for the left-hand side to be 1 and the right-hand side to be < 1. But then
the right-hand side equals d(x, z) + d(z, y), which is ≥ d(x, y) = d(x, y). This is a
contradiction, so the triangle inequality does indeed hold for d.

Now suppose U is a d-open set, with x ∈ U . Find ǫ > 0 such that Bd(x, ǫ) ⊆ U .
We lose no generality in assuming ǫ ≤ 1, so Bd(x, ǫ) = Bd(x, ǫ). This shows d is

finer than d. The argument showing d to be finer than d is almost identical; hence
d and d are equivalent metrics.

�

We end this section with a metric construction that has proven to be invalu-
able in the pursuit of general theorems that say when a given topological space is
metrizable.

Example 6.9 (Another Function Space). For any nonempty set I we denote by
RI the set of all functions f : I → R. (This notation is consistent with the notation
Rn for euclidean space because an n-tuple is nothing more than a function from
{1, . . . , n} to R.) Letting e be the truncated euclidean metric on R, we have the set
{e(f(i), 0) : i ∈ I} for each f ∈ RI , a nonempty set of reals that is bounded above
by 1. By the completeness property, this set has a least upper bound, which we
denote by |f |s. This is often called the supremum norm, not to be confused with
the generalized max norm of Exercise 3.9 (4) to which it is related. (Even though a
supremum exists, a maximum may not; viz., f(x) := 2

π
arctan(x) in RR.) When I

is finite, say with n elements, we obtain euclidean n-space with the truncated max
norm. This gives rise to the usual (euclidean) topology on Rn (see Exercise 6.10
(4) below).

Exercises 6.10. (1) Let 〈X, T 〉 be a metrizable topological space, with A a
subset of X. Show that T |A is a metrizable topology on A.

(2) Let X be a set, with ιX : X → X denoting the identity map; i.e., ιX(x) := x
for x ∈ X. Let T and U be two topologies on X. Show that T ⊆ U if and
only if ιX is continuous as a function from 〈X,U〉 to 〈X, T 〉.

(3) * Refer to Example 3.8 and to Exercise 3.9 (4). Show that the taxicab
metric is strictly finer than the max metric on C([0, 1]). [Hint: Use Exer-
cise 3.9 (4) to show that Bt(0, ǫ) is not contained in Bm(0, 1

2 ) for any ǫ > 0.]

(4) * Refer to Example 6.9 and show that when I = {1, . . . , n}, the metric
arising from the supremum norm induces the usual topology on euclidean
n-space.

(5) Let X be a set with exactly two elements. List all topologies on X, indicat-
ing how any two of them relate on the coarse-fine scale. Repeat this exercise
for a set with exactly three elements.
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(6) Let X be a set, with T and U two topologies on X. Show that T is coarser
than U if and only if: for every function f with domain X, if f is contin-
uous with respect to T , then f is continuous with respect to U .

(7) Let 〈X, T 〉 be a topological space, A a subset of X, and let ιX |A : A → X
denote the inclusion map; i.e., the identity map ιX on X, restricted to A.
Let U be a topology on the set A. Show that U is finer than T |A if and only
if ιX |A is continuous with respect to U .

(8) Let {Ti : i ∈ I} be a family of topologies on a set X. Show that
⋂

i∈I Ti is
also a topology on X, coarser than each Ti.

(9) Show by example that the union of two topologies on a set is not neces-
sarily a topology on the set. Use Exercise 6.10 (8) above to show that if
{Ti : i ∈ I} is any family of topologies on a set X, then there is a smallest
topology T that is finer than each Ti.
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7. Bases and Subbases for Topologies

Recall that when we defined the topology Td from the metric d on X, we used the
d-ball neighborhoods Bd(x, ǫ) in a key way: U ∈ Td just in case, for each x ∈ U ,
there is an ǫ > 0 such that Bd(x, ǫ) ⊆ U . This says that the Td-open sets are pre-
cisely the unions of d-ball neighborhoods. This example gives a powerful impetus
to isolate the role that is played by these special open sets.

Definition 7.1 (Base for a Topology). Let T be a topology on a set X, with B a
subfamily of T . B is called a base for T (sometimes the word basis is used instead
of base) if each T -open set is a union of sets in B; equivalently, if for each U ∈ T
and each x ∈ U , there is a B ∈ B with x ∈ B ⊆ U .

Examples 7.2. (i) Let 〈X, d〉 be a metric space, and define B to consist of all
d-ball neighborhoods of the form B(x, 1

n
), where x ∈ X and n ∈ {1, 2, . . . }.

Then B is a base for Td. Indeed, given U ∈ Td and x ∈ U , we first find
ǫ > 0 such that B(x, ǫ) ⊆ U . Next, using the Archimedean property of the
reals, we find a positive natural number n large enough so that 1

n
< ǫ. then

we have B(x, 1
n
) ⊆ B(x, ǫ) ⊆ U , as desired.

(ii) Let T be the discrete topology on X. Then B := {{x} : x ∈ X} is a base
for T .

The question naturally arises as to the specification of conditions on a family B
of subsets of X that characterize when that family is a base for some topology on
X. Is every such family a topological base? By taking a hint from the examples
in 7.2, we know there must be some restrictions, but they’re not necessarily those
that define a topology. After all, the collection of ball neighborhoods for the eu-
clidean metric on the plane (i.e., the usual open disks) satisfies none of the defining
conditions for a topology: all such nbds are nonempty; they’re all bounded, so R2

is not a ball nbd; and neither the intersection nor the union of two disjoint open
disks is necessarily another open disk. Surprisingly, there are very simple criteria
that characterize topological bases.

Theorem 7.3 (Characterizing Bases). Let B be a family of subsets of a set X.
Then B is a base for some topology on X if and only if B satisfies the following two
conditions:

(B1) For each x ∈ X, there is some B ∈ B such that x ∈ B.
(B2) If B1, B2 ∈ B and x ∈ B1 ∩ B2, then there is some B ∈ B with x ∈ B ⊆

B1 ∩ B2.

Proof. Let’s first suppose that B is a base for topology T . if x ∈ X, then, since
X ∈ T , we have some B ∈ B such that x ∈ B. Thus (B1) holds. If B1, B2 ∈ B
and x ∈ B1 ∩B2, then, since B1 and B2 are also in T , their intersection is T -open.
Hence there is some B ∈ B with x ∈ B ⊆ B1 ∩ B2, showing (B2) holds.

For the converse, assume B satisfies both (B1) and (B2). We show that T :=
{⋃ C : C ⊆ B} (i.e., all unions of subfamilies of B) is a topology for which B is
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a base. (Obviously, by the definition of T , B is a base for T once we show T is
actually a topology.)

Ad (T1): Let C be the empty subfamily of B. Then the union of all sets in that
family is empty; hence we have ∅ ∈ T . If C = B, then

⋃ C = X because of (B1).
Thus X ∈ T .

Ad (T3): Let {Ci : i ∈ I} be a family of members of T . We need to show
⋃

i∈I Ci ∈ T . By the definition of T , there is, for each i ∈ I, a subfamily Ci of B,
the union of whose members is Ci. Let C be the union

⋃

i∈I Ci, a subfamily of B.
Then

⋃

i∈I Ci =
⋃ C, another member of T .

Ad (T2): Let C,D ∈ T . We need to show C ∩ D ∈ T . By the definition of T ,
we pick {Ci : i ∈ I} and {Dj : j ∈ J}, subfamilies of B, such that C =

⋃

i∈I Ci and
D =

⋃

j∈J Dj . By the Boolean distributivity of finite intersection over arbitrary

union, we have C ∩ D =
⋃

〈i,j〉∈I×J (Ci ∩ Dj). Now, by (B2), each Ci ∩ Dj is a

union of members of B, and is hence in T . Hence C ∩ D is a union of members of
T , and is therefore a member of T by (T3) just proved.

�

The next simple result shows how we may restrict bases to subsets and obtain
subspace topologies.

Theorem 7.4 (Restricting Bases). Let B be a base for the topology T on X, and
suppose A is a subset of X. Then the collection B|A := {B ∩ A : B ∈ B}, the
restriction of B to A, is a base for the subspace topology T |A.

Proof. If U ∩ A is a typical relativized open set in T |A, then, since B is a base
for T , there is some family {Bi : i ∈ I} ⊆ B with U =

⋃

i∈I Bi. But then
U ∩ A = (

⋃

i∈I Bi) ∩ A =
⋃

i∈I(Bi ∩ A). This shows that B|A is a base for T |A.
�

Besides metrics, there are other sources of topologies; and it is nice to be able to
specify those topologies via easily-defined bases. One of the most fruitful of these
sources is linear orderings.

Definition 7.5 (Linear Orderings). Let X be any set. A linear ordering on X is
a binary relation R on X (i.e., R consists of pairs of elements of X, R ⊆ X×X) that
satisfies the following three conditions. (We write xRy as shorthand for 〈x, y〉 ∈ R.)

(L1) (Irreflexivity) xRx never holds.
(L2) (Transitivity) If x, y, z ∈ X, xRy, and yRz, then xRz.
(L3) (Trichotomy) For any x, y ∈ X, either xRy, or x = y, or yRx.

A linearly ordered set is a pair 〈X,R〉, where R is a linear ordering on X. When
confusion is unlikely to occur, we abuse notation and write < (or <X) for R when
R is a linear ordering.

Examples 7.6. (i) The usual ordering on the real line R is a linear ordering,
as are the restricted orderings on the rational numbers Q, the integers Z,
and the natural numbers N.
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(ii) Review the definition of ordered field in Section 1. The ordering is disguised
as a subset P of “positive” elements of the field, and we write x < y to mean
that y − x ∈ P . Let’s check that the conditions for being a linear ordering
are satisfied:

Ad (L1): If x < x were true, then 0 = x − x would be in P . This
contradicts axiom (O1) for ordered fields.
Ad (L2): Suppose x < y and y < z. Then y − x ∈ P and z − y ∈ P ;
so, by ordered field axiom (O2) (y − x) + (z − y) = z − x ∈ P . Hence
x < z.
Ad (L3): Suppose x and y are distinct elements of the field. Then
x − y 6= 0. By axiom (O3), then, either x − y ∈ P (in which case
y < x) or y − x = −(x − y) ∈ P (in which case x < y).

(iii) In the plane R2, define 〈x, y〉 < 〈u, v〉 to mean x < y and u < v. This
attempt at a linear ordering on R2 satisfies (L1) and (L2), but not (L3):
〈0, 1〉 and 〈1, 0〉 are not comparable in this ordering, for example. (Relations
that satisfy (L1) and (L2) are called partial orderings. One of the most
important sources of partial orderings is the power set of a set, with the
ordering being inclusion.)

(iv) Back to the plane, we now define 〈x, y〉 << 〈u, v〉 just in case: either x < u,
or x = u and y < v. This is called the lexicographic ordering on the
plane. Let’s check that the axioms hold for <<. We leave (L1) and (L2)
to the reader; as for (L3), suppose 〈x, y〉 and 〈u, v〉 are given. If they’re
unequal, we could have x < u; then 〈x, y〉 << 〈u, v〉. If u < x, the opposite
inequality holds for <<. Suppose they’re unequal and x = u. Then y 6= v;
so either y < v or v < y. In either case the two pairs are <<-comparable.

Now we connect linear orderings with topology. The construction of a topology
from a linear ordering mostly mimics how we define the usual topology on the real
line via bounded open intervals. However, due to the very non-typical nature of
the real line as a linearly ordered set (i.e., because we do not get to assume order
completeness), we need to sharpen our terminology.

Definition 7.7 (Convex Sets and Intervals). Given a linearly ordered set 〈X,<〉, a
subset C of X is called convex if, whenever x < y < z is true and both x and z are
in C, then y ∈ C too. (So the convex subsets of a linearly ordered set are the subsets
that are “closed under betweenness.”) A convex set C is bounded below (resp.,
bounded above) if there is an element x ∈ X satisfying x ≤ y (resp., satisfying
x ≥ y) for each y ∈ C. C is bounded if it is bounded both below and above.

A convex set I is called an interval if it is either empty; or, if not and bounded
below (resp., above), then it has a greatest lower (resp., least upper) bound. Because
of the trichotomy property of linear orders, a greatest lower (resp., least upper)
bound is unique, when it exists, and is called the left (resp., right) end point
of I. An interval may be bounded, in which case it takes one of the four forms:
(a, b) := {x ∈ X : a < x < b} (bounded open); [a, b] := {x ∈ X : a ≤ x ≤ b}
(bounded closed); [a, b) := {x ∈ X : a ≤ x < b} (bounded half-open-right); or
(a, b] := {x ∈ X : a < x ≤ b} (bounded half-open-left). An interval is called a
right-looking ray if it is either of the form (a,∞) := {x ∈ X : a < x} (open)
or of the form [a,∞) := {x ∈ X : a ≤ x} (closed). (The notion left-looking ray
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is defined similarly.) A ray, then is a set that is either a right-looking ray or a
left-looking ray. (Note: rays may or may not be bounded sets.)

Remarks 7.8. (i) The set (
√

2,
√

3) is a bounded open interval in R; its end

points are the irrational numbers
√

2 and
√

3. The set (
√

2,
√

3) ∩ Q is,
therefore, a bounded convex subset of Q that fails to be an interval. It is,
nevertheless, an open set in the order topology on Q.

(ii) In the case of the real line, the distinction between intervals and convex sets
melts away because of the least upper bound property (alias completeness).
In this situation a convex set is either:

• all of R;
• a right-looking ray;
• a left-looking ray; or
• a bounded interval.

Theorem 7.9 (Order Topologies). Let 〈X,<〉 be a linearly ordered set, and let B
consist of all bounded open intervals, all open rays, and X itself. Then B is a base
for a topology on X, the order topology T< induced by <.

Proof. All we need to do is verify (B1) and (B2) for B. (B1) is trivial, since we’re
including X for good measure: every member of X is contained in a member of
B. As for (B2), we can actually show B is closed under finite intersections: the
intersection of two bounded open intervals is a (possibly empty) bounded open
interval; the intersection of two open rays looking in opposite directions is a bounded
open interval; the intersection of two open rays looking in the same direction is also
an open ray looking in that direction.

�

Remarks 7.10. Referring to Theorem 7.9 above:

(i) If X consists of a single point, then all open rays and bounded open intervals
are empty. Hence we must include X in B to cover this one degenerate case.

(ii) If X has more than one point, but has, say, a maximal (or minimal) element
m, then no bounded open interval will be a nbd of m. This requires the
inclusion of open rays in B to cover the case where a nondegenerate linearly
ordered set has at least one end point.

(iii) If X has neither a maximal nor a minimal element, then we may take B to
consist of just the bounded open intervals.

Definition 7.11 (Orderable and Suborderable Spaces). A topological space 〈X, T 〉
is orderable if there is a linear ordering < on X such that the collection consisting
of bounded open intervals, open rays, plus X itself, forms a base for T . A space is
suborderable if it can be viewed as a subspace of an orderable space.

Remarks 7.12. (i) The definition of suborderable in Definition 7.11 is slightly
vague; we will correct this in Section 8 when we properly introduce the idea
of homeomorphism.
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(ii) Although most of the familiar examples of orderable spaces have metrics
associated with them that give rise to the same topology, there are examples
of orderable spaces that are not metrizable, and vice versa. Also it turns
out that while topological subspaces of metrizable spaces are metrizable (see
Exercise 6.10 (1) above), the corresponding statement does not hold for or-
derability: topological subspaces of orderable spaces may not themselves be
orderable. We will see examples supporting these claims in the sequel, once
we have developed the necessary machinery.

As we have seen, both metrics and linear orderings give rise to topologies. We
saw in Theorem 6.5 that the result of restricting a metric to a subset and then
taking the associated metric topology is the same as that of first taking the metric
topology on the big set and then restricting that topology to the subset. Can the
same be said for linear orderings? The answer turns out to be no, but the two
subset topologies are comparable, nonetheless. By way of notation, if 〈X,<〉 is a
linearly ordered set and A ⊆ X, < |A is the relation < restricted to pairs of points
from A. Clearly < |A is a linear ordering on A.

Theorem 7.13 (Subset Topologies in the Order Context). Let 〈X,<〉 be a linearly
ordered set, A a subset of X. Then the order topology on A induced by < |A is
coarser than the subspace topology on A induced by the order topology on X. In
symbols, T<|A ⊆ T<|A. These two topologies can differ in general.

Proof. Let B be the standard base for T<, consisting of all bounded open intervals
and open rays on 〈X,<〉. Then, by Theorem 7.4, B|A is a base for T<|A. A base
for T<|A consists of sets of the form I ∩ A, where I is a bounded open interval or
open ray with endpoints in A. Thus we have a base for T<|A that is a subfamily of
B|A; and so T<|A ⊆ T<|A.

To show strict inequality can occur, Consider A := [0, 1) ∪ {2} as a subset of
R with the usual ordering. Then, from the perspective of T<|A, A has no isolated
points: each nbd of 2 must contain elements of [0, 1). On the other hand, from the
perspective of T<|A, the point 2 is indeed isolated.

�

As we have seen, the use of bases to specify topologies is a very powerful tool; it
is usually much easier to recognize a basic open set than it is to recognize an open
set in general. The only drawback to defining a topology via a distinguished base
is the need to verify that what you’re putting forward as a base actually satisfies
the conditions (B1) and (B2) of Theorem 7.3. There is a more general approach
to specifying a topology, one in which there is no need to verify any conditions
beforehand. It’s founded on the following simple result.

Theorem 7.14. Let X be a set, and suppose S ⊆ ℘(X). Then the collection
BS := {⋂F : F is a finite subset of S}; i.e., the collection of all finite intersections
of sets in S, is a topological base.
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Proof. Let’s verify the conditions (B1) and (B2).

Ad (B1): If F is the empty subcollection of S, then
⋂F consists of all points of

X that lie in every member of F . Since there are no members of F to worry about,
every point of X must lie in

⋂F ; i.e.,
⋂F = X. Since we now have X ∈ BS , (B1)

is automatically satisfied.

Ad (B2): Any family of sets that is already closed under finite intersections
clearly satisfies (B2). So let F1, . . . , Fn ∈ BS , say we have finite subcollections
F1, . . . ,Fn of S such that Fi =

⋂Fi, 1 ≤ i ≤ n. Then one easily checks that
F1 ∩ · · · ∩Fn =

⋂

(F1 ∪ · · · ∪Fn). Since a finite union of finite subcollections is still
a finite subcollection, we infer that F1 ∩ · · · ∩ Fn ∈ BS .

�

Theorem 7.14 then motivates the next definition.

Definition 7.15 (Subbase for a Topology). Let T be a topology on a set X, with
S a subfamily of T . S is called a subbase for T (sometimes the word subbasis
is used instead of subbase) if each T -open set is a union of finite intersections of
members of S; equivalently, if for each U ∈ T and each x ∈ U , there is a finite
subcollection F ⊆ S with x ∈ ⋂F ⊆ U .

Theorem 7.16 (Simple Properties of Subbases). Let X be a set, S ⊆ ℘(X).

(i) S is a subbase for a unique topology TS on X; BS :=
{⋂F : F is a finite subset of S} is a base for that topology.

(ii) TS is coarser than any topology on X that contains the family S.
(iii) If S is a topological base, then it is a base for TS .

Proof. Ad (i): This is essentially the content of Theorem 7.14.

Ad (ii): If S ⊆ T , where T is a topology, then every union of finite intersections
of members of T (hence of members of S) is a member of T . Thus TS ⊆ T .

Ad (iii): Suppose S is a topological base; i.e., it satisfies conditions (B1) and
(B2) of Theorem 7.3. Let T be the topology basically generated by S; i.e., T
consists of all unions of members of S. Then S ⊆ T ; so, by (ii) above, TS ⊆ T . But
every union of members of S is trivially a union of finite intersections of members
of S, so T ⊆ TS , and equality holds.

�

Examples 7.17 (Simple Subbases, Complicated Topologies). (i) If 〈X,<〉 is
a linealy ordered set, then the family of open rays forms a subbase for the
order topology on X.

(ii) Refer to Example 6.9. For each i ∈ I and U open in R, define [i → U ] to
be the set {f ∈ RI : f(i) ∈ U}. This collection of subsets of ℘(RI) forms
a subbase for an important topology on RI , the topology of pointwise
convergence. Other well-studied topologies on function spaces are defined
in a similar manner. While it is relatively easy to deal with individual
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subbasic sets in these topologies, it is quite difficult to manipulate even
finite intersections of such sets.

(iii) Start with any topological space 〈X, T 〉, and let F (X) := {C ∈ ℘(X) :
C is closed and nonempty}. F (X) now forms the set of points of a new
topological space, a hyperspace over X. The Vietoris topology (af-
ter Leopold Vietoris (1891–2002!)) on F (X) is subbasically generated by
two kinds of sets: For each U ∈ T , [U ]∗ := {C ∈ F (X) : C ⊆ U} and
[U ]∗ := {C ∈ F (X) : C ∩ U 6= ∅}.

Exercises 7.18. (1) Let 〈X, T 〉 be any topological space, and suppose x0 is an
isolated point of X. If B is any base for T , then show {x0} ∈ B.

(2) Let B consist of all bounded open intervals (a, b) in R, where both a and b
are rational numbers. Show B is a base for the usual topology on R.

(3) Let B consist of all open rectangles (a, b)× (c, d), where a, b, c, d are all ra-
tional numbers. Show B is a base for the euclidean topology on R2.

(4) Let B consist of all bounded half-open-right intervals [a, b), where a and
b are real numbers. Show that B is a base for a topology, the so-called
lower limit topology, that is strictly finer than the usual topology. (R with
this topology is also frequently referred to as the Sorgenfrey line L (after
R. H. Sorgenfrey).)

(5) * Referring to the construction in Exercise 7.18 (4) above, if we define B to
consist of just the bounded half-open-right intervals with rational endpoints,
show that we obtain a base for a topology that is strictly coarser than the
lower limit topology.

(6) Refer to the lexicographic order on the plane (Example 7.6 (iv)), and sketch
the bounded open interval (〈0, 1〉, 〈1, 0〉).

(7) Let X be a set, and define S := {X \ {x} : x ∈ X}. What is the topology
subbasically generated by S?

(8) Refer to Theorem 7.13, and show equality holds when X = R and A is
either Q or Z.

(9) Give the closed unit interval [0, 1] its usual order topology. Show that
bounded open intervals (a, b), for 0 ≤ a < b ≤ 1, are insufficient for basi-
cally generating this topology.

(10) Refer to Example 7.17 (ii), and define [F → U ] to consist of all f ∈ RI

such that f [F ] ⊆ U , where F ⊆ I is finite and U ⊆ R is usual-open. Show
that the collection of such sets subbasically generates the same topology as
does the smaller collection of sets [i → U ].
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(11) * Refer to Example 7.17 (iii). For each finite collection {U1, . . . , Un} of
open sets of 〈X, T 〉, define [U1, . . . , Un] to consist of all C ∈ F (X) such
that C ⊆ U1 ∪ · · · ∪ Un and C ∩ Ui 6= ∅ for each 1 ≤ i ≤ n. Show that the
collection of all such sets [Un, . . . , Un] forms a base for the Vietoris topology
on F (X).

(12) * Show that R2, with the lexicographic ordering (Example 7.6 (iv)) does not
satisfy the least upper bound property. Give an example of a bounded open
convex subset of this ordering that is not an interval.

(13) Suppose T and U are topologies on a set X, with bases B and C, respec-
tively. Show that T is coarser than U if and only if whenever x ∈ X and
B ∈ B contains x, there is a C ∈ C such that x ∈ C ⊆ B.
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8. Homeomorphisms and Topological Properties

At the beginning of Section 4, we talked about “rubber sheet geometry” as being the
popular—if slightly whimsical—way of explaining that you could deform, distort,
and otherwise bend or mutilate, any topological object as long as the original object
and the transformed object were “homeomorphic.” In this section, we make clear
exactly what that means.

Recall that a function f : X → Y between sets is one-one (or injective, or
an injection) if f(x1) 6= f(x2) whenever x1 6= x2 (i.e., f sends distinct points to
distinct points). f is onto (or surjective, or a surjection) if every y ∈ Y is f(x)
for some x ∈ X (i.e., f hits everything in Y ). f is bijective (or a bijection)
if f is both one-one and onto (i.e., f is a perfect “code” between elements of X
and elements of Y ). In that case, we have the function inverse f−1 : Y → X;
f−1(y) is the unique x ∈ X such that f(x) = y (i.e., f−1 is Captain Midnight’s
intergalactically-patented decoder ring).

Definition 8.1 (Homeomorphisms and Homeomorphic Spaces). A homeomor-
phism from space 〈X, T 〉 to space 〈Y,U〉 is a bijection f : X → Y such that both f
and f−1 are continuous on their respective domains. We write 〈X, T 〉 ∼= 〈Y,U〉 to
indicate that the two spaces are homeomorphic; i.e., that there is a homeomor-
phism from one to the other. (The inverse of a homeomorphism is a homeomor-
phism too.)

Remark 8.2. Referring back to Remark 1.4, we see that the notion of homeo-
morphism is very much akin to that of isomorphism in algebra. In both cases we
are trying to say that two sets-with-structure are “the same” (only one is painted
green, an irrelevancy). Points corresponding to one another in a homeomorphism
behave the same topologically within their respective spaces. In the same way,
two elements corresponding to one another in an isomorphism behave the same
algebraically within their respective algebraic structures (e.g., groups, fields, etc.)
There is a similar situation in biology: the skeleton of a human may be put in
one-one correspondence with that of a chimpanzee, or even a bat. (This is mostly
true; biologists may want to take issue here; but I’m playing fast and loose with the
facts to make a real point.) One way to do this is simply to put all the bones of a
(long deceased) chimpanzee in one bag, all the bones of a (similarly deceased) bat
in another, and match the bones randomly. While this says that the two sets of
bones have the same cardinality, it tells us nothing else of comparative anatomical
interest. A much more informative correspondence pairs up bones that occupy the
same relative structural position or evolutionary development: the left femur of Mr.
Chimp is matched up with the left femur of Mr. Bat, and so on. (Such correspond-
ing body parts are called homologous by zoologists.) This is significantly more like
what we mean by homeomorphism or isomorphism in mathematics.

An important point to make here is that homeomorphisms and isomorphisms may
ignore details that are deemed irrelevant for the purposes of highlighting similarities.
Back to our skeletal example, the correspondence wilfully ignores the anatomical
role of corresponding bones and bone groups: the joints of the foot of a chimpanzee
allow for grasping, the joints of the hand of a bat allow for flying. None of this is
true for human feet and hands.
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In similar fashion, certain differing geometric details (e.g., angles, distances be-
tween points) pertaining to two homeomorphic figures are ignored as being irrelevant
for the purposes of topological study. Those same geometric details are considered
relevant, though, if the study is of sufficiently high resolution. But even then there
are details left out. For example, two triangles may be considered congruent, even
though one of them is upside down relative to the other. This difference may be
considered negligible for the purposes of studying plane geometry, but not for those
of studying visual perception: a picture of a familiar human face, for example, may
be quite unrecognizable if viewed upside down.

Examples 8.3. (i) The identity map ιX from a space 〈X, T 〉 to itself is a
homeomorphism (the equality homeomorphism).

(ii) If 〈X, T 〉 ∼= 〈Y,U〉 are homeomorphic topological spaces, then T is the dis-
crete topology on X if and only if each singleton set {x} ⊆ X is T -open,
if and only if each singleton set {y} ⊆ Y is U-open, if and only if U is the
discrete topology on Y . Thus a bijection f : X → Y may be viewed as a
homeomorphism between discrete spaces. In this case, we say that X and
Y have the same cardinality.

(iii) Consider the function f(x) := 2
π

arctan(x), taking the usual real line R

bijectively onto the bounded open interval (−1, 1) ⊆ R. Both f and its in-
verse f−1(x) := tan(π

2 x), x ∈ (−1, 1), are continuous; hence we have estab-
lished a homeomorphism between R and the bounded open interval (−1, 1).
(Homeomorphisms do indeed ignore distances between points.)

(iv) If 〈X, T 〉 ∼= 〈Y,U〉 are homeomorphic topological spaces, then T is the cofi-
nite topology on X if and only if U is the cofinite topology on Y (see Exercise
8.15 (1) below).

(v) The function f(t) := 〈cos(t), sin(t)〉 maps the bounded half-open-right in-
terval [0, 2π) bijectively onto the standard unit circle S1 := {〈x, y〉 ∈ R2 :
x2 + y2 = 1}. This function is indeed continuous, but its inverse is not:
If A := S1 ∩ {〈x, y〉 : x > 0 and y < 0}, then 〈1, 0〉 is a limit point of A.
But f−1(〈1, 0〉) = 0 and f−1[A] = (3

2π, 2π). Hence the inverse image of the
point 〈1, 0〉 is not in the closure of the inverse image of A. [Note that what
we just did was to show a particular bijection fails to be a homeomorphism;
we did not show that S1 and [0, 2π) fail to be homeomorphic. While this
is indeed true, we have to develop some more technology to prove it. (See
Example 11.16 (iii) and Exercise 13.16 (13).)]

The idea of two spaces being homeomorphic is how we say that they are “topo-
logically equal.” We can also use homeomorphisms to say that one space is “topo-
logically a subspace” of another. The following definition sharpens the fairly loose
language, “can be viewed as a subspace,” found in Definition 7.11.

Definition 8.4 (Embeddings and Embeddability). An embedding from space
〈X, T 〉 to space 〈Y,U〉 is a function f : X → Y such that f is a homeomorphism
from X to the image f [X] (with the subspace topology). We say 〈X, T 〉 is embed-
dable in 〈Y,U〉 if there exists an embedding from the first space to the second.
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So, in Definition 7.11, we should properly say that a space is suborderable if
it is embeddable in an orderable space.

Examples 8.5. (All euclidean spaces below are equipped with the euclidean topol-
ogy.)

(i) The inclusion map ιX |A from a subspace 〈A, T |A〉 to 〈X, T 〉 is an embed-
ding (the inclusion embedding).

(ii) Each Rm is embeddable in Rn, as long as m ≤ n. One way to do this is to
define f(x1, . . . , xm) := 〈x1, . . . , xm, 0, . . . , 0〉 (see Exercise 8.15 (2) below).

(iii) The unit circle S1 (see Example 8.3 (v)) is not embeddable in R, and is
hence not homeomorphic to [0, 2π). (We’ll be able to prove this, once we
have studied connectedness in Section 11.)

(iv) Let X be the parabolic arc {〈x, y〉 ∈ R2 : 0 ≤ x ≤ 1 and y = x2}. Then X
is embeddable in R; indeed, the map f : X → R, given by f(x, y) = x, is
an embedding (see Exercise 8.15 (2) below).

Our next task is to introduce some function notions related to continuity. Recall
from Theorem 5.11 that a function is continuous if and only if inverse images of
open (resp., closed) sets in the range are open (resp., closed) in the domain. What
about images of open/closed sets in the domain?

Definition 8.6 (Open/Closed Maps). Let 〈X, T 〉 and 〈Y,U〉 be topological spaces,
with f : X → Y a function.

(i) f is an open map if f [U ] is U-open whenever U ⊆ X is T -open.
(ii) f is a closed map if f [C] is U-closed whenever C ⊆ X is T -closed.

Note that in the definition above, we make no mention of whether f is contin-
uous. It turns out the three functional properties are completely independent: a
function may possess one or more of them, and none of the others. Before go-
ing further into this claim, we establish a simple, but important, connection with
homeomorphisms and embeddings.

Theorem 8.7 (Characterizing Homeomorphisms). Let f be a function from space
〈X, T 〉 to space 〈Y,U〉. The following are equivalent:

(a) f is a homeomorphism.
(b) f is a continuous open bijection.
(c) f is a continuous closed bijection.

Proof. Ad ((a) =⇒ (b)): If f is a homeomorphism, then f is a bijection, and
both f and f−1 are continuous. To show f is open, let U ⊆ X be T -open. Then,
because f is a bijection, f [U ] = ((f−1)−1)[U ], a U-open set. Thus f is an open map.

Ad ((b) =⇒ (c)): If f is a continuous open bijection, and C ⊆ X is T -closed,
then, because f is a bijection, f [C] = f [X \ (X \ C)] = Y \ f [X \ C], a U-closed
set. Thus f is continuous and closed.
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Ad ((c) =⇒ (a)): If f is a continuous closed bijection, we need to show f−1

is continuous. But, for any T -closed C, ((f−1)−1)[C] = f [C], a U-closed set. By
Theorem 5.11, this shows f−1 to be continuous. Therefore f is a homeomorphism.

�

Theorem 8.8 (Characterizing Embeddings). Let f be a function from space 〈X, T 〉
to 〈Y,U〉. The following are equivalent:

(a) f is an embedding.
(b) f is a continuous injection that is relatively open (i.e., f is an open map

onto its image in Y ).
(c) f is a continuous injection that is relatively closed (i.e., f is a closed

map onto its image in Y ).

Proof. Ad ((a) =⇒ (b)): The fact that f is a homeomorphism onto its image im-
mediately tells us that f is a continuous injection. Let U ⊆ X be a T -open set, and
let g : f [X] → X be the inverse of f (here viewed as a bijection from X to f [X]).
Then f [U ] = g−1[U ]. Since g is continuous and f [X] has the subspace topology
induced by U , there is a U-open V ⊆ Y such that V ∩ f [X] = g−1[U ] = f [U ]. This
says that f is a relatively open map.

Ad ((b) =⇒ (c)): Assume that f is a continuous injection that is relatively open,
and suppose C ⊆ X is T -closed. Then U := X \C is T -open, so f [U ] = V ∩ f [X],
for some U-open set V ⊆ Y . Because f is injective, we then have f [C] = f [X \U ] =
(Y \ f [U ]) ∩ f [X] = (Y \ (V ∩ f [X])) ∩ f [X] = (Y \ V ) ∩ f [X], showing that f is a
relatively closed map.

Ad ((c) =⇒ (a)): Assume that f is a continuous injection that is relatively
closed, and let g : f [X] → X be the inverse of f (again viewed as a bijection from
X to f [X]). To show f is an embedding, it suffices to show that g is continuous.
Indeed, if C ⊆ X is T -closed, then g−1[C] = f [C] = D ∩ f [X] for some U-closed
set D ⊆ Y . By Theorem 5.11 and Exercise 5.12 (9), g is indeed continuous.

�

Examples 8.9. (i) Give R the usual topology, but let [0, 1] be given a topology
that is strictly coarser than the subspace topology. Then the inclusion map
ιR|[0, 1] : [0, 1] → R is a closed map that is neither open nor continuous
(see Exercise 8.15 (3) below).

(ii) As in (i) above, but with Q given the subspace topology. Then ιR|Q is an
embedding that is neither open nor closed because Q is neither open nor
closed as a subset of R.

(iii) Let πi : R2 → R, i = 1, 2, be the two standard projection maps; i.e, for
〈x1, x2〉 ∈ R2, πi(x1, x2) := xi. Given that the line and plane have their
euclidean topologies, we see that the projection maps are each continuous
and open, but not closed:

Ad (continuous): Given U ⊆ R, π−1
1 [U ] = U ×R and π−1

2 [U ] = R×U .
Open rectangles are euclidean-open sets (see Exercise 7.18 (3)), hence
the projection maps are each continuous.
Ad (open): If (a, b) × (c, d) is an open rectangle with real endpoints,
then its image under π1 (resp., π2) is (a, b) (resp., (c, d)). By Exercise
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7.18 (3), the open rectangles form a base for the euclidean topology
on the plane; by Exercise 4.11 (5), the images of open sets under the
projection maps are open.
Ad (not closed): Let C := {〈x, y〉 ∈ R2 : x > 0, y > 0, and xy =
1}. Then C is euclidean-closed (see Exercise 8.15 (4) below), but the
image of C under either projection map is (0,∞), a set that is not
euclidean-closed. (Note that each projection map, restricted to C, is
an embedding into R.)

(iv) (This is a deep theorem, the invariance of domain theorem, due to L. E. J.
Brouwer (1881–1966). While easy to state, its proof is beyond the scope of
this course.) Let U ⊆ Rn be an open subspace of euclidean n-space, with
f : U → Rn an embedding. Then f is an open map.

(v) (This is also a deep theorem, from complex analysis, and is called the open
mapping theorem. Its proof too is beyond the scope of this course.) Give
the complex plane C the euclidean topology, and suppose U ⊆ C is open,
but not the union of two nonempty disjoint open sets. Let f : U → C be
analytic (i.e., the complex derivative f ′(z) exists for all z ∈ U) and non-
constant. Then f is an open map.

The topic of concern to us next is that of topological property. And to do it jus-
tice, we need to talk about composition of functions. This is the same composition
of functions that you have seen since calculus (remember the chain rule?), and has
a very simple definition.

Definition 8.10 (Function Composition). Let X, Y , and Z be sets, with f : X →
Y and g : Y → Z functions. Then the composition of f and g, written g ◦ f , is a
function from X to Z, defined by the rule (g ◦ f)(x) := g(f(x)).

The following is easy to prove, but extremely important.

Theorem 8.11 (Closure under Composition). Let 〈X, T 〉, 〈Y,U〉, and 〈Z,V〉 be
spaces, with f : X → Y and g : Y → Z functions. If both f and g are continuous
maps (resp., open maps, closed maps, embeddings, homeomorphisms), then so is
the composition g ◦ f .

Proof. See Exercise 8.15 (5) below.
�

As an immediate application of Theorem 8.11, we may consider all real bounded
open intervals and open rays to be topologically equivalent.

Theorem 8.12 (Open Intervals/Rays in the Real Line). Let the real line R be
given its usual topology. Then all bounded open intervals and open rays in R are
homeomorphic to R, and hence are homeomorphic to each other.
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Proof. By Example 8.3 (iii), we know that R ∼= (−1, 1). If a < b are real numbers,
then the affine map taking −1 to a and 1 to b yields (−1, 1) ∼= (a, b). Thus all
bounded open intervals are homeomorphic to R; and, by Theorem 8.11, homeo-
morphic to each other. Now the exponential function f(x) := exp(x) = ex gives
rise to a homeomorphism from R to (0,∞). Compose that with a suitable affine
map, and we get R ∼= (a,∞) and R ∼= (−∞, a) for any a ∈ R.

�

Remarks 8.13. (i) Theorem 8.11 tells us that the relation of being homeo-
morphic gives us an equivalence relation between topological spaces. The
signal conditions that are satisfied by ∼= are:

(E1) (Reflexivity) 〈X, T 〉 ∼= 〈X, T 〉.
(E2) (Symmetry) If 〈X, T 〉 ∼= 〈Y,U〉, then 〈Y,U〉 ∼= 〈X, T 〉. (This is closely

related to the idea of symmetry found in Theorem 2.2 (ii) and Defi-
nition 3.1 (ii). Also the postulated “close to” relation ∼ discussed in
Section 1 was both reflexive and symmetric.)

(E3) (Transitivity) If 〈X, T 〉 ∼= 〈Y,U〉 and 〈Y,U〉 ∼= 〈Z,V〉, then 〈X, T 〉 ∼=
〈Z,V〉. (This is the same idea of transitivity as condition (L2) in
Definition 7.5.)

Two spaces that are homeomorphic are said to be in the same homeomor-
phism class. We will see other equivalence relations later on when we
study quotient maps, the topologist’s version of “cut-and-paste.”

(ii) Once we develop the topological theory of connectedness in Section 11, we
will have an extremely powerful tool to show that bounded open intervals,
bounded half-open intervals, and bounded closed intervals are in separate
homeomorphism classes.

Now back to the notion of topological property. Somewhat vaguely—because
it is beyond the scope of this course to get into the formal distinctions between
sets and proper classes—a property (or predicate, or class) of topological spaces is
topological if two homeomorphic spaces either both share the property or both
fail to share it. (A bit more abstractly, a topological property is a union of homeo-
morphism classes: if one member of a homeomorphsm class satisfies the property,
then they all do.) We will be spending much of our time in the sequel identifying
and studying some of the more key topological properties; here is a small list of
examples and non-examples for starters.

Examples 8.14 (Some Topological Properties). (i) 〈discrete〉: A space
〈X, T 〉 satisfies this property just in case T is the discrete topology on the
set X. This property is topological because of Example 8.3 (ii).

(ii) 〈metrizable〉: If 〈X, T 〉 is a metrizable topological space, d is a metric
on X such that T = Td, and h is a homeomorphism from 〈X, T 〉 to space
〈Y,U〉, then (see Exercise 8.15 (6) below) the map e : Y ×Y → R, given by
e(y1, y2) := d(f−1(y1), f

−1(y2)), is a metric on Y whose induced topology
is U . This makes 〈Y,U〉 metrizable as well.

(iii) 〈Hausdorff〉: A space satisfying this property (see Exercise 4.11 (4)) is one
where two distinct points have disjoint neighborhoods. (See Exercise 8.15
(6) below.)
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(iv) 〈orderable〉: A homeomorphism from one orderable space to a second topo-
logical space will induce a linear ordering on the second space that, in turn,
will induce the given topology on the second space. (See Exercise 8.15 (6)
below.)

(v) 〈closed subset of the reals〉: This is not a topological property. The
closed subset [0,∞) is homeomorphic to the non-closed subset [0, 1). (See
Exercise 8.15 (7) below.)

Exercises 8.15. (1) Refer to Example 8.3 (iv) and prove that if two spaces
are homeomorphic and one of them has the cofinite topology, then so does
the other. (So having the cofinite topology is a topological property.)

(2) Show the functions defined in Example 8.5 (ii, iv) are embeddings.

(3) Prove the assertion in Example 8.9 (i).

(4) Prove the assertion in Example 8.9 (iii) that C is a closed subset of R2.

(5) Prove Theorem 8.11.

(6) Prove the assertions in Example 8.14 (ii, iii, iv).

(7) Prove the assertion in Example 8.14 (v).

(8) Imagine the letters of the alphabet,

A,B,C,D,E,F,G,H, I, J,K, L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

as geometrical figures in the plane, and group them according to homeomor-
phism class.

(9) * A continuous map f from space 〈X, T 〉 to space 〈Y,U〉 is called a co-
retraction if there is a continuous map g : Y → X such that g ◦ f = ιX .
Show that a co-retraction is always an embedding.

(10) Give an example of a map that is both open and closed, but continuous at
no point of its domain.

(11) * Suppose f : R → R is a polynomial function; i.e., there are real numbers
a0, a1, . . . , an, such that f(x) := a0 + a1x

1 + · · · + anxn. Give conditions
that characterize when f is a homeomorphism.
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9. The Basic Lower-Level Separation Axioms

Topological properties come in several “flavors,” each dictated by a certain vague
intuition that manifests itself into one or more precise formulations. One flavor is
“separating stuff;” another is “being in one piece;” still another is “being small and
tidy.” It is the first of these flavors we take up in this section, manifesting itself in
the so-called separation axioms. (The second flavor, by the way, is manifested in
various formulations of connectedness, the third in formulations of compactness.)

The separation axioms take on many forms, according to how we want to separate
things. One way is via open sets, another is via continuous real-valued functions.
We concentrate on open-set separation in this section. We refer to the separation
axioms in this section as “lower-level” because they deal with separating one point
from another. The “upper-level” axioms, dealing with the separation of sets, will
be considered later on. By way of notation in the sequel, we will often suppress
mention of the topology on a space 〈X, T 〉, especially when only one topology on
a set is being considered. Thus we may talk of a space X, or an open set in X,
or a continuous map f : X → Y , when the meaning is clear as to which topology
is being considered. Similarly, we speak of A ⊆ X as a subspace of X, with the
intention that the usual subspace topology is being considered on A.

Definition 9.1 (The T0, or Kolmogorov, Axiom). A topological space X is called a
T0 space (or a Kolmogorov space, after Andrei N. Kolmogorov (1903–1987)) if,
for each two points x 6= y in X, at least one of them has an open nbd not containing
the other. That is, there is an open set U ⊆ X such that: either x ∈ U and y /∈ U ,
or y ∈ U and x /∈ U .

As a notational aside, the usage T0 suggests the lowest rung on a ladder of ax-
ioms designated Tn, for various numbers n. (The T is for Trennung, German for
separation.) This is the weakest separation axiom usually studied; its main ap-
plication in recent years being in the formal semantics of computer programming
languages. We consider two useful examples.

Examples 9.2 (Some T0 Spaces et al). (i) Any metric space is clearly a T0

space.
(ii) Since any topology on a single-point set is the discrete topology, the simplest

example of a T0 space that doesn’t satisfy any stronger separation conditions
(to be taken up shortly) is Sierpiński space S (after Wac law Sierpiński
(1882–1969)). The underlying set consists of two points, only one of which
is isolated. Clearly, any two such spaces are homeomorphic.

(iii) Given the real line R, consider the set B consisting of all open right-looking
rays (a,∞). Then B is easily seen to be a topological base; indeed it may be
made into a topology merely by adding the empty and universal sets. Given
any two points x 6= y, say x < y, and pick a strictly between x and y.
Then (a,∞) is an open nbd of y not containing x. If we call this space the
right-looking real line, we may also define the left-looking real line in
a similar fashion. Of course the right-looking real line and the left-looking
real line are homeomorphic spaces (see Exercise 9.11 (1) below).
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(iv) The trivial topology on any set with more than one point fails to be a T0

topology, since no nonempty open set may exclude any point.

We now introduce the next rung of the ladder.

Definition 9.3 (The T1, or Fréchet, Axiom). A topological space X is called a T1

space (or a Fréchet space, after Maurice R. Fréchet (1878–1973)) if, for each
two points x 6= y in X, each one of them has an open nbd not containing the other.
That is, there is an open nbd U of x and an open nbd V of y such that y /∈ U and
x /∈ V .

Clearly every T1 space is a T0 space; the following is the basic result about T1

spaces.

Theorem 9.4 (The Finite-Set Criterion). X is a T1-space if and only if all finite
subsets of X are closed. (Consequently, any topology on a set is a T1 topology if
and only if that topology is finer than the cofinite topology on the set.)

Proof. Suppose X is T1, and let F := {x1, . . . , xn} be a finite subset of X. It
suffices to show that each point outside F has a nbd that misses F . Indeed, let
x /∈ F . For each 1 ≤ i ≤ n, there is an open nbd Ui of x that does not contain xi.
Thus U1 ∩ · · · ∩ Un is an open nbd of x that contains no element of F .

Now suppose each finite subset of X is closed, and let x 6= y be two points of X.
Then, since singleton sets are closed, X \ {y} is an open nbd of x not containing y,
and X \ {x} is an open nbd of y not containing x. Thus X is a T1 space.

�

Examples 9.5 (Some T1 Spaces et al). (i) Any metric space is clearly a T1

space.
(ii) The Sierpiński two-point space S of Example 9.2 (ii) is a T0 space without

being a T1 space.
(iii) The right-looking real line of Example 9.2 (iii) is a T0 space without being

a T1 space.
(iv) Let 〈X, T 〉 be a T1 space, and let p be a point not in X. Consider the set

X ∪ {p}, and consider the family B := T ∪ {(C ∪ {p}) : C ⊆ X cofinite}
of subsets of X ∪ {p}. Then (see Exercise 9.11 (2) below) B is a base for
a T1 topology on X ∪ {p}, whose restriction to X is the original topology
T . Such a construction, called a one-point extension, is a well-known
method for building new spaces from old ones.

The third rung of the ladder is arguably the most useful and well-studied of the
three we consider in this section. We saw it first in Exercise 4.11 (4); now we make
it official.

Definition 9.6 (The T2, or Hausdorff, Axiom). A topological space X is called a
T2 space (or a Hausdorff space, after Felix Hausdorff (1868–1942)) if, for each
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two points x 6= y in X, there are disjoint open sets U and V with x ∈ U and y ∈ V .

Examples 9.7 (Some T2 Spaces et al). (i) Any metric space is a T2 space
(see Exercise 4.11 (4)).

(ii) The cofinite topology on any infinite set is a T1 topology that is not a T2

topology (see Example 5.3 (iii)).
(iii) Referring to Example 9.5 (iv), the one-point extension of a discrete space

is a T2 space (that is not discrete if X is infinite). Clearly any two points
in X are isolated, so there is no problem separating them. If x ∈ X, set
U := {x} and V := (X ∪ {p}) \ {x}. Then both U and V are open sets in
the extension topology, x ∈ U , p ∈ V , and U ∩ V = ∅. (The discreteness
condition on X is actually necessary for X ∪ {p} to be Hausdorff (see Ex-
ercise 9.11 (3) below).)

We say a topological property is hereditary if whenever X has the property
and A ⊆ X, then A has the property in its subspace topology. Theorem 6.5 tells
us, then, that metrizability is a hereditary topological property; the following says
the same for the three separation properties introduced in this section.

Theorem 9.8. Tn is a hereditary property, for n = 0, 1, 2.

Proof. Let’s show the assertion for T2; the others are similar. If X is Hausdorff and
A is a subspace of X, pick two points x 6= y in A. Since the big space is Hausdorff,
there are open sets U and V such that x ∈ U , y ∈ V , and U ∩ V = ∅. Then U ∩ A
and V ∩ A are disjoint relatively open nbds of x and y, respectively, showing that
A is Hausdorff too.

�

We end this section with two nontrivial applications of the Hausdorff axiom.
The first shows us how to build discrete subsets inductively; the second makes an
important statement about mappings.

Given a space X and A ⊆ X, we say A is a discrete subset of X if its subspace
topology is discrete. This is equivalent to saying that for each a ∈ A, there is an
open nbd U of a such that U ∩ A = {a}.

Theorem 9.9. An infinite Hausdorff space contains an infinite discrete subset.

Proof. Suppose X is infinite and Hausdorff. If each point of X is isolated, then X
is an infinite discrete subset of itself. So assume X has a nonisolated point, say
x. Then x can have no finite nbds (see Exercise 9.11 (12) below). We build our
infinite discrete subset using induction on the natural numbers. First let x1 be any
point different from x. By Hausdorffness, we may choose disjoint open nbds U1 of
x1 and V1 of x. In the next step of the induction, we work in the open subspace
V1, also a Hausdorff space, by Theorem 9.8. V1 is infinite, so we may pick x2 ∈ V1

different from x. Again using Hausdorffness, we pick disjoint open nbds U2 of x2,
V2 of x, both contained in V1. We now repeat the procedure in V2, continuing like
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this forever. More properly, we assume at the nth stage of the induction, n > 1,
that we have points x1, . . . , xn in X, open sets U1, . . . , Un, and open sets V1, . . . , Vn

such that the following conditions hold:

• xi ∈ Ui, 1 ≤ i ≤ n;
• x ∈ Vi, 1 ≤ i ≤ n;
• Ui ∩ Vi = ∅, 1 ≤ i ≤ n; and
• Ui+1 ∪ Vi+1 ⊆ Vi, 1 ≤ i ≤ n − 1.

The key resides in the facts that the sets Ui are disjoint from each other and that
U1 ∪ · · · ∪ Un is disjoint from Vn. Since Vn is infinite, we may choose xn+1 ∈ Vn

different from x and use Hausdorffness to find disjoint open sets Un+1 and Vn+1,
contained in Vn, such that xn+1 ∈ Un+1 and x ∈ Vn+1. In this way, the conditions
above still hold; only now n may be replaced by n + 1.

Let A := {x1, x2, . . . }. Then A is infinite because the inductive process above
ensures xn+1 /∈ {x1, . . . , xn}. A is discrete because each Ui contains no xj when
j 6= i. Thus A is an infinite discrete subset of X.

�

Recall (Exercise 8.15 (9)) that a continuous map f : X → Y is a co-retraction
if there is a continuous map g : Y → X such that g ◦ f = ιX . (The map g is called
a retraction.)

Theorem 9.10. Co-retractions with Hausdorff ranges are closed embeddings.

Proof. Let f : X → Y be a co-retraction, with “left-inverse” g : Y → X (i.e., g is
continuous and g ◦ f = ιX). In Exercise 8.15 (9), you are asked to show f is an
embedding; so we assume that as already established. What’s left is to show f is
a closed map when Y is assumed to be Hausdorff. Since embeddings are relatively
closed maps (Theorem 8.8), all we need to show (see Exercise 5.12 (10)) is that
f [X] is a closed subset of Y .

For convenience, let’s write A := f [X] and define r : Y → A by r(y) := f(g(y)).
Then r is a continuous map from Y onto the subspace A, and r◦r = f ◦(g◦f)◦g =
f ◦ g = r; i.e., r(a) = a for each a ∈ A.

Now suppose A is not closed in Y . Then there is a limit point y of A such that
y /∈ A. Since y /∈ A, we know that y 6= r(y). Here is where we use Hausdorffness:
Pick open sets U , V such that y ∈ U , r(y) ∈ V , and U∩V = ∅. But r is continuous.
Therefore there is an open set W containing y such that r[W ] ⊆ V . Let N := U∩W .
Then N is an open nbd of y that is disjoint from V , and such that r[N ] ⊆ V .

As a consequence of this, we have N ⊆ r−1[V ]; in particular N ∩ A ⊆ r−1[V ].
But y is a limit point of A, so N ∩ A 6= ∅. Finally, since r is a retraction; i.e.,
r ◦ r = r, N ∩ A ⊆ r−1[N ]. We thus have a nonempty set, namely N ∩ A, as a
subset of r−1[N ] ∩ r−1[V ] = r−1[N ∩ V ] = r−1[∅] = ∅, a contradiction. Thus A
must have contained all its limit points all along, so must be closed after all. This
completes the proof.

�

Exercises 9.11. (1) Referring to Example 9.2 (iii), show that the collection
of open right-looking rays forms a base for a topology on R, and show that
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the right-looking real line and the left-looking real line are homeomorphic.

(2) Prove the assertion in Example 9.5 (iv).

(3) * Referring to Example 9.7 (iii), show that if the one-point extension X∪{p}
is Hausdorff, then X must be discrete.

(4) Suppose T and U are two topologies on X, with T ⊆ U , and assume that T
is a Tn topology for some fixed n = 0, 1, 2. Then U is a Tn topology also.

(5) Suppose T and U are two T1 topologies on X. Show that T ∩ U is a T1

topology also. Show that the same statement fails for T0. (It also fails for
T2, but is harder to show.)

(6) Are any of the properties Tn, n = 0, 1, 2 preserved by continuous bijections?
I.e., if f : X → Y is a continuous bijection, and X is a Tn space, can the
same be said for Y ?

(7) Show that every suborderable space is Hausdorff.

(8) A space X is functionally Hausdorff if, for every two points x 6= y in
X, there is a continuous function f : X → [0, 1] (usual topology) such that
f(x) = 0 and f(y) = 1. Show that a functionally Hausdorff space is Haus-
dorff.

(9) * Consider all polynomial functions f : R2 → R, e.g., f(x, y) := x2 +
y2 − 1, and define the zero set Zf of such a polynomial f to be the set
of all pairs 〈x, y〉 such that f(x, y) = 0. (In our example, Zf is the unit-
radius circle in the plane, centered at the origin.) Now let Z := {Zf :
f is a polynomial function from R2 to R}, and define the Zariski topol-
ogy (after Oscar Zariski (1899–1986)) to be the smallest topology having
each member of Z as a closed set. Show this topology satisfies the T1 ax-
iom. (The Zariski topology, though non-Hausdorff, is an important tool in
the study of algebraic geometry.)

(10) Characterize the discrete subsets of a space equipped with the cofinite topol-
ogy.

(11) Show that any finite T1 topological space must be discrete.

(12) Show that if a point in a T1 space has a finite nbd, then that point is an
isolated point.

(13) * Show that the infinite discrete set A constructed in the proof of Theorem
9.9 has at most one limit point.

(14) * Let f : X → Y and g : X → Y be continuous functions, where Y is a
Hausdorff space, and suppose that there is a dense (in the sense of Exercise
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5.12 (5)) subset D of X such that f(x) = g(x) for all x ∈ D. Show that
f(x) = g(x) for all x ∈ X. [Hint: First show that {x ∈ X : f(x) = g(x)}
is always a closed subset of X.]
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10. Convergence

The idea of convergence of numerical sequences should ring some familiar bells from
when you took calculus. In particular, sequences can be used to characterize con-
tinuity when we’re dealing with real-valued functions of a real variable. Sequences
play a pivotal role in advanced calculus and analysis courses; we present sequences
in a topology course because they still have an important bearing on continuity,
even in very general contexts. And, at this point in the course, we are able to give
a quite elegant and clear (I hope) account of at least some of the role convergence
plays in mathematics. The following is a litany of basic definitions we will need in
this section.

Definition 10.1 (Sequences, Accumulation, Convergence). Let X be a topological
space. By a sequence in X we mean a function s : D → X, where D ⊆ N is
infinite. (Note that the infinite subsets of N are precisely the nonempty subsets with
no last element.) If n ∈ D, we frequently write sn instead of s(n); the image (or,
sometimes, trace) of the sequence s is just the set s[D], as usual. (So sequences,
even ones with finite images, are infinite objects because they are functions with
infinite domains.) A subsequence of sequence s : D → X is a restriction s|E,
where E is an infinite subset of D. The subsequence s|E is called a tail of s if the
set E is actually cofinite in D. (Note that the cofinite subsets of D are those subsets
that contain all members of D beyond a certain point; i.e., for some n0 ∈ D, we
have n ∈ E whenever n ∈ D and n ≥ n0.) The sequence s accumulates at (resp.,
converges to) the point x ∈ X if each nbd of x contains the image of a subsequence
(resp., tail) of s. We write s ⊢ x (resp., s → x) to indicate that s accumulates at
(resp., conveges to) x. If s ⊢ x (resp., s → x), we call x an accumulation point
(resp., a limit point) of s. Frequently we denote s : D → X by 〈sn〉n∈D, or, when
the meaning is clear, simply by 〈sn〉.

Examples 10.2. (i) The sequence s : N → R, given by sn := 1
n+1 , has 0 as

its only accumulation or limit point.
(ii) The sequence s : N → R, given by sn := (−1)n, has the points ±1 as its

two accumulation points. It has no limit point.
(iii) The sequence s : N → R, given by sn := n, has neither accumulation points

nor limit points.

Theorem 10.3 (Basic Properties). Let X be a topological space.

(i) If the sequence s : D → X is eventually constant at x; i.e., if some tail
s|E of s takes on the constant value x, then s → x.

(ii) If some subsequence of s converges to x ∈ X, then s ⊢ x.
(iii) If s ⊢ x in X, then x is in the closure of the trace s[D].
(iv) If s → x and s[D] is an infinite set, then x is a limit point of s[D].
(v) If s → x, then s|E → x for every subsequence s|E of s.

Proof. Ad (i): Suppose sn = x for all n in some cofinite subset E of D. Then
clearly every nbd of x contains s[E]. Consequently, s → x.
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Ad (ii): If s|E → x for some infinite subset E ⊆ D, then every nbd of x contains
the image of a tail of s|E. Since a tail of a subsequence of s is a subsequence of s,
we infer that s ⊢ x.

Ad (iii): If s ⊢ x, then, for each nbd U of x, there is a subsequence s|E of s
whose image s[E] is a subset of U . Since each such s[E] is nonempty, we infer that
U intersects s[D].

Ad (iv): Suppose s → x and s[D] is infinite. Let U be a nbd of x. Then there is
a tail s|E of s such that s[E] ⊆ U . Since E is cofinite in D, D \ E must be finite.
Since s[D] = s[E]∪ s[D \E], we infer that s[E] must be infinite. Thus each nbd of
x contains infinitely many elements of s[D]. This says that x is a limit point of s[D].

Ad (v): Suppose s → x, and let s|E be a fixed subsequence of s. If U is any
nbd of x, let C ⊆ D be cofinite in D, such that s[C] ⊆ U . Since D \ C is finite,
we must have E \ C finite as well. Thus C ∩ E is a cofinite subset of E. Now
s[C ∩ E] ⊆ s[C] ⊆ U , telling us that every nbd of x contains the image of a tail of
s|E. Hence s|E → x.

�

In Example 10.2 (ii), we see that it is possible for a sequence of real numbers to
have more than one accumulation point. Can there be more than one limit point?
The answer is no, if the space in question is Hausdorff

Theorem 10.4 (Uniqueness of Limit). If a sequence in a Hausdorff space has a
limit point, then that limit point is the only accumulation point of the sequence. In
particular, no sequence in a Hausdorff space can have more than one limit point.

Proof. Suppose s : D → X is a sequence, where X is a Hausdorff space, and
suppose s → x. In the interests of a contradiction, suppose further that y 6= x
is an accumulation point of s. By the Hausdorff property, we may pick disjoint
open sets U and V , with x ∈ U and y ∈ V . By the definitions of convergence and
accumulation, there is a cofinite subset C ⊆ D and an infinite subset E ⊆ D such
that s[C] ⊆ U and s[E] ⊆ V . As in the proof of Theorem 10.3 (v), C∩E is a cofinite
subset of E; in particular, C ∩E is nonempty, and we have ∅ 6= s[C ∩E] ⊆ U ∩ V ,
contradicting the disjointness of U and V . As an immediate consequence of this,
no sequence in a Hausdorff space can converge to more than one point of the space.

�

Theorem 10.4 justifies the alternative notation lim
n→∞

sn = x when s → x. It

is, however, a misleading notation unless the sequence takes values in a Hausdorff
space. The following example illustrates that, even in a T1 environment, a sequence
may have many limits.

Example 10.5 (Nonuniquenes of Limit). Consider the T1 space 〈X, T 〉, where X
is an infinite set and T is the cofinite topology on X. Let s : D → X be any
sequence. There are three cases to consider:
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• s hits each point of X only finitely often. If x ∈ X is arbitrary and X \ F
is a typical T -nbd of x (i.e., F is finite and x /∈ F ), there is a largest
n ∈ D such that s(n) ∈ F . Hence X \ F contains the image of a tail of s;
consequently every point of X is a limit point of s.

• There is a unique x0 ∈ X such that s(n) = x0 for infinitely many n ∈ D.
If x 6= x0, then X \{x0} is a T -nbd of x that fails to contain the image of a
tail of s, so s cannot converge to any point different from x0. On the other
hand, if U is a typical T -open nbd of x0, then there is a finite set F ⊆ X,
with x0 /∈ F , such that U = X \ F . s hits each member of F only finitely
often, and F is finite; hence there is a greatest n ∈ D such that s(n) ∈ F .
Consequently, U contains the image of a tail of s, and s therefore converges
to a unique point of X.

• There are two (or more) points x0 6= x1 in X such that s hits both x0 and
x1 infinitely often. Suppose Ei ⊆ D is an infinite set such that s(n) = xi

for all n ∈ Ei, i = 0, 1. Then, for x /∈ {x0, x1}, X \ {x0, x1} is a T -nbd
of x that fails to contain any tail of s; for each i ∈ {0, 1}, X \ {x1−i} is a
T -nbd of xi that fails to contain any tail of s. Consequently, s has no limit
points at all.

You may recall that there is a sequential characterization of continuity in calcu-
lus. That is, if f : X → R, where X ⊆ R, and if x0 ∈ X, then f is continuous at x0

if and only if every sequence converging to x0 in X gets sent, via f , to a sequence
that converges to f(x0) in R. While the “if” half of the characterization fails to
hold in the general topological context, the “only if” half goes through quite easily.
(We’ll consider what to do about the failed “if” half shortly.)

Theorem 10.6 (Continuity Implies Convergence Preservation). Let f : X → Y be
a map from one topological space to another, and suppose x0 ∈ X. If f is continu-
ous at x0 and s : D → X is a sequence converging to x0, then f ◦ s : D → Y is a
sequence converging to f(x0).

Proof. Suppose that f is continuous at x0, and let s : D → X converge to x0.
We need to show f ◦ s → f(x0). If V is any open nbd of f(x0), use continuity
to find an open nbd U of x0 such that f [U ] ⊆ V . Since s → x0, there is a tail
s|C of s such that s[C] ⊆ U . Therefore there is a tail (f ◦ s)|C of f ◦ s such that
(f ◦ s)[C] = f [s[C]] ⊆ f [U ] ⊆ V .

�

For the converse of Theorem 10.6, we need some more control on how sequential
convergence connects with the notion of set closure.

Theorem 10.7 (Sequences and Closure). Let X be a metrizable space, A ⊆ X,
and x ∈ X. The following are equivalent:

(a) There is a sequence s : D → X, with s[D] ⊆ A and s → x.
(b) x ∈ Cl(A).

Proof. Ad ((a) =⇒ (b)): If there is a sequence s : D → X converging to x, then, by
Theorem 10.3 (ii, iii), we have x ∈ Cl(s[D]). Since s[D] ⊆ A, we have x ∈ Cl(A).
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(Note that this part of the proof does not require any restrictions on the space X.)

Ad ((b) =⇒ (a)): Suppose x ∈ Cl(A). We need to find a sequence s : D → X,
whose image lies in A, and which converges to x. If x ∈ A, we may take our
sequence to be constantly x and be done. Otherwise x is a limit point of A, not in
A. Pick a metric d on X that induces the given metrizable topology on X. For each
n ≥ 1, pick sn ∈ A ∩ B(x, 1

n
). Then the sequence 〈s1, s2, . . . 〉 does what we want:

For if U is any open nbd of x, then we pick n0 large enough so that B(x, 1
n0

) ⊆ U .

Since B(x, 1
k+1 ) ⊆ B(x, 1

k
) for each k ≥ 1, we infer that sn ∈ U for all n ≥ n0.

�

Theorem 10.8 (Continuity Equals Convergence Preservation for Metrizable Do-
mains). Let f : X → Y be a map from one topological space to another, where X
is metrizable, and suppose x0 ∈ X. The following are equivalent:

(a) f is continuous at x0.
(b) Whenever s : D → X is a sequence converging to x0, then f ◦ s : D → Y is

a sequence converging to f(x0).

Proof. Ad ((a) =⇒ (b)): This is Theorem 10.6.

Ad ((b) =⇒ (a)): Assume (b) holds. By Theorems 4.9 and 5.11 (d), it suffices to
show that whenever A ⊆ X has x0 in its closure, then f [A] has f(x0) in its closure.
So suppose x0 ∈ Cl(A). Since X is metrizable, we infer from Theorem 10.7 that
there is a sequence s : D → X with s[D] ⊆ A and s → x0. From (b), then, we have
f ◦ s → f(x0). Since (f ◦ s)[D] ⊆ f [A], we know that f(x0) ∈ Cl(f [A]). (Note that
we don’t need any additional assumptions for the range space.)

�

In Theorem 10.3, basic properties (ii), (iii), and (iv) beg for converses. Theorem
10.7 gets us a partial converse for (iii) (i.e., we need an added metrizability assump-
tion). Moreover, if we modify its proof, we additionally get a partial converse for
(iv) (see Exercise 10.12 (1) below). As for (ii), there is still only a metrizability-
conditioned converse.

Theorem 10.9 (Subsequences). Suppose X is a metrizable space and s : D → X
is a sequence that accumulates to x ∈ X. Then some subsequence s|E converges to
x.

Proof. Let s ⊢ x, and fix a metric d that induces the given topology on X. For
each n ≥ 1, set Un := B(x, 1

n
). Then for n = 1, 2, . . . , there is an infinite set

En ⊆ D such that s[En] ⊆ Un. Let e1 now be the least element of E1, let e2 be the
least element of E2 greater than e1, etc. This is actually a very simple induction;
at the nth stage of the construction, we have e1 ∈ E1,. . . , en ∈ En; we choose
en+1 ∈ En+1 to be the least element of En+1 greater than each ei, 1 ≤ i ≤ n. (This
is possible because each Ek is infinite.) Now let E := {e1, e2, . . . }. If U is any nbd
of x, then there is some n0 ≥ 1 such that Un0

⊆ U . Let C := {e ∈ E : e ≥ n0}.
Then C is cofinite in E, and s[C] ⊆ Un0

because Uk ⊇ Uk+1 for each k ≥ 1. Thus
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the image of a tail of s|E lies in U ; hence s|E → x.
�

Remarks 10.10. (i) You may already have noticed that, in the proofs of The-
orems 10.7, 10.8, and 10.9, all that we required of the metrizability assump-
tion was the existence of the ball neighborhoods B(x, 1

n
), for n ≥ 1. The

two key properties of this family of nbds are: (i) B(x, 1
k
) ⊇ B(x, 1

k+1 ) for

all k ≥ 1 (i.e., the family forms a nested sequence of sets; and (ii) if U
is any nbd of x, then B(x, 1

n
) ⊆ U for some (large enough) n. A topologi-

cal space X is called first countable if, for each x ∈ X there is a nested
sequence B1 ⊇ B2 ⊇ . . . of open nbds of x such that every nbd of x con-
tains some Bn in the family. The family {B1, B2, . . . } is called a countable
nested neighborhood base at x. Metrizable spaces clearly are first count-
able, but first countable spaces need not be metrizable (see Exercise 10.12
(2) below). Because the proofs of Theorems 10.7–10.9 use no more than
first countability, we may replace metrizability by first countability through-
out in their statements. We will see more “countability properties” in later
sections.

(ii) This is as good a point as any to expand on the use of the word countable
in (i) above. A set is said to be countable if it is either finite or can be
put in one-one correspondence with the natural numbers N. George Cantor
(1845–1918) is credited with initiating in the late 1800s the development
of mathematics based on set-theoretic ideas. Of particular importance was
the idea of comparing two sets by asking whether they could be put in one-
one correspondence with each other; i.e., whether they were of the same
cardinality (see Example 8.3). Two basic theorems that he proved, quite
counterintuitive at the time, were: (1) that the set of rational numbers
is countable, even though it is apparently much “bigger” than the set of
natural numbers; while (2) the set of real numbers in uncountable. (It
seems Cantor started out believing that both Q and R are uncountable, but
when he subsequently proved Q to be countable, he started to believe R is
too. But then came his second surprise: R is uncountable after all.)

So a topological space is first countable just in case each of its points has
a nested neighborhood base that also is countable as a family of sets.

The metrizability (or first countability) assumption in some of the theorems of
this section is a necessary assumption, in the sense that the wholesale deletion of
such an assumption would lead to a false assertion. Take, for example, Theorem
10.9. If we were to delete metrizable from the statement, then we would have:

Suppose X is a space and s : D → X is a sequence that accumulates to x ∈ X.
Then some subsequence s|E converges to x.

How do we go about showing such a statement to be false, if it indeed is false?
One way is to try as hard as you can to show it to be true, to look deeply into
the proof you have and see whether you truly need the assumption. Sometimes the
assumption is reasonably easy to get around in the proof at hand; other times you
need to look for a radically new idea. (Quite frankly, this can keep you up nights.)

Well, maybe there are no new ideas lurking about because there can’t be. After
you’ve exhausted all the possibilities you can think of, you may start gaining some
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insight into just how crucial the assumption really is in the proof you have, enabling
you to build a counterexample (i.e., an example that shows a general assertion
to be wrong). For instance, the geometrical statement, “All triangles have at least
one right angle” is belied by the existence of equilateral triangles, with all angles
measuring 60 degrees: the equilateral triangle is then a counterexample to the given
general statement. In Theorem 10.4, the Hausdorff assumption is necessary because
Example 10.5 affords a (T1) counterexample to the version with Hausdorff deleted.

Back to our present situation: in order to show the beefed-up version of Theorem
10.9 to be false, you need to find a topological space X and a sequence s : D → X
which accumulates to a point x ∈ X, but such that no subsequence s|E converges
to x. It turns out such a space does exist, if we believe a certain set-theoretic axiom
called the axiom of choice (see more advanced texts ). The nice thing about this
example is that it also puts to the lie the correspondingly beefed-up versions of
Theorems 10.7 and 10.8.

Example 10.11. Our example is a one-point extension, like Example 9.5 (iv), but
allows a lot more open nbds of the new point. Start with the natural numbers N, with
the discrete topology, and let p be a brand new point. X := N ∪ {p} comprises the
points of our space; natural numbers n are all isolated points, the point p is intended
to be the only nonisolated point. If we were following the prescription of Example
9.5 (iv), we would take as base for our topology, the family B := ℘(N) ∪ {C ∪ {p} :
C ∈ C}, where C is the family of cofinite subsets of N. The reason this space is
not quite what we want is that it is first countable. (Indeed, see Exercise 10.12
(3) below, it is homeomorphic to the subspace {0} ∪ { 1

n
: n = 1, 2, . . . } of R, and

is hence metrizable.) So what we actually do is add a bunch of new nbds of p;
and to accomplish this we need the axiom of choice (in the form of Zorn’s lemma,
after M. Zorn (1906–1993)). The upshot is that there exists a family D ⊆ ℘(N)
satisfying:

(i) ∅ /∈ D;
(ii) N ∈ D;
(iii) if J ∈ D and J ⊆ K ⊆ N, then K ∈ D (closure under superset);
(iv) if J,K ∈ D, then J ∩ K ∈ D (closure under finite intersections);
(v) every member of D is infinite (infinity condition) ; and
(vi) if I ∪ J ∈ D, then either I ∈ D or J ∈ D (primality).

Given that such a family D can be found—which it can, with the aid of Zorn’s
lemma—we let our new base be BD := ℘(N) ∪ {I ∪ {p} : I ∈ D}.

We first note that the family C of cofinite subsets of N satisfies conditions (i)–
(v) above. What it doesn’t satisfy is condition (vi): any infinite subset with infinite
complement is not in C, even though the union of the two sets is N ∈ C. Next we
note that, by (v) and (vi), it is immediate that C ⊆ D. Thus BD ⊇ B, as claimed:
our topology on X is finer than the one specified in Example 9.5; by Example 9.7
(iii) and Exercise 9.11 (4), then, this space is Hausdorff.

Now the space is specified, we need to demonstrate that it does what we want.
Let’s show that, while p is a limit point of N, there is no sequence s : D → X, with
values in N, such that s → p.

Ad (p ∈ Cl(N)): If I ∈ D, then I 6= ∅; so I ∪ {p} intersects N.
Ad (No s → p can have values only in N): Suppose, to the contrary, one
such s can be found. If s[D] /∈ D, then, by (vi), I := N \ s[D] ∈ D; so we
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immediately get a nbd I∪{p} of p that cannot contain the image of a tail of s.
Thus it must be the case that s[D] ∈ D; in particular, s[D] is an infinite set,
by (v). For convenience, write s := 〈s0, s1, . . . 〉, and set t0 := s0. Using a
simple induction, we let t1 be the first sn > s0, let t2 be the first sn > t1, etc.
Thus we have replaced s by a strictly increasing subsequence t; moreover if
s → p then t → p as well. As with s, we then argue that t[D] ∈ D. (The
argument just given, obtaining t from s, might have been omitted, being
replaced by the more enigmatic: “. . . without loss of generality, we may
assume s is strictly increasing . . . ”) Now let t[D] := I ∪ J , where I and J
are infinite and disjoint. Again using (vi), one of I,J must be in D; say
it’s I. Then I ∪ {p} is a nbd of p that fails to intersect the image of a tail
of t. Consequently, t cannot converge to p.

So far we have a counterexample to the version of Theorem 10.7 that omits the
metrizability assumption (i.e., the (b) =⇒ (a) direction). But now we can see
quickly that X is also a counterexample to the corresponding version of Theorem
10.9. For let sn := n, n = 0, 1, . . . . Then clearly every nbd I ∪ {p}, for I ∈ D,
contains the image of a subsequence of s, namely s|I. Thus p is an accumulation
point of s. However, we have shown that no sequence with values in N can converge
to p. So, in particular, no subsequence of s can converge to p.

Finally, to address Theorem 10.8, let Y be 〈X, T 〉, where T is the discrete topol-
ogy. Then the identity map ιX fails to be continuous at p. However, if s : D → X
is a sequence converging to p in the original topology, then (see Exercise 10.12 (4)
below) s is eventually constant at p. Consequently, ιX ◦s = s is eventually constant
at p, and hence converges to p in the discrete topology.

Exercises 10.12. (1) * Show that if X is a first countable T1 space and x is
a limit point of A ⊆ X, then there is a sequence s : D → X with s → x and
s[D] ⊆ A infinite. [Hint: Modify the proof of Theorem 10.7. If s1 ∈ B1

differs from x, find s2 ∈ Bn, where n is least such that s1 /∈ Bn. Use
induction.]

(2) Find a first countable T1 topological space that is not metrizable. [Hint:
The cofinite topology works. There are more sophisticated examples; the
Sorgenfrey line L is first countable T2 and nonmetrizable. (We won’t have
the technology to demonstrate this, however, until Section 17.)]

(3) Prove that the one-point extension of the discrete natural numbers, formed
by letting cofinite subsets serve as a nbd base for the new point, is homeo-
morphic to the subset of R consisting of 0, plus points 1

n
, n ≥ 1.

(4) Refer to Example 10.11, and show that if s : D → X is a convergent se-
quence in X, then s is eventually constant.

(5) Let L be the Sorgenfrey line (see Exercise 7.18 (4)), and let s : N → L be
a strictly increasing sequence in X (i.e., s0 < s1 < . . . ). Show s has no
accumulation points.
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(6) Refer to Example 6.9, where R[0,1] has the supremum norm. Suppose
s : D → R[0,1] is a convergent sequence, and that each sn is a continu-
ous function from [0, 1] to R. Show that the limit of this sequence is also a
continuous function.

(7) Refer to Example 7.17 (ii), and let R[0,1] have the topology of pointwise
convergence. For each n ≥ 1, let sn be the function taking x ∈ [0, 1] to xn.
Does the sequence 〈s1, s2, . . . 〉 have a limit in R[0,1]? What does this say
about limits of sequences of continuous functions relative to the topology of
pointwise convergence?

(8) Prove the bounded convergence theorem: If s : D → R is a bounded
weakly increasing sequence of real numbers (i.e., there is some M ∈ R such
that sn ≤ M for all n, and s0 ≤ s1 ≤ . . . ), then s is convergent.

(9) * Consider the basic Fibonacci sequence (after Leonardo Pisano Fi-
bonacci (1170–1250)) 〈1, 1, 2, 3, 5, 8, 13, . . . 〉 (where sn+2 = sn+1 + sn, in
general). Without peeking on the web, show that the sequence of ratios

rn :=
sn+1

sn

converges; and find exactly what the limit of this sequence is.

(10) * Define a sequence s : D → R to be busy if, for each rational number
r ∈ Q, s−1[r] := {n ∈ D : sn = r} is infinite. First show that busy se-
quences exist; and, once you’ve done that, find the set of all accumulation
points of a busy sequence.

(11) Let X be a topological space. Show that X is first countable if and only if
each point has a family of open nbds {B1, B2, . . . } such that every nbd of x
contains some Bn in the family (no nestedness assumption).
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11. Connectedness

At the beginning of Section 9 we talked about topological properties having cer-
tain “flavors.” The “separating stuff” flavor gives us the separation axioms Tn,
n = 0, 1, 2 (plus quite a few more, as we shall see in Section ); in this section we
consider the flavor, “coming in one piece.” Intuitively, a space X “comes in one
piece” if it cannot be disconnected ; i.e., if it doesn’t come in “two separated pieces.”

Definition 11.1 (Connectedness). Let X be a topological space. A disconnec-
tion of X is a two-element family {H,K} of disjoint nonempty open subsets of
X, whose union is X. X is disconnected if there exists a disconnection of X;
connected otherwise. A subset A of X is a connected subset if it is connected
as a subspace of X. This is equivalent to saying that there are no open subsets U
and V of X such that: U ∩ A 6= ∅ 6= V ∩ A; U ∩ V ∩ A = ∅; and A ⊆ U ∪ V .

Remarks 11.2. (i) A family of subsets of X whose union is all of X is called
a cover of X. If the sets all happen to be open, the cover is called an open
cover of X. (Similarly, define closed cover, etc.) In the language of open
covers, then, a disconnection of X is an open cover of X consisting of two
nonempty disjoint sets. They are the two “pieces” mentioned earlier. Of
course the two sets should be disjoint; more strongly they should be “sepa-
rated:” neither set should contain a limit point of the other. Notice that,
since H and K are disjoint complementary open sets, they are also both
closed sets; so this idea of “separatedness” seems to be reasonably expli-
cated in topological language. Sets that are both closed and open (e.g., the
empty set and the whole space) are (rather frivolously) termed clopen.

(ii) Refer to Example 8.9 (v). The domain of the analytic function in the state-
ment of the open mapping theorem is assumed to be an open set that is
connected (frequently called a region in the parlance of complex analysis).

Here is a result that rephrases connectedness in other terms.

Theorem 11.3 (Characterizations of Connectedness). The following are equivalent
for any topological space X:

(a) X is connected.
(b) There is no continuous map from X onto the two-point discrete space.
(c) The only clopen subsets of X are ∅ and X.
(d) Whenever U is an open cover of X and x, y are points of X, there is a

finite sequence 〈U1, . . . , Un〉 of members of U such that x ∈ U1, y ∈ Un,
and Ui ∩ Ui+1 6= ∅ for 1 ≤ i ≤ n − 1.

Proof. Ad ((a) =⇒ (b)): Suppose (b) is false. If f : X → {a, b} is a continuous
surjection, where both a and b are isolated points, then the set {f−1[{a}], f−1[{b}]}
forms a disconnection of X. Thus (a) is false.

Ad ((b) =⇒ (c)): Suppose (c) is false. If there is a nonempty clopen set U ⊆ X
whose complement is also nonempty, then we may construct f : X → {a, b} by
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assigning points of U to a and points of X \ U to b. This gives us a continuous
surjection, no matter what topology is assigned to {a, b}; hence (b) is false.

Ad ((c) =⇒ (d)): Suppose U is an open cover of X. For the purposes of this
proof, let’s say points x and y are U-linkable if there is a sequence 〈U1, . . . , Un〉,
as indicated above. Now fix x ∈ X and define U to be the set of points y ∈ X
such that x and y are U-linkable. Since U is an open cover—so every member of X
is contained in a member of U , hence U-linkable with itself—we have x ∈ U . The
plan is to show that U is clopen. For then, assuming (c), it must be all of X; hence
(d) holds.

If y ∈ U is arbitrary, with 〈U1, . . . , Un〉 witnessing the U-joinability of x to y,
then each z ∈ Un is also in U , as witnessed by the very same finite sequence of sets.
This says that U is an open subset of X. If y ∈ Cl(U), pick V ∈ U such that y ∈ V .
Then there is some z ∈ V ∩U , so there is a finite sequence 〈U1, . . . , Un〉 witnessing
the fact; i.e., x ∈ U1, z ∈ Un, and each Ui ∩ Ui+1 6= ∅ for 1 ≤ i ≤ n − 1. But then
the sequence 〈U1, . . . , Un, V 〉 witnesses the fact that y ∈ U . This tells us that U is
closed in X, and (d) therefore holds.

Ad ((d) =⇒ (a)): Suppose (a) is false. Then any disconnection U := {H,K}
demonstrates the failure of (d).

�

Examples 11.4. (i) Every space with no more than one point is, trivially,
connected.

(ii) The Sierpiński space S of Example 9.2 (ii) is connected.
(iii) If X is an infinite space with the cofinite topology, then X is connected

because any two nonempty open sets must overlap. There is no possibility
for a disconnection if this happens.

(iv) Let X be the subset of the usual real line consisting of the union of the two
closed intervals [0, 1] and [2.3]. Then X is disconnected because {[0, 1], [2, 3]}
is a disconnection of X. (Note that [0, 1] is open in X because [0, 1] =
(−1, 3

2 ) ∩ X.)
(v) Let L be the real line with the Sorgenfrey (lower limit) topology (see Exer-

cise 7.18 (4)). Then L fails to be connected. Indeed, if x < y, then pick
a ∈ (x, y). The family {(−∞, a), [a,∞)} is a disconnection of L that “dis-
connects” x and y. Since x and y were arbitrarily chosen, this says that no
two distinct points of L lie in a connected subset of L. Topological spaces
with this property are called totally disconnected.

(vi) The usual closed unit interval [0, 1] is connected. To see this, suppose oth-
erwise, that {H,K} is a disconnection of [0, 1]. We may as well assume
0 ∈ H. Then, because H is open in [0, 1], there is some ǫ > 0 such that
[0, ǫ) ⊆ H. Thus for every 0 ≤ t < ǫ, t is a lower bound of K. Using
the order completeness of the real line, let k be the greatest lower bound
of K. Then k ≥ ǫ > 0. Can k = 1? If so, then K has no choice but to
be {1}. But then K is not open in [0, 1], a contradiction. From this we
conclude that 0 < k < 1. Now let U be any open nbd of k; without loss
of generality, we may assume that U = (k − δ, k + δ) for suitably small
δ > 0. Now, because k is a lower bound of K, it must be the case that
(k − δ, k) ∩ K = ∅. Thus (k − δ, k) ⊆ H; so U ∩ H 6= ∅. This says that
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k ∈ Cl(H). Since H is already closed in [0, 1] we know k ∈ H. On the other
hand, if (k, k + δ) ∩ K = ∅, then there must be lower bounds of K strictly
to the right of k. But k is the greatest lower bound of K; hence we know
U ∩K 6= ∅, and that k ∈ Cl(K) = K. Thus k ∈ H∩K = ∅, a contradiction.

In general terms, it is more difficult to prove connectedness than the contrary.
Proving disconnectedness requires an example of a disconnection; proving connect-
edness requires showing that no such example can exist. Thus proof of connected-
ness is often proof by contradiction. There are, however some general theorems that
help to convert a connectedness result about one space to one about another space.
One of the most basic of these involves continuous mappings; it is refreshingly easy
to prove.

Theorem 11.5 (Connectedness and Continuity). Let f : X → Y be a continuous
surjection, where X is connected. Then Y is also connected.

Proof. Let {H,K} be a disconnection of Y . Then the inverse images f−1[H] and
f−1[K] are disjoint, open in X, both nonempty (because f is onto), and together
cover X.

�

By adjusting Example 8.3 (v) a little, and noticing that Example 11.4 (vi) ac-
tually shows that every bounded closed real interval is connected, we immediately
obtain the following.

Corollary 11.6. Any simple closed curve (i.e., homeomorphic copy of the stan-
dard unit circle S1) is connected.

Another powerful-but-simple tool in the search for connectedness involves con-
nected subsets.

Theorem 11.7. Suppose C is a connected subset of a space X. If {H,K} is a
disconnection of X, then either C ⊆ H or C ⊆ K. Consequently, if each two-point
subset of X lies in a connected subset of X, then X is connected.

Proof. Suppose, to the contrary, that {H,K} is a disconnection of X such that
both H ∩ C and K ∩ C are nonempty. Then we have a disconnection of C in
{H ∩ C,K ∩ C}.

Suppose now that there is a disconnection {H,K} of X. Pick x ∈ H and y ∈ K.
By assumption, there is a connected subset C ⊆ X containing both x and y. But
then C intersects both H and K, a contradiction.

�

We now have enough ammunition to consider connectedness in spaces of higher
(euclidean) dimension.
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Corollary 11.8 (Connectedness in Ball Neighborhoods). Let Rn be supplied with
the euclidean metric. Then the ball neighborhoods B(x, ǫ) are connected.

Proof. Given any two distinct points y and z in B := B(x, ǫ), the parameterized line
segment S := {ty + (1− t)z : t ∈ [0, 1]} lies entirely in B, by simple linear algebra.
(Check out the string of inequalities: |(ty + (1− t)z)−x| = |(ty + (1− t)z)− (tx+
(1−t)x)| = |t(y−x)+(1−t)(z−x)| ≤ t|y−x|+(1−t)|z−x| < tǫ+(1−t)ǫ = ǫ. B is
a convex set, in the sense of linear algebra.) S is easily seen to be homeomorphic
to [0, 1], so is connected. By Theorem 11.7, then, B is connected.

�

One goal of this section is a proof of one of the “twin pillars” mentioned in The-
orem 1.5, namely the intermediate value theorem. First we need to characterize
connectedness in subsets of the usual real line; we do this in three easy steps.

Theorem 11.9. Let {Ai : i ∈ I} be a family of connected subsets of a space X. If
Ai ∩ Aj 6= ∅ for each i, j ∈ I, then

⋃

i∈I Ai is connected.

Proof. Set A :=
⋃

i∈I Ai, and suppose {H,K} is a family of two disjoint relatively
open subsets of A whose union is A. By Theorem 11.7, each Ai, being a connected
subset of A, is contained in either H or in K. Pick i0 ∈ I, say Ai0 ⊆ H. If
j ∈ I is arbitrary, then it is impossible for Aj to be a subset of K because then
∅ 6= Aj ∩ Ai0 ⊆ K ∩ H = ∅. Thus A = H, and hence K = ∅. This tells us that A
is connected.

�

Theorem 11.10 (Connected Subsets of R). Let R have the usual topology, with
A ⊆ R. Then A is connected if and only if A is an interval.

Proof. Suppose A is not an interval. Then A is not convex; i.e., there exist x < y <
z in R such that x and z are in A, but y is not. Then {(−∞, y) ∩ A, (y,∞) ∩ A}
forms a disconnection of A; hence A is not a connected set.

For the converse, suppose A is an interval. If A is a single point, we’re done;
otherwise we may write A as the union of an expanding sequence of bounded closed
intervals. (For example, (2, 5) =

⋃

n≥1[2 + 1
n
, 5 − 1

n
], [2,∞) =

⋃

n≥1[2, n], etc.)

Since all (nonsingleton) bounded closed intervals in the real line are homeomorphic
to [0, 1] (using an argument similar to that in Theorem 8.12), and since [0, 1] is
connected (by Example 11.4 (vi)), so too is every bounded closed interval. We now
use Theorem 11.9: all the intervals in the expanding sequence whose union is the
interval A are connected; hence so is A itself.

�

And now, finally, we have one of the advertised pillars of Freshman calculus.

Corollary 11.11 (Intermediate Value Theorem). Suppose X ⊆ R is an interval,
with f : X → R continuous on X. If a and b lie in X and d ∈ R lies between f(a)
and f(b), then there is some c between a and b such that f(c) = d.
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Proof. For any a < b lying in the interval X, we have [a, b] ⊆ X. By Theorem
11.10, [a, b] is connected; by Theorem 11.5, so too is f [[a, b]] ⊆ R. Again using
11.10, f [[a, b]] is an interval, one that contains both f(a) and f(b). So if d lies
between f(a) and f(b), then d ∈ f [[a, b]]. Thus there is some c ∈ [a, b] such that
f(c) = d.

�

From Theorem 11.9 the union of a bunch of connected subsets all having a single
point in common must be connected. This prompts the following concept.

Definition 11.12 (Components). Let X be a topological space, with x ∈ X. We
denote by C(x) the union of all connected subsets A ⊆ X with x ∈ A. C(x) is called
the component of X containinng x; a subset of X is called simply a compo-
nent of X if it is equal to come C(x).

Before going on to identify some of the key properties of components, we prove
the following useful result. It too is a way of obtaining new connected sets from
old ones.

Theorem 11.13. Let A be a connected subset of a space X, with B any set such
that A ⊆ B ⊆ Cl(A). Then B is connected.

Proof. Suppose we have a disconnection of B. That means there are sets U and
V , open in X, such that: (U ∩ B) ∩ (V ∩ B) = U ∩ V ∩ B = ∅, B ⊆ U ∪ V ,
and both U ∩ B and V ∩ B are nonempty. Since B ⊆ Cl(A), every nbd of a
point of B must intersect A. Hence both U ∩ A and V ∩ A are nonempty. Since
(U ∩ A) ∩ (V ∩ A) ⊆ (U ∩ B) ∩ (V ∩ B) = ∅ and A ⊆ B ⊆ U ∪ V , we see that
{U ∩A, V ∩A} is a disconnection of A, contradicting the fact that A is connected.

�

Theorem 11.14 (Basic Properties of Components). Let X be a topological space.

(i) For any x ∈ X, C(x) is connected; if D ⊇ C(x) is a connected subset of
X, then D = C(x) (i.e., C(x) is a maximally connected subset of X).

(ii) X is connected if and only if C(x) = X for every x ∈ X; X is totally
disconnected if and only if C(x) = {x} for every x ∈ X.

(iii) For any x, y ∈ X, either C(x) = C(y) or C(x) ∩ C(y) = ∅.
(iv) C(x) is closed in X.

Proof. Ad (i): The collection of connected subsets of X containing the point x is
easily seen to satisfy the hypothesis of Theorem 11.9. Hence its union, C(x), must
be connected. If D is a connected set containing C(x), then, in particular, D is
a connected set containing x; hence is one of the sets making up the union C(x).
Therefore D ⊆ C(x), and the two sets must be equal.

Ad (ii): If X is connected, then X is one of the connected subsets of X contain-
ing arbitrary x ∈ X. Thus X ⊆ C(x); and therefore C(x) = X for every x ∈ X.
The converse is just as easy.
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Ad (iii): Suppose x, y ∈ X are given. If C(x)∩C(y) 6= ∅, then, by Theorem 11.9
and (i) above, C(x) ∪ C(y) is a connected superset of both C(x) and C(y). Thus,
again by (i) above, C(x) = C(x) ∪ C(y) = C(y).

Ad (iv): This is immediate from Theorem 11.13 and (i) above: Cl(C(x)) is a
connected superset of C(x); hence the two sets must be equal. Thus C(x) is a
closed subset of X.

�

The next idea is of major importance in the study of connectedness. For one
thing, it allows us to distinguish many spaces as being topologically different.

Definition 11.15 (Cut Sets and Cut Points). Let X be a connected space. A subset
A of X is called a cut set of X if X \A is disconnected. If A consists of the single
point x, we say x is a cut point of X.

It is easy to show that any homeomorphism between connected spaces preserves
the property of being a cut set/point; i.e., if X is connected, A is a (non)cut set
of X, and h : X → Y is a homeomorphism, then Y is connected and h[A] is a
(non)cut set of Y . In particular, if two spaces have a differing number of cut points
or of noncut points, then they cannot be homeomorphic. We end this section with
a number of examples where cut sets give us important information about a space.

Examples 11.16. (i) Bounded closed, half-open, and open intervals in R have
2, 1, and 0 noncut points, respectively. Hence they are in separate homeo-
morphism classes, as promised in Example 8.13 (ii). Also, any unbounded
interval in R can have at most one noncut point; hence cannot be homeo-
morphic to a bounded closed interval. Of course any two half-open intervals,
bounded or not, are homeomorphic to one another, as are any two open in-
tervals.

(ii) If n > 1, then Rn is not homeomorphic to R. To see this, it is an easy
geometrical exercise to show that Rn has no cut points for n ≥ 1.

(iii) In Example 8.5 (iii), we promised to show that the unit circle S1 is not
embeddable in the reals. This is true because: S1 is connected (Corollary
11.6); every connected nonsingleton subset of R, being an interval, has at
least one cut point (see the proof of Theorem 11.10); and S1 has no cut
points at all. Indeed (see Exercise 11.18 (10) below), the removal of any
point from S1 leaves a space homeomorphic to R.

(iv) If A ⊆ Rn, n > 1, and A is countable, then A is not a cut set for Rn. To
see this, take the case n = 2 (the argument being essentially the same in
higher dimensions). If x and y are two distinct points in Rn\A, let S be the
straight line segment with endpoints x and y; then let L be the perpendicular
bisector of S (so L is the straight line perpendicular to S, going through the
midpoint of S. Now pick any point z on L, and let Bz be the union of the
line segment joining x to z, with the line segment joining z to y. Then each
Bz is connected and contains both x and y; moreover, if z and w are any
two distinct points on the line L, then Bz∩Bw ∩A = ∅. Now the points on
a straight line may easily be put in one-one correspondence with R (indeed,
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via a homeomorphism). Thus L must be uncountable. Hence, if each Bz

were to intersect A, that would force A to be uncountable too. The upshot
is that there is some z ∈ L such that Bz ⊆ R2 \A. By Theorem 11.7, R2 \A
is connected.

(v) (This is a deep theorem, the curve theorem, first claimed in 1887 by Camille
Jordan (1838–1922). It has a deceptively simple statement, making it seem
almost obvious, but Jordan’s original proof was completely wrong. It wasn’t
until 1905 when the first correct proof appeared, due to Oswald Veblen
(1880–1960). Although we now have the mathematical vocabulary to un-
derstant the statement of this extremely wide-reaching theorem, its proof is
beyond the scope of this course.) If S is a simple closed curve lying in R2

(i.e., S is the image under an embedding from the standard unit circle into
the plane), then S is a cut set of R2. Moreover, R2 \ S consists of exactly
two components, exactly one of which is bounded relative to the euclidean
metric.

(vi) One way to distinguish topologically Rm from Rn when m > n > 1 is via
cut sets and the topological theory of dimension. (This turns out to be very
hard mathematics.) For example, it is not terribly difficult to show that no
simple closed curve in Rm, m > 2, is a cut set therein. This, coupled with
the Jordan curve theorem stated in (v) above, lets us know that no Rm is
homeomorphic to R2, unless m = 2.

Exercises 11.17. (1) Show that a connected T1 space with more than one
point has no isolated points, but that it is possible for a connected T0 space
with more than one point to have isolated points.

(2) Show that if a topology on a set is coarser than a connected topology on the
set, then the coarse topology is connected also.

(3) Show that the space Q of rational numbers, with the usual topology, is to-
tally disconnected (i.e., components are singletons).

(4) * Show that R2 with the topology induced by the lexicographic ordering (see
Example 7.6 (iv)) is not connected. What are the components of this space?

(5) * Let X be a connected space, with A a connected subset. Show the follow-
ing:
(a) If U is a clopen subset of X \ A, then U ∪ A is connected.
(b) If C is a component of X \ A, then X \ C is connected.

(6) Describe precisely just what are the connected subsets of a space whose topol-
ogy is the cofinite topology.

(7) Let {Cn : n ∈ N} be a countable family of connected subsets of a space X,
satisfying Cn ∩Cn+1 6= ∅ for each n ∈ N. Show that

⋃

n∈N
Cn is connected.
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(8) For any point x of a space X, define the quasicomponent Q(x) of x to be
the set of points y ∈ X such that there is no disconnection {H,K} of X with
x ∈ H and y ∈ K. Prove the following basic results about quasicomponents:
(a) X is connected if and only if Q(x) = X for every x ∈ X.
(b) For any x, y ∈ X, either Q(x) = Q(y) or Q(x) ∩ Q(y) = ∅.
(c) Every quasicomponent is a union of components.
(d) For each x ∈ X, Q(x) is the intersection of all clopen sets in X that

contain x.

(9) Define a space X to be zero-dimensional if it has a base for its topology
that consists of clopen sets. Show that if X is zero-dimensional and T0,
then X is Hausdorff and Q(x) = {x} for every x ∈ X.

(10) Let x be a point on the unit circle S1. Show that S1 \ {x} is homeomorphic
to R.

(11) Show that if X has finitely many components, then each component is a
clopen set.



TOPOLOGY 69

12. Path Connectedness

In spite of the amazing power and generality of the notion of connectedness studied
in the last section, there is something eerily “negativistic” about its definition: the
existence of connectednss is conditioned by the nonexistence of a disconnection.
There is another connectedness notion, one based on the simple idea of “walking
from here to there and not wandering off the set.” It may be more intuiuively
appealing; it’s certainly more direct.

Definition 12.1 (Path Connectedness). Let X be a topological space, x and y two
points of X. By a path from x to y in X we mean a continuous map f : [a, b] → X
such that f(a) = x and f(b) = y, where [a, b] is any bounded closed interval in R.
The space X is path connected if, for each two points of X, there is a path from
one to the other. A subset A of X is a path connected subset if A is path con-
nected as a subspace of X.

Remark 12.2. Just as a sequence should not be confused with its trace (or image)
in the range space, so too a path should not be confused with its trace. (The trace of
a path (or sequence) is much easier to depict in a drawing than is the path itself.) In
particular, the natural order on [a, b] suggests that a path has a “direction.” (Recall
line integrals in calculus.) Moreover, without more stringent conditions on the path
(e.g., being one-one), the trace of a path needn’t be “skinny:” it is quite possible for
a path to be surjective onto a square, cube, or higher-dimensional object; i.e., to be
“space-filling.”

Connectedness and path connectedness are indeed related, but somewhat subtly.
Here are some of the less subtle things you can say.

Theorem 12.3 (Basic Consequences of Path Connectedness). (i) A path con-
nected space is connected.

(ii) A continuous image of a path connected space is path connected.
(iii) Let {Ai : i ∈ I} be a family of path connected subsets of a space X. If

Ai ∩ Aj 6= ∅ for each i, j ∈ I, then
⋃

i∈I Ai is path connected.

Proof. Ad (i): Suppose X is path connected. If x and y are any two points of X,
then there is a path f : [0, 1] → X with f(0) = x and f(1) = y. By Example
11.4 (vi), [0, 1] is connected; by Theorem 11.5, so is f [[0, 1]]. The latter is then
a connected subset of X containing both x and y; hence, by Theorem 11.7, X is
connected.

Ad (ii): (This is the path-connectedness version of Theorem 11.5.) Suppose
g : X → Y is a continuous surjection, where X is path connected; and let y and
z be two points of Y . We need to find a path in Y that joins y and z. Indeed,
since is onto, there are u, v ∈ X such that g(u) = y and g(v) = z. Since X is path
connected, there is a path f : [0, 1] → X with f(0) = u and f(1) = v. Thus g ◦ f is
a path in Y joining y and z.
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Ad (iii): (This is the path-connectedness version of Theorem 11.9.) Let A :=
⋃

i∈I Ai, with x and y two points of A. Then thre are indices i, j ∈ I such that
x ∈ Ai and y ∈ Aj . Let z ∈ Ai ∩ Aj . Then there are paths f : [0, 1] → Ai and
g : [0, 1] → Aj with f(0) = x, f(1) = g(0) = z, and g(1) = y (because both Ai and
Aj are path connected). We now pull a little trick: define h : [0, 1] → A by letting
h(t) := f(2t), 0 ≤ t ≤ 1

2 , and letting h(t) := g(2t − 1), 1
2 ≤ t ≤ 1. Note first that,

when t = 1
2 , we have f(2t) = f(1) = z = g(0) = g(2t− 1); so there is no ambiguity

in the definition of h at t = 1
2 (or anywhere else). It is then an easy exercise (see

Exercise 12.6 (1) below) to show that h is continuous. Since h(0) = f(0) = x and
h(1) = g(1) = y, we infer that A is path connected.

�

We shall see later that connected spaces need not be path connected, so there
is no full converse th Theorem 12.3 to be hoped for. However,there is a very nice
partial converse.

Theorem 12.4. Any connected open subset of euclidean space is path connected.

Proof. Let Rn be equipped with the euclidean metric, and suppose U ⊆ Rn is
connected and open. Since the open ball neighborhoods constitute a base for the
euclidean topology, we may form an open cover B of U with these sets. (I.e., for
each x ∈ U , there is some ǫx > 0 with B(x, ǫx) ⊆ U ; hence U =

⋃

x∈U B(x, ǫx).) By
Corollary 11.8, each open ball nbd is connected. In fact, because one may connect
any two points in such a nbd using a straight line segment lying entirely in that
nbd, it is immediate that the open ball nbds are path connected as well.

So let x and y be any two points in U . By Theorem 11.3, there are nbds
B1, . . . , Bn from B such that x ∈ B1, y ∈ Bn, and Bi ∩Bi+1 6= ∅ for 1 ≤ i ≤ n− 1.
By Theorem 12.3 (iii), plus an easy induction, the union B1 ∪ · · · ∪ Bn is path
connected. The two points x and y can now be joined by a path in B1 ∪ · · · ∪ Bn,
and hence by a path in the larger set U .

�

We end this section with a single counterexample to the following two conjec-
tures:

(i) Every connected space is path connected.
(ii) (Path-connectedness version of Theorem 11.13) The closure of a path con-

nected subset of a space is path connected.

Example 12.5. In the euclidean plane R2, we construct the “topologist’s square
wave” as follows: First let V0 be the vertical line segment {0}× [−1, 1]. Second, for
each natural number n ≥ 1, let Vn be the vertical line segment { 1

n
}× [−1, 1]. Third,

for each natural number n ≥ 1, let Hn be the horizontal line segment [ 1
n+1 , 1

n
] ×

{(−1)n+1}. (So H1 joins the top of V1 to the top of V2, H2 joins the bottom of V2

to the bottom of V3, etc.) We now let S :=
⋃

n≥1(Vn ∪ Hn). S is a “square wave”
that packs an infinite amount of oscillation into a finite amount of space. It is not
hard to show that S is homeomorphic to [0,∞), so is path connected.

Define S := V0 ∪ S. Then S = Cl(S), and is hence connected, by Theorems 12.3
(i) and 11.13. We are done once we show S is not path connected.
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Suppose f : [a, b] → S is a path joining 〈0, 0〉 ∈ V0 to 〈1,−1〉 ∈ S. Since V0

is closed in R2, f−1[V0] is closed in [a, b]; so this set must have a maximal ele-
ment, say c. That is, we have a ≤ c < b such that f(c) ∈ V0 and f(t) ∈ S for
c < t ≤ b. For convenience, let’s set c = 0 and b = 1. So then f(0) ∈ V0 and
f(t) = 〈x(t), y(t)〉 ∈ S for t ∈ (0, 1], f(1) = 〈1,−1〉. Now the coordinate function
x(t) is a continuous map from [0, 1] to itself, taking on the values 0 and 1. Hence,
by the intermediate value theorem, it must be a surjection. Thus we may pick a
sequence 〈t0, t1, . . . 〉 → 0 in (0, 1] such that y(tn) = (−1)n. But the continuity of f
implies that the sequence 〈f(t0), f(t1), . . . 〉 converges, and that means the sequence
〈y(t0), y(t1), . . . 〉 also converges (see Theorem 10.6). This is a contradiction, and
we conclude that no such path f can exist.

Exercises 12.6. (1) Suppose {A,B} is a closed cover of X, with f : A → Y
and g : B → Y continuous maps that agree on A∩B (i.e., f(x) = g(x) for
all x ∈ A ∩ B). Then there is a unique continuous h : X → Y such that
h|A = f and h|B = g.

(2) Prove that a space X is path connected if and only if there is a point x0 ∈ X
such that every point of X may be joined to x0 by a path in X.

(3) If X is a space and x ∈ X, we define the path component P (x) of x to
be the set of all points y ∈ X such there is a path in X that joins x and y.
Prove the following basic facts about path components:
(a) X is path connected if and only if P (x) = X for avery x ∈ X.
(b) For any x, y ∈ X, either P (x) = P (y) or P (x) ∩ P (y) = ∅.
(c) Every component is a union of path components.

(4) Refer to Exercise (3) above and show that each path component of an open
subset of euclidean space is also an open subset.

(5) Explain how Example 12.5 disproves the assertion that path components are
closed sets (à la Theorem 11.14 (iv)).
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13. Compactness

We now come to the flavor referred to at the beginning of Section 9 as “being
small and tidy.” The most intuitively appealing mathematical explication of this
is the one you see in a real analysis course: A subset of Rn is small and tidy just
in case it is bounded with respect to the standard euclidean metric (i.e., of finite
volume), and closed (i.e., with no “loose ends”). While this notion makes perfectly
good sense mathematically, its dependence on boundedness for its definition makes
it nontopological: switch from the euclidean metric to a topologically equivalent
bounded metric, and all the closed sets now get to be small and tidy.

In this section we investigate three genuinely topological notions that all turn
out to be equivalent in the metrizable realm; and indeed turn out to be equivalent
to small and tidy when we’re in euclidean space with the euclidean metric. These
three notions are variations on what we term compactness in topology.

Definition 13.1 (Three Notions of Compactness). Let X be a topological space.
X is said to be:

(i) compact if every open cover of X has a finite subcover (i.e., whenever U is
an open cover of X, there is a finite subfamily U0 ⊆ U that is also a cover
of X);

(ii) countably compact if every countable open cover of X has a finite sub-
cover; and

(iii) limit point compact if every infinite subset of X has a limit point in X.

A subset A of X is a (countably/limit point) compact subset if it is (count-
ably/limit point) compact as a subspace of X.

Of the three notions, compactness is the strongest; immediately followed by
countable compactness.

Theorem 13.2. Every compact space is countably compact; every countably com-
pact space is limit point compact.

Proof. Clearly every compact space is countably compact; suppose X is a space
that is not limit point compact. Then there is an infinite subset A ⊆ X such that
A has no limit point in X. We may as well assume A is countably infinite, because
no subset of A can have a limit point if A doesn’t. Write A = {a1, a2, . . . }. Then,
since no point of A is a limit point of A, we know that there are open sets Un,
n = 1, 2, . . . , such that Un∩A = {an}. Also, since no point of X \A is a limit point
of A, we know that A must be closed. So let U be the family {X \A}∪{U1, U2, . . . }.
Clearly U is a countable open cover with no finite subcover.

�

So to show a space is compact in one form or another, the best result is that
you show it is compact in the unmodified sense. Conversely, if you want to show a
space fails to have one of the three compactness properties, the best result is that
it fails to be limit point compact.
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Examples 13.3. (i) If a discrete space is finite, then it is compact; if it is
infinite, then it fails to be limit point compact.

(ii) Euclidean space fails to be limit point compact: the set of integer points on
any one of the coordinate axes is infinite, discrete, and closed.

(iii) The usual closed unit interval [0, 1] is limit point compact. To see this,
suppose A is an infinite subset if [0, 1]. Then either [0, 1

2 ]∩A or [ 12 , 1]∩A is
infinite (maybe both are, but at least one has to be). Let I1 be one of these
two subintervals, chosen to have infinite intersection with A. We now repeat
the process, choosing the left half of I1 or the right half, depending upon its
having infinite intersection with A. (Try to rephrase this more formally in
terms of induction.) Then we have a nested sequence I1 ⊇ I2 ⊇ . . . of
closed subintervals of [0, 1], each one of which having infinite intersection
with A. Let In = [an, bn]. Then, we have a1 ≤ a2 ≤ . . . and b1 ≥ b2 ≥ . . .
In addition, we have bn − an = 1

2n , for all n = 1, 2, . . . Since each bk is
an upper bound of {a1, a2, . . . }, the least upper bound a of {a1, a2, . . . } is a
lower bound of {b1, b2, . . . }. Thus the greatest lower bound b of {b1, b2, . . . }
is ≥ a. Since [a, b] ⊆ [an, bn] for each n = 1, 2, . . . , we see that b − a ≤
limn→∞(bn − an) = 0; so a = b. The claim is that a is a limit point of A.
Indeed because the an converge to a from below and the bn converge to a
from above, every ǫ-nbd of a must contain some In, and hence must contain
infinitely many elements of A.

(iv) The argument in (iii) above can be extended to the unit square [0, 1]2 in
R2. The only substantial difference is that now, instead of subdividing into
two congruent subintervals, we subdivide into four congruent subsquares.
Likewise, if we want to extend the argument to the unit cube [0, 1]3, the
subdivision involves eight congruent subcubes. In this way we can show that
all finite-dimensional hypercubes (i.e., cartesian powers of [0, 1] sitting in
euclidean space) are limit point compact. (see Exercise 13.16 (9) below).

Like connectedness and path connectedness, all three compactness properties are
preserved under continuous images.

Theorem 13.4 (Compactness and Continuity). Let f : X → Y be a continuous
surjection, where X is (countably/limit point) compact. Then Y is also (count-
ably/limit point) compact.

Proof. We prove the statement for compactness; you are asked in Exercise 13.16 (2)
to show the corresponding statements for countable compactness and limit point
compactness.

Suppose V is an open cover of Y . Then U := {f−1[V ] : V ∈ V} is an open cover
of X because f is continuous. By compactness of X, there is a finite subcover;
i.e., there are V1, . . . , Vn ∈ V such that {f−1[V1], . . . f

−1[Vn]} is a finite subcover
of U . Then we claim {V1, . . . , Vn} is a finite subcover of V. To see this, suppose
y ∈ Y is given. Then y = f(x) for some x ∈ X, since f is a surjection. Since
{f−1[V1], . . . , f

−1[Vn]} is an open cover of X, there is some i, 1 ≤ i ≤ n, such that
x ∈ f−1[Vi]. Thus y = f(x) ∈ Vi.

�
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In Theorem 9.8 we showed that the separation axioms Tn, n = 0, 1, 2, are hered-
itary; i.e., subsets of T spaces are Tn. If we want to make a similar statement
about our three compactness properties, we need to restrict the subsets we look at.
Define a topological property to be closed-hereditary if whenever X is a space
with the property and A is a closed subset of X, then A has the property too, in
its subspace topology.

Theorem 13.5. Compactness, countable compactness, and limit point compact-
ness are closed-hereditary properties.

Proof. We prove the statement for compactness; you are asked in Exercise 13.16 (3)
to show the corresponding statements for countable compactness and limit point
compactness.

Suppose X is compact and that A ⊆ X is closed. Let U be an open cover of
A; i.e., U is a family of open subsets of X whose union contains A. We need to
find a finite subfamily of U that covers A; but before we can use our compactness
hypothesis, we need to get an open cover of X. Since A is closed, though, we can
get an open cover of X by adding the set X \ A to U . That is, V := {X \ A} ∪ U
is an open cover of X. Since X is compact, there are U1, . . . , Un ∈ U such that
{X \ A,U1, . . . , Un} is a finite subcover of V. Since X \ A misses A altogether, it
must be the case that {U1, . . . , Un} covers A. This shows A is compact.

�

Compactness and the Hausdorff separation axiom work very well in combination,
each balancing the other.

Theorem 13.6. The compact subsets of a Hausdorff space are closed.

Proof. Suppose A is a compact subset of the Hausdorff space X. Given x ∈ X \A,
we need to find an open nbd V of x such that V ∩ A = ∅. For each a ∈ A, find
open nbds Ua of a and Va of x such that Ua ∩ Va = ∅ (because X is Hausdorff).
Next, because A is compact, there are finitely many sets Ua1

, . . . , Uan
that cover

A. Let V :=
⋂n

i=1 Vi. Then V is an open nbd of x that misses
⋃n

i=1 Ui ⊇ A. Thus
V ∩ A = ∅, as desired; and A is therefore closed in X.

�

Theorem 13.7. The compact subsets of euclidean space are closed and bounded
(in the usual metric).

Proof. In view of Theorem 13.6, all we need show is boundedness. Suppose A ⊆ Rn

is unbounded. Then, for n = 1, 2, . . . , A\B(0, n) 6= ∅. Thus {B(0, n) : n = 1, 2 . . . }
is an open cover of A such that no finite subfamily covers A. This open cover
witnesses the noncompactness of A.

�

Theorem 13.8. Let f : X → Y be a continuous surjection, where X is compact
and Y is Hausdorff. Then f is a closed map. If f is also an injection, then it is a
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homeomorphism.

Proof. First we check is that f is a closed map. Once that is done, we may cite
Theorem 8.7 to do the rest. Indeed, suppose A ⊆ X is closed. By Theorem 13.5, A
is compact; and by Theorem 13.4, f [A] is a compact subset of the Hausdorff space
Y . f [A] is therefore closed in Y , by Theorem 13.6.

�

Our next goal in this course is to provide a proof for the second “pillar” men-
tioned in Theorem 1.5, namely the extreme value theorem. Before we can do that,
however, we need to be able to strengthen Example 13.3 (iii) to say that bounded
closed intervals in the real line are compact (not merely limit point compact).

Theorem 13.9. For T1 spaces, limit point compactness and countable compactness
are equivalent.

Proof. By Theorem 13.2, all we need show is that limit point compact T1 spaces are
countably compact. We prove the contrapositive. Suppose X has a countable open
cover {U1, U2, . . . } such that no finite subfamily covers X. For each n = 1, 2, . . . ,
let Vn :=

⋃n
i=1 Ui. We then have a new open cover {V1, V2, . . . } of X such that

V1 ⊆ V2 ⊆ . . . and such that each Vn is a proper subset of X. Because of this, there
is a subsequence n1 < n2 < . . . such that Vni

is a proper subset of Vni+1
for each

i = 1, 2 . . . ; hence we may assume, without loss of generality, that each inclusion
Vi ⊆ Vi+1 is proper.

We now form A := {a1, a2, . . . }, where a1 ∈ V1 and an+1 ∈ Vn+1\Vn, n = 1, 2, . . .
A is clearly an infinite set; we show it can have no limit point in X. Indeed, fix
x ∈ X, and let m ≥ 1 be chosen such that x ∈ Vm. Then Vm is a nbd of x that
misses all of A, except possibly for {x1, . . . , xm}. Using the T1 axiom, there is a
nbd W of x that misses the finite closed set {x1, . . . , xm} \ {x}. Then W ∩ Vm is
a nbd of x whose intersection with A includes no point of A, except possibly for
x itself. This tells us A has no limit point in X; hence X fails to be limit point
compact.

�

Next we need to identify an arena where countable compactness implies com-
pactness. A relatively hard theorem, beyond the scope if this course, is that the
two compactness notions are equivalent for metrizable spaces. The good news is
that we don’t actually need that result to accomplish the goals of this section; the
bad news is that we need to make a small digression.

Definition 13.10 (Second Countability). A topological space X is second count-
able if the topology of X has a base consisting of countably many sets.

Examples 13.11. (i) If X is a countably infinite set with the cofinite topology,
then (by a standard counting argument, similar to how you show the set of
rational numbers is countable) X has only countably many open sets. This
makes X second countable.
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(ii) By Exercise 7.18 (2), the set of bounded open intervals with rational end
points in the real line forms a countable base for the usual topology on R.
More generally (see Exercise 13.16 (9) below), each euclidean space Rn is
second countable.

(iii) Second countable spaces are first countable: form a nbd base at a point by
considering only those members of the countable base that contain the point.

(iv) Any uncountable space with the discrete topology is metrizable (hence first
countable), but not second countable (see Exercise 13.16 (10)).

The following is a technical result that greatly simplifies many compactness ar-
guments.

Theorem 13.12. Let X be a topological space, with base B for the open sets of X.
If every open cover of X by members of B has a finite subcover, then X is compact.

Proof. Start with an open cover U of X. For each x ∈ X, pick Ux ∈ U such that
x ∈ Ux. Then, because B is a base for the open sets, pick Bx ∈ B such that
x ∈ Bx ⊆ Ux. Then, by our hypothesis, there are finitely many points xn, . . . , xn ∈
X such that X =

⋃n
i=1 Bxi

. But then X =
⋃n

i=1 Uxi
too; hence U has a finite

subcover.
�

As an immediate consequence of Theorems 13.2, 13.9, and 13.12, we may now
conclude the following.

Corollary 13.13. For second countable spaces, countable compactness and com-
pactness are equivalent. Hence, for second countable T1 spaces, limit point com-
pactness, countable compactness, and compactness are all equivalent.

And now the advertised “second pillar:”

Corollary 13.14 (Extreme Value Theorem). Suppose f : [a, b] → R is a contin-
uous function. Then there exist c, d ∈ [a, b] such that, for all x ∈ [a, b], f(c) ≤
f(x) ≤ f(d).

Proof. By Example 13.3 (iii), [a, b] is limit point compact; by Corollary 13.13, it is
compact. Thus, by Theorem 13.4, f [[a, b]] is a compact subset of R. By Theorem
13.7, f [[a, b]] is both closed and bounded. Thus there are m,M ∈ f [[a, b]] such
that, for all x ∈ [a, b], m ≤ f(x) ≤ M . Let c, d ∈ [a, b] be such that f(c) = m and
f(d) = M .

�

The next result, often presented in undergraduate analysis courses, justifies the
metric-dependent definition of “small and tidy” given at the beginning of this sec-
tion. It is due to Eduard Heine (1821–1881) and Emile Borel (1871–1956).
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Theorem 13.15 (Heine-Borel). A subset of euclidean space is compact if and only
if it is closed and bounded (in the usual metric)

Proof. In view of Theorem 13.7, we need only show that the closed bounded subsets
of Rn are compact. Indeed, if A is bounded, then there is a cube [a, b]n that contains
it. By Example 13.3 (iv), the cube is limit point compact; by Example 13.11 (ii) and
Corollary 13.13, the cube is compact as well. (Second countability is a hereditary
property, see Exercise 13.16 (11) below.) Finally, if A is also closed, we conclude
that A is compact, by Theorem 13.5.

�

Exercises 13.16. (1) Define a space X to be sequentially compact if every
sequence in X has a convergent subsequence. Show that a metrizable space
is sequentially compact if and only if it is limit point compact. (What hap-
pens to this statement if you replace metrizable with first countable and
T1? Can you prove either the “if” part or the “only if” part after removing
first countability or the T1 condition?)

(2) Show that continuous surjections preserve the properties of countable and
limit point compactness.

(3) Show that countable compactness and limit point compactness are closed-
hereditary properties.

(4) Let T and U be two topologies on the point set X, with T ⊆ U . Show that
if U is a compact topology, then so is T .

(5) Let 〈X, T 〉 be a compact Hausdorff space. Prove the following:
(a) If U is a topology on X that is strictly coarser than T , then U is

compact but not Hausdorff.
(b) If U is a topology on X that is strictly finer than T , then U is Haus-

dorff but not compact.

(6) A collection F of subsets of a set X has the finite intersection prop-
erty if

⋂F0 6= ∅ for every finite F0 ⊆ F . Show that a topological space
is compact if and only if every collection of closed subsets with the finite
intersection property has nonempty intersection.

(7) Show that the conclusion of Theorem 13.6 fails for compact T1 spaces.
[Hint: try an infinite set with the cofinite topology.]

(8) Using the argument of Example 13.3 (iii), fill in the details of the state-
ments made in Example 13.3 (iv).

(9) Show that euclidean space is second countable. [Hint: Pick ball nbds of the
form B(x, 1

n
), where each coordinate of x is rational and n is a positive

natural number.]
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(10) Suppose X is an uncountable discrete topological space. Show X is first
countable, but not second countable.

(11) Prove Cantor’s intersection theorem: If C1 ⊇ C2 ⊇ . . . is a nested sequence
of nonempty closed bounded subsets of R, then

⋂

n≥1 Cn 6= ∅.

(12) Prove that second countability is a hereditary property.

(13) Using an argument centering around compactness, show that S1 and [0, 2π)
are nonhomeomorphic.
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14. Product Spaces

In Section 3 we gave the official definition of cartesian product of two sets, in or-
der to put the definition of metric on a firm footing. It is nearly impossible to
overemphasize the importance of this simple construction in mathematics; in this
section we use the cartesian product to create new topological spaces from old ones.

Definition 14.1 (The Product Topology). Let X = 〈X, T 〉 and Y = 〈Y,U〉 be two
topological spaces. We define the product topology on the cartesian product X×Y
of the underlying point sets by taking sets of the form U × V , U ∈ T , V ∈ U , as
a subbase. When we write X × Y , where X and Y are topological spaces, it is the
product topology that we are intentionally placing on the cartesian product, unless
we explicitly state otherwise.

Remark 14.2. The definition above extends, by an easy induction, to arbitrary
finite products X1 × · · · ×Xn; however it does not tell us how to define the product
topology on infinite products. The topic of infinite products is quite extensive and
deep, and is covered in more advanced courses.

The first result is quite simple, but extremely helpful

Theorem 14.3. Let X and Y be spaces, with B and C bases for the topologies of
X and Y , respectively. Then the collection {B × C : 〈B,C〉 ∈ B × C} is a base for
the product topology.

Proof. We first note that if U1×V1 and U2×V2 are typical subbasic open sets in the
product topology, then their intersection is (U1 ∩ U2)× (V1 ∩ V2). Since topologies
are closed under finite intersections, we infer that our collection of subbasic open
sets is, in fact, a base for the product topology. So suppose W is an open set in the
product topology, with 〈x, y〉 ∈ W . Then we can find X-open set U and Y -open
set V with 〈x, y〉 ∈ U × V ⊆ W . Because B (resp., C) is a base for the topology
on X (resp., Y ), there is some B ∈ B and some C ∈ C such that x ∈ B ⊆ U and
y ∈ C ⊆ V . Thus 〈x, y〉 ∈ B × C ⊆ U × V ⊆ W .

�

Given spaces X and Y , there are canonical maps p : X × Y → X and q :
X × Y → Y , defined by p(x, y) := x and q(x, y) := y. These are what are called
the projection maps (first encountered in Example 8.9 (iii), in connection with
the euclidean plane), and are continuous and open (see Exercise 14.10 (1) below).
Thus each factor (i.e., X and Y ) is a continuous image of the product. Moreover,
each factor embeds in the product. Indeed, given arbitrary y0 ∈ Y , the subset
X × {y0} of X × Y is a homeomorphic copy of X (embedded as a closed subset
when Y is a T1 space, see Exercise 14.10 (2) below). Likewise, for each x0 ∈ X,
{x0} × Y is a homeomorphic copy of Y (closed in X × Y when X is a T1 space).
These observations, plus what we know about the various topological properties we
have studied so far, allow us to make the following assertion.
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Theorem 14.4 (Big Product Preservation Result). Let P be any of the properties:
Tn (n = 0, 1, 2), connectedness, path connectedness, compactness. Then, for any
spaces X and Y : X×Y has property P if and only if both X and Y have property P.

Proof. Since both X and Y embed in X × Y , they share any hereditary property
enjoyed by the product. This includes the separation proporties Tn, for n = 0, 1, 2.
If X × Y is connected (path connected, compact, countably compact, limit point
compact), then so are X and Y because they are continuous images of the product
(see Theorems 11.5, 12.3 (ii), and 13.4).

Now assume both X and Y have property P; we show X × Y does as well.
Ad T0: Suppose 〈x, y〉 and 〈u, v〉 are two distinct points in X × Y . Then either

x 6= u or y 6= v; say the former is true. If there is an X-open nbd U of x that misses
u, then U × Y is an X × Y -open nbd of 〈x, y〉 that misses 〈u, v〉. The other cases
are treated similarly, and we infer that X × Y is a T0 space. (Note that we need
for Y to be T0 if it so happens that x = u and y 6= v.)

Ad Tn, n = 1, 2: See Exercise 14.10 (3) below.

Ad connectedness : Assume both X and Y are connected. We show the product
to be connected by showing every pair of points to be contained in a connected
subset, and then citing Theorem 11.7.

Pick two points 〈x, y〉 and 〈u, v〉 in X ×Y . Let A := {x}×Y and B := X ×{v}.
Then A, being homeomorphic to Y , is connected; B is connected for the obvious
corresponding reason. A contains 〈x, y〉 and B contains 〈u, v〉, so A ∪ B contains
them both. Since A ∩ B = {〈x, v〉} 6= ∅, we know A ∪ B is connected (Theorem
11.9). This proves our assertion.

Ad path connectedness : See Exercise 14.10 (4) below.

Ad compactness: Suppose both X and Y are compact, and let U be an open
cover of X × Y . By Theorem 13.12, we may take U to consist of sets of the form
U × V , where U and V are open in X and Y , respectively. For each x ∈ X, let
Ux := {U × V ∈ U : x ∈ U}. Then each Ux is an open cover of {x} × Y , which is
compact because it is homeomorphic to Y (by Exercise 14.10 (2) below). So, for
each x ∈ X let U0

x be a finite subfamily of Ux that covers {x} × Y . Now, for each
x ∈ X, let Ux be the finite intersection of all sets U such that U × V ∈ U0

x , for
some V . Then U0

x is an open cover of Ux×Y . Now we use the compactness of X to
find finitely many points x1, . . . , xn such that the sets Ux1

, . . . , Uxn
cover X. Then

Ux1
∪ · · · ∪ Uxn

is a finite subcover of U .
�

Remark 14.5. One of the reasons that the every-open-cover-has-a-finite-subcover
version of compactness won prominence is that it is preserved by finite (and even
infinite) products. The same cannot be said for countable compactness or limit point
compactness, however. In a 1953 paper, Jiři Novák [“On the Cartesian product of
two compact spaces,” Fundamenta Mathematicae, vol. 40, 106–112] gives a sophis-
ticated construction of two countably compact Hausdorff spaces X and Y such
that X × Y fails to be countably compact. Since countable compactness and limit
point compactness are equivalent in the Hausdorff context (see Theorem 13.9), this
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example serves to show that limit point compactness also fails to be preserved by
finite products. In Exercise 14.10 (5) below, you are asked to show that sequential
compactness is indeed so preserved.

In many areas of mathematics, the cartesian product of sets serves as the natural
carrier of extra structure. We have talked about topological structure in this sec-
tion, and have alluded in previous sections to ways in which one may induce metric
and order structures on a product. In algebra, group theory, for example, one eas-
ily constructs a group operation on the cartesian product, given such operations
on the factors. Even in measure theory, one has a natural definition of product
measure, enabling a more abstract version of the theorem of Fubini that students
see in multivariable calculus (i.e., double integrals as iterated single integrals). We
conclude this section with a brief investigation of how metric and order structure,
two ways to get topologies, are consistent with topological structure when we take
products. Here is a more precise statement of the problem.

Definition 14.6 (Product Metrics). Suppose 〈X, d〉 and 〈Y, e〉 are two metric
spaces. Then we may define a distance function d × e on X × Y by setting (d ×
e)(〈x, y〉, 〈u, v〉) :=

√

d(x, u)2 + e(y, v)2.

Theorem 14.7. Suppose 〈X, d〉 and 〈Y, e〉 are two metric spaces. Then the product
metric d × e on X × Y gives rise to the product topology resulting from the metric
topologies Td and Te.

Proof. This is quite straightforward, and is left as an exercise. (See Exercise 14.10
(7) below.)

�

Definition 14.8 (Product Orderings). Suppose 〈X,R〉 and 〈Y, S〉 are two linear
orderings. Then we may define a binary relation R × S on X × Y by setting
〈x, y〉R × S〈u, v〉 just in case either xRu, or x = u and ySv. This is called the
lexicographic ordering on the the product.

Theorem 14.9. Suppose 〈X,R〉 and 〈Y, S〉 are two linear orderings. Then the
product ordering R × S gives rise to a topology that is generally strictly finer than
the product topology resulting from the order topologies TR and TS.

Proof. �

For simplicity, let’s assume there are no end points. (The reader may easily pro-
vide the extra cases to cover their existence.) Then a base for the product topology
consists of open rectangles (a, b) × (c, d), where (a, b) is an open R-interval and
(c, d) is an open S-interval. Let 〈x, y〉 ∈ (a, b)× (c, d). Then {x}× (c, d) is an open
interval in the lexicographic ordering R × S, which contains the point 〈x, y〉, and
which is itself contained in the rectangle (a, b)×(c, d). This shows the lexicographic
ordering gives rise to a topology finer than the product topology. It is strictly finer
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as long as there is a nonisolated point in X (see Exercise 14.10 (8) below).

Exercises 14.10. (1) Show that the canonical projection maps from X ×Y to
X and to Y are continuous and open. (Not necessarily closed, though; see
Example 8.9 (iii).)

(2) Consider the product space X × Y . For each x0 ∈ X, show that {x0} × Y
is a homeomorphic copy of Y embedded—as a closed subset, in case X is a
T1 space—in X × Y .

(3) Prove that X × Y is a Tn space if both X and Y are Tn spaces, n = 1, 2.

(4) Show that the product of two path connected spaces is path connected.

(5) Refer to Exercise 13.16 (1) for the definition of sequentially compact, and
show that the product of two sequentially compact spaces (or any finite num-
ber, for that matter) is sequentially compact.

(6) Let L be the real line with the Sorgenfrey (lower limit) topology (see Ex-
ercise 7.18 (4)). Show that the subspace ∆ := {〈x, x〉 : x ∈ L} of L2 is
homeomorphic to L. What about the subspace ∆′ := {〈x,−x〉 : x ∈ L}?

(7) Prove Theorem 14.7. (See Exercise 7.18 (13).)

(8) Complete the proof of Theorem 14.9.

(9) *Let X and Y be topological spaces, with Y compact. Show that the canon-
ical projection onto X is a closed map.
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15. Quotient Spaces

Besides the topological product construction, the other principal way of making new
spaces from old is to form quotients. Readers who have seen some abstract algebra
will recall how one produces quotient groups by “modding out” a normal subgroup:
two elements are deemed equivalent if the product of one with the inverse of the
other is in the normal subgroup; this partitions the original group into equivalence
classes (called cosets), which become the elements of the quotient group. There is
a similar story in the theory of rings (instead of normal subgroups we have ideals),
as well as other algebraic systems. In each case there is a special way to make two
points “equivalent,” and then to take equivalence classes to be new points. The
trick is to define the algebraic operations on these sets of equivalence classes.

The same thing happens in the topological context, only here we can pick any
equivalence relation we like on the original space. The tricky part (only not very
tricky) is to define a suitable topology on the set of equivalence classes. The follow-
ing preliminary definition should be familiar to anyone who has seen some abstract
algebra; it pervades much of mathematics.

Definition 15.1 (Equivalence Relations). Let X be a set. A binary relation R ⊆
X×X is called an equivalence relation if it satisfies the following three conditions.

(E1) (Reflexivity) xRx always holds.
(E2) (Symmetry) yRx holds whenever xRy holds.
(E3) (Transitivity) If x, y, z ∈ X, xRy, and yRz, then xRz.

Given x ∈ X, the equivalence class of x, denoted [x]R (or, more simply, [x]
if there’s no likely confusion) is the set {y ∈ X : xRy}. Because of the condi-
tions E1 − −E3, any two distinct equivalence classes must be disjoint. Hence the
R-equivalence classes [x], for x ∈ X, form a partition of the set X; i.e., a cover
of X by pairwise disjoint subsets. x is called a representative of the equivalence
class; two elements x and y are both representatives of the same equivalence class
just in case xRy. The set of R-equivalence classes is denoted X/R, the R-quotient
set.

Examples 15.2. (i) Consider the underlying set to be the set Z of integers,
and define mRn just in case m−n is a multiple of 3. (In number-theoretic
terms m is congruent to n modulo 3.) There are three equivalence classes,
depending on whether the remainder is 0,1, or 2 after an integer is di-
vided by 3. That is, the equivalence classes are {. . . ,−6,−3, 0, 3, 6, . . . },
{. . . ,−5,−2, 1, 4, 7, . . . }, and {. . . ,−4,−1, 2, 5, . . . }. So when each equiva-
lence class is collapsed to a point, the quotient set Z/R = {[0], [1], [2]} has
three elements in it. It is the “mod 3 integers,” better known as Z/3Z, or
simply Z3.

(ii) (For those with the group-theoretic background.) Given a group G and a
normal subgroup N , we declare xRNy just in case xy−1 ∈ N . The equiva-
lence class represented by x ∈ G is the coset xN of multiples xn, for n ∈ N .
The quotient set G/RN , also known as G/N , can be made into a group by
defining the product (xN)(yN) to be the coset (xy)N . The fact that this all
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works is covered in any first course in abstract algebra.

(iii) Consider X to be the closed unit interval [0, 1], and define xRy just in
case either x = y or |x − y| = 1. Thus the equivalence classes are just
the singleton sets {x}, for 0 < x < 1, as well as the doubleton set {0, 1}.
(So the end points have been identified to a single point, forming a “circle.”)

(iv) Consider X to be the closed unit square [0, 1]2, and define 〈x, y〉R〈u, v〉 just
in case either 〈x, y〉 = 〈u, v〉 or x = u and !y−v! = 1. Thus the equivalence
classes are the singleton sets {〈x, y〉}, for 0 ≤ x ≤ 1 and 0 < y < 1, as well
as the doubleton sets {〈x, 0〉, 〈x, 1〉}, for 0 ≤ x ≤ 1. (So the top and bottom
edges have been “glued together” to form a “tube.”)

(v) Let f : X → Y be a function between sets, and define the kernel ker(f) of
f to be the set {〈x, y〉 ∈ X2 : f(x) = f(y)}. Then ker(f) is easily seen to
be an equivalence reltion on X.

Definition 15.3 (The Quotient Topology). Let X = 〈X, T 〉 be a topological space,
with R an equivalence relation on X. We define the quotient topology on the set
X/R of R-equivalence classes by declaring the set V ⊆ X/R open just in case the
union of all the equivalence classes in the family V is open in X. We denote the
quotient topology T /R; so, in symbols, we have T /R := {V ⊆ X/R :

⋃V ∈ T }.

Given any set X and equivalence relation R on X, there is the natural quotient
map qR : X → X/R, given by the assignment qR(x) := [x]R. Using this function,
the definition of the quotient topology may be rephrased by declaring V to be T /R-
open just in case q−1

R [V] is T -open.

Proposition 15.4. Let X be a topological space, R an equivalence relation on X.
Then the quotient topology on X/R is the smallest topology on the quotient set such
that the quotient map qR is continuous.

Proof. See Exercise 15.11 (1) below.
�

Definition 15.5. An identification map is a surjection f : X → Y such that,
for any subset V of Y , V is open in Y if and only if f−1[V ] is open in X.

So clearly, if qR : X → X/R is the natural quotient map, then qR is an identifica-
tion map. The following two results constitute the topological analogue of what is
generally known as the “fundamental homomorphism theorem” in abstract algebra.

Theorem 15.6 (Transgression). Let f : X → Y be a continuous map, and suppose
R is any equivalence relation on X such that R ⊆ ker(f). Then there is a unique
continuous g : X/R → Y such that g ◦ qR = f .
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Proof. Since g ◦ qR needs to agree with f , there is no choice but to define g([x]) to
be f(x). That g is well defined follows from the assumption that if xRy in X, then
f(x) = f(y). Where well definedness can go wrong is when we define a function on
an equivalence class, but that function depends on the choice of representative for
that equivalence class. But in this case, if [x] = [y], then xRy. Since f(x) = f(y)
then, it doesn’t matter which representative we choose.

To show g is continuous, suppose V is open in Y . Then g−1[V ] is open in X/R
just in case q−1

R [g−1[V ]] is open in X. But, because g ◦ qR = f , this set is just
f−1[V ], open in X because f is continuous.

�

Corollary 15.7. Let f : X → Y be an identification map, and suppose R = ker(f).
Then the map g defined in Theorem 15.6 is a homeomorphism between X/R and Y .

Proof. First, if y ∈ Y , then y = f(x) for some x ∈ X; hence y = g([x]). Thus
g is a continuous surjection. Now suppose g([x]) = g([y]). Then f(x) = f(y);
and, since R is the kernel of f , we know xRy. Thus [x] = [y]; this tells us g is a
continuous bijection. (This is the best we can hope for if f is assumed to be merely
a continuous surjection, not necessarily an identification map. See Exercise 15.11
(2) below.)

Finally, suppose V ⊆ Y is not open in Y . Then, because f is an identification
map, f−1[V ] is not open in X. But f−1[V ] = q−1

R [g−1[V ]]. And, since qR is also
an identification map, g−1[V ] can’t be open in X/R. This is the contrapositive to
the statement that g is an open continuous bijection; hence a homeomorphism.

�

Next we relate identification maps to other kinds of map.

Theorem 15.8. Let f : X → Y be a continuous surjection. If f is either an open
map or a closed map, then f is an identification map.

Proof. Suppose first that f is an open map. If V is an open subset of Y , then f−1[V ]
is open in X because f is continuous. If f−1[V ] is open in X, then V = f [f−1[V ]]
is open in Y because f is an open map.

Now suppose f is a closed map. Then the sentence immediately preceding may
be phrased: If f−1[V ] is open in X, then X \ f−1[V ] = f−1[Y \ V ] is closed in X.
Thus Y \ V = f [f−1[Y \ V ]] is closed in Y because f is a closed map. Therefore V
is open in Y .

�

Corollary 15.9. Let f : X → Y be a continuous surjection, where X is compact
and Y is Hausdorff. Then f is an identification map.

Proof. This is immediate from Theorems 13.8 and 15.8.
�

We end this brief introduction to identification maps and quotients with the fol-
lowing simple application of the quotient method.
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Example 15.10 (Example 15.2 (iii) Revisited). Consider X to be the closed unit
interval [0, 1], and define xRy just in case either x = y or |x − y| = 1. Thus the
equivalence classes are just the singleton sets {x}, for 0 < x < 1, as well as the
doubleton set {0, 1}. We give X/R the quotient topology, and show that it is homeo-
morphic to the standard unit circle S1 := {〈x, y〉 ∈ R2 : x2 +y2 = 1}. (See Example
8.3 (v).) The function f : [0, 1] → S1, defined by f(t) := 〈cos(2πt), sin(2πt)〉 is
a continuous surjection whose kernel is equal to R. f is an identification map by
Corollary 15.3; hence the derived map g : X/R → S1 is a homeomorphism by
Corollary 15.7.

Exercises 15.11. (1) Prove Proposition 15.4.

(2) Show how Corollary 15.7 can go wrong if we assume that f is just a con-
tinuous surjection. [Hint: think discrete topology for X.]

(3) Let X be a space, with A a subset of X. We define the equivalence relation
RA by stipulating that [x] = A for x ∈ A, and [x] = {x} otherwise. We
denote X/RA simply as X/A. Show that if X is a T1 space, then X/A is
a T1 space if and only if A is closed in X. (What would be the analogous
statement if you wanted to replace T1 with T2?)

(4) (See notation in Exercise 15.11 (3) above.) Show that R/[0, 1] is homeo-
morphic to R.

(5) (See notation in Exercise 15.11 (3) above.) Given a topological space X,
define the cone CX over X to be the quotient space (X × [0, 1])/(X ×{1}.
(So the top edge of the “rectangle” X × [0, 1] is identified to a point.) What
familiar spaces are formed by taking the cone over: (i) the two-point dis-
crete space; (ii) the closed unit interval; and (iii) the unit circle?

(6) Start with the closed unit square [0, 1]2, and define the equivalence relation
R by taking equivalence classes to be the singletons {〈x, y〉} for 0 ≤ x ≤ 1,
0 < y < 1, as well as the doubletons {〈x, 0〉, 〈1−x, 1〉}, 0 ≤ x ≤ 1. How does
[0, 1]2/R differ topologically from the “tube” in Example 15.2 (iv)? (You
might enjoy making paper models of the two spaces and experimenting.)

(7) The cone over a three-point discrete space is called a triod. How does the
triod differ topologically from the cone over a two-point discrete space?



TOPOLOGY 87

16. The Basic Upper-Level Separation Axioms

In Section 9, we introduced the three “lower” separation axioms Tn, n = 0, 1, 2,
based on separating points from one another using open sets. In this section we
continue in the vein of separation by open sets, adding the two “upper” axioms
T3 and T4. The area of set-theoretic topology connected with these axioms has a
rich history, with many deep results. Due to the introductory nature of this course,
however, we can offor only a small taste of the subject.

In the first new axiom, we separate points and closed sets.

Definition 16.1 (The T3, or Vietoris, Axiom). A topological space X is called a
T3 space (or a regular space, or sometimes a Vietoris space, after Leopold
Vietoris (1891–2002)) if X is a T1 space with the property that for each closed set
A ⊆ X and each point x ∈ X \A, there are disjoint open sets U and V with A ⊆ U
and x ∈ V .

Clearly regular spaces are Hausdorff; the next example shows that regularity is
a more restrictive property.

Example 16.2 (A T2 Space that is not T3). Let the real line R be given the topol-
ogy T , with subbase consisting of: (i) usual open intervals of the form (a, b), for
a < b, ; and (ii) the set Q of rational numbers. (So a typical basic open set may
be either a usual bounded open interval or a bounded open interval intersected with
Q.) Then T is finer than the usual topology; hence, by Exercise 9.11 (4), it is a
Hausdorff topology. We show it is not regular. Indeed, pick any rational number,
say 0. The set of rationals is a T -open set, so the set A := R \ Q is T -closed and
does not contain the point 0. Assume U and V are disjoint T -open sets, where
0 ∈ U and A ⊆ V . Then we may take U to be of the form (−r, r)∩Q, for some real
r > 0. Suppose x is an irrational number in (−r, r). Then V contains all rational
numbers sufficiently close to x; hence V must intersect U . This is a contradiction,
so we may infer that T is a Hausdorff topology that is not regular.

We now show that Theorem 9.8 applies for the T3 axiom.

Theorem 16.3. Regularity is a hereditary property.

Proof. Suppose X is a regular space, with Y a subspace of X. Then a typical
Y -closed set is of the form A ∩ Y , where A is X-closed. Let y ∈ Y \ A. Since X is
regular, there are disjoint X-open sets U containing y and V containing A. Then
U ∩ Y and V ∩ Y are disjoint Y -open sets containing y and A ∩ Y , respectively.
This shows Y is regular in its subspace topology.

�

The following is an easy, but very useful, paraphrase of regularity.

Proposition 16.4. Let X be a T1 space. Then X is regular if and only if, when-
ever x ∈ X and U is an open neighborhood of x, then there exists an open set V
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with x ∈ V ⊆ CL(V ) ⊆ U .

Proof. Suppose X is regular, and pick x ∈ U , where U is open in X. Then A :=
X \U is X-closed and doesn’t contain x. So pick open V containing x and open W
containing A such that V ∩ W = ∅. Then X \ W is an X-closed set that contains
V ; hence Cl(V ) ∩ W = ∅. This tells us that Cl(V ) ⊆ X \ A = U .

The converse is Exercise 16.16 (1) below.
�

The next result extends Theorem 14.4.

Theorem 16.5. Let X and Y be topological spaces. Then X × Y is regular if and
only if both X and Y are regular.

Proof. Recalling that each factor embeds as a subspace of the product (Exercise
14.10 (2)), and that regularity is a hereditary property (Theorem 16.3), we conclude
that each factor is regular whenever the product is.

For the converse, suppose both X and Y are regular, and use the paraphrasing
in Proposition 16.4. Pick W open in X × Y , with p := 〈x, y〉 ∈ W . Then we can
find an X-open neighborhood U of x and a Y -open neighborhood V of y such that
U×V ⊆ W . Using the regularity of the factor spaces (along with Proposition 16.4),
we obtain an X-open set U ′ and a Y -open set V ′ such that x ∈ U ′ ⊆ Cl(U ′) ⊆ U
and y ∈ V ′ ⊆ Cl(V ′) ⊆ V . Then p ∈ U ′ × V ′ ⊆ Cl(U ′ × V ′) ⊆ Cl(U ′) × Cl(V ′) ⊆
U × V ⊆ W . This shows the product is regular.

�

So far we have no examples of regular spaces; the following theorem is meant to
redress that.

Theorem 16.6. Let X be a topological space. If X is either compact Hausdorff,
metrizable, or suborderable, then X is regular.

Proof. Assume first that X is compact Hausdorff, and let A be a closed subset
of X. Fix x ∈ X \ A. By the Hausdorff assumption, for each y ∈ A there are
disjoint open neighborhoods Uy of y and Vy of x. Let U := {Uy : y ∈ A}. Then
U is an open cover of A. Since A is closed in X, Theorem 13.5 tells us that A is
compact. Thus there is a finite subfamily {Uy1

, . . . , Uyn
} of U that covers A. Let

U := Uy1
∪· · ·∪Uyn

and V := Vy1
∩· · ·∩Vyn

. Then U is an open neighborhood of A,
V is an open neighborhood of x (being a finite intersection of open neighborhoods
of x), and U ∩ V = ∅. Thus X is regular.

Now assume that X is metrizable, and let d be a metric that gives rise to the
topology on X. In anticipation of using Proposition 16.4, suppose U is an open
neighborhood of x in X. Then there is an open d-ball neighborhood Bd(x, ǫ) ⊆ U .
Let V := Bd(x, ǫ

2 ). Then (see Theorem 4.5 (v)) x ∈ V ⊆ Cl(V ) ⊆ Bd[x, ǫ
2 ] ⊆

Bd(x, ǫ) ⊆ U .
Finally suppose X is suborderable. By Theorem 16.3, we may as well assume

that X is actually orderable; say, X = 〈X,<〉, where we take the standard open
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base for the topology on X to consist of bounded open intervals, open rays, and
the set X itself. Let U be an open neighborhood of x in X, and suppose x is not an
end point. (The case where x is an end point is part of Exercise 16.16 (3) below.)
Then we have x ∈ (a, b) ⊆ U , for some a < x < b. Suppose it is the case that there
is some a < c < x, but nothing strictly between x and b. Then (a, b) = (a, x]. Set
V := (c, b). Then x ∈ V = (c, x] ⊆ Cl(V ) = [c, x] ⊆ U . The other cases are handled
similarly.

�

The next (and strongest) separation axiom is a natural progression from regular-
ity. But, aside from the surface similarity in formulation, it is amazingly different
in its behavior.

Definition 16.7 (The T4, or Tietze, Axiom). A topological space X is called a T4

space (or a normal space, or sometimes a Tietze space, after Heinrich F. Ti-
etze (1880–1964)) if X is a T1 space with the property that for each pair of disjoint
closed sets A,B ⊆ X, there are disjoint open sets U and V with A ⊆ U and B ⊆ V .

Remark 16.8. Some authors make a distinction between regularity and the T3

axiom, reserving the T1 assumption only for the latter. (Likewise, they distinguish
normality from the T4 axiom.) Because of the elementary nature of this course, we
conflate the two notions.

Clearly normal spaces are regular, and in Example 16.11 below we show that
regular spaces needn’t be normal. This, however, turns out not to be an elemen-
tary result. The main tools in the theory of normal spaces are known as Urysohn’s
lemma (after Pavel S. Urysohn (1898–1924)) and Tietze’s extension theorem; we
state these important results without proof.

Theorem 16.9 (Main Characterizations of Normality). (i) (Urysohn’s Lemma)
Let X be a T1 space. Then X is normal if and only if, whenever A and B
are disjoint closed subsets of X, then there exists a continuous f : X → [0, 1]
such that f [A] = {0} and f [B] = {1}.

(ii) (Tietze’s Extension Theorem) Let X be a T1 space. Then X is normal if
and only if, whenever A is a closed subset of X and f : A → R is continu-
ous, there exists a continuous F : X → R such that F (x) = f(x) whenever
x ∈ A (i.e., F |A = f ; F extends f). Moreover, if f [X] ⊆ [a, b] ⊆ R, then
we may find F so that F [X] ⊆ [a, b] as well.

Remarks 16.10. (i) Referring to Exercise 9.11 (5), the condition given in
Urysohn’s lemma could well be labeled “functionally normal.” But while
functionally Hausdorff and Hausdorff are distinct properties, functionally
normal and normal are not.

(ii) If, in Urysohn’s lemma, you assume one of the closed subsets A or B to
be a single point, then you get a separation property called complete reg-
ularity (not functional regularity, as you might expect). It turns out that
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complete regularity is a highly-studied property, also known as the Tychonoff
property, after Andrei N. Tychonoff (1906–1993). Among the main results
conserning this property are: (i) products and subspaces of completely reg-
ular spaces are completely regular; and (ii) a space is completely regular if
and only if it can be embedded as a subspace of a compact Hausdorff space.

Example 16.11 (A T3 Space that is not T4). See Exercise 14.10 (6). Given the
Sorgenfrey line L; i.e., the real line equipped with topology basically generated by
half-open intervals [a, b), the topological product L2 is commonly referred to as the
Sorgenfrey plane. This is a very popular counterexample to many reasonable topo-
logical conjectures; in particular, it is a regular space that is not normal.

Ad (regular): We first show that L is regular, and then apply Theorem 16.5 to
infer that L2 is regular too. So pick a point x and an open L-neighborhood U of x.
Then there is a basic L-open neighborhood [a, b), containing x and contained within
U . In the usual order on the real line, then, we have a ≤ x < b; so we may pick a real
number c with x < c < b. Then we have x ∈ [a, c) ⊆ Cl([a, c)) = [a, c] ⊆ [a, b) ⊆ U ;
hence L is regular, by Proposition 16.4. This completes the proof that the Sorgen-
frey plane is a T3 space.

Ad (not normal): In Exercise 14.10 (6), you are asked to determine whether
∆′ := {〈x,−x〉 : x ∈ L} is homeomorphic to L. It actually is not; in fact it is a
discrete subspace of the Sorgenfrey plane. (To see this, consider the relatively open
set {〈x,−x〉} = {〈x,−x〉} ∩ [x, x + 1) × [−x,−x + 1).) Not only is it discrete, it is
also closed. (Given 〈a, b〉 /∈ ∆′, it is easy to find an open set [a, a+ǫ)× [b, b+ǫ) that
misses ∆′.) Now let A be any subset of ∆′. Since A is closed in ∆′ and ∆′ is closed
in L2, A is closed in L2. By the same token, ∆′ \ A is also closed in L2. So let
fA : ∆′ → [0, 1] take A to {0} and ∆′ \A to {1}. Then each such fA is continuous;
moreover, if A and B are distinct subsets of ∆′, then fA 6= fB. So assume L to
be normal. Then, by The Tietze extension theorem (Theorem 16.9 (ii)), each fA

extends to a continuous map FA : L2 → [0, 1]. Moreover, if A and B are distinct
subsets of ∆′, then FA 6= FB. This says that there are at least as many continuous
[0, 1]-valued functions on the Sorgenfrey plane as there are functions from the real
line to the real line. For those with the set-theoretical background, this cardinal
is strictly bigger than the cardinality of the real line. On the other hand, the set
Q2, consisting of points with rational coordinates, is dense in the Sorgenfrey plane.
But Q is countable, and the number of [0, 1]-valued functions on Q is exactly the
cardinality of the real line. Since any continuous function from a space to [0, 1] is
determined by its values on a dense subset of that space (see Exercise 9.11 (14)),
there can be no more continuous [0, 1]-valued functions defined on L2 than there
are real numbers. This contradiction shows that the Sorgenfrey plane cannot be a
normal space.

There is a weak analogue of Theorem 16.3 for normality; the full analogue is false.

Theorem 16.12. Normality is a closed-hereditary property.
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Proof. Suppose X is a normal space, with Y a closed subspace of X. Let A and
B be disjoint Y -closed sets. Since Y is X-closed, it follows (see Exercise 5.12 (10))
that both A and B are X-closed. By the normality assumption on X, there are
disjoint X-open sets U ⊆ A and V ⊇ B. Then U ∩Y and V ∩Y are disjoint Y -open
sets separating A and B.

�

To address the question of normality and the product construction, only half of
Theorem 16.5 remains when regularity is strengthened to normality.

Theorem 16.13. Let X and Y be topological spaces. If X × Y is normal, then
both X and Y are normal.

Proof. We again recall that each factor embeds as a subspace of the product, but
add that the embedded subspaces may be taken to be closed (Exercise 14.10 (2))
when the factor spaces are T1 spaces. By Theorem 16.12, then, we infer that the
factor spaces are normal whenever the product is.

�

Remarks 16.14. (i) Many quite innocent-looking problems concerning nor-
mality are surprisingly difficult. For example, one way to show that normal-
ity is not closed under the taking of products is to use the Sorgenfrey plane.
All you need add is a proof that the Sorgenfrey line is normal (see Example
17.7 below) and use Example 16.11. It was a long-unsolved problem, due
to Clifford H. Dowker (1912–1982), whether the product of a normal space
with the closed unit interval is necessarily normal. The negative answer
was provided by Mary Ellen Rudin (1924–) in the early 1970s.

(ii) One may easily build on the proof that compact Hausdorff spaces are regular
(Theorem 16.6) to show that they are, in fact, normal (see Exercise 16.16
(4) below). Then, since the Sorgenfrey line is normal, it is completely reg-
ular as well (see Remark 16.10 (ii)). Since complete regularity is preserved
under the taking of products, we infer that the Sorgenfrey plane is also com-
pletely regular. Now it is precisely the completely regular spaces that may be
embedded as subspaces of compact Hausdorff spaces. Thus there is a normal
space that contains a homeomorphic copy of the nonnormal space L2.

The analogue of Theorem 16.6 for normality is still true, and we end this section
with a proof for the metrizable case. (The suborderable case requires a much more
sophisticated argument, and will not be proved here.)

Theorem 16.15. Every metrizable space is normal.

Proof. Let d be a metric on X that gives rise to its metrizable topology, and suppose
A and B are disjoint closed subsets of X. For any a ∈ A, a is not in B and B is
closed. Therefore there is a real ǫa > 0 such that the open d-ball Bd(a, ǫa) misses
B. By the same token, for each b ∈ B, there is some real ǫb > 0 such that the open
d-ball Bd(b, ǫb) misses A.

We now define U :=
⋃{B(a, ǫa

2 ) : a ∈ A} and V :=
⋃{B(b, ǫb

2 ) : b ∈ B}.
Then clearly U is an open neighborhood of A that misses B and V is an open
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neighborhood of B that misses A; we need to show that U and V also miss each
other. Indeed, suppose there is some x ∈ U ∩ V . Then for some a ∈ A and
some b ∈ B, we have x ∈ Bd(a, ǫa

2 ) ∩ Bd(b,
ǫb

2 ). Suppose first that ǫa ≤ ǫb. Then
d(a, b) ≤ d(a, x)+d(x, b) < ǫa

2 + ǫb

2 ≤ ǫb

2 + ǫb

2 = ǫb. But this says that a ∈ Bd(b, ǫb),
contradicting the fact that Bd(b, ǫb) misses A. If it turns out that ǫa ≥ ǫb, then we
infer that b ∈ Bd(a, ǫa), with another contradiction.

�

Exercises 16.16. (1) Complete the proof of Proposition 16.4.

(2) Devise (and prove) an analogous version of Proposition 16.4 that charac-
terizes normality.

(3) Complete the proof of Theorem 16.6 (i.e., the orderable case where the point
x is an end point).

(4) Show that compact Hausdorff spaces are normal [Hint: build on the proof
of regularity in Theorem 16.6.]

(5) Show that if X is a connected compact Hausdorff space with more than one
point, then there is a continuous map from X onto [0, 1]. Conclude that X
must then have at least as many points as there are real numbers.

(6) A topological space X is hereditarily normal if each subspace of X is
normal. Show that metrizable spaces are hereditarily normal.

(7) (Refer to Exercise 11.17 (9).) Show that a zero-dimensional T0 space is
regular. (Try showing it’s completely regular to boot.)

(8) A space X is called locally compact if every point has a neighborhood
base consisting of open sets whose closures are compact. Show that a lo-
cally compact Hausdorff space is regular. (It’s actually completely regular.)

(9) If X is a finite set, how many topologies on X are normal?

(10) * (See Exercise 11.17 (8) above.) Show that, in a compact Hausdorff space,
the component of a point and the quasicomponent of that point are the
same set. [Hint: Use a contradiction argument, employing Exercise 16.16
(4) above, to show Q(x) is connected when the space is compact Hausdorff.]
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17. Some Countability Conditions

Recall (Remark 10.10 (i)) that we defined a topological space X to be first countable
if, for each x ∈ X there is a nested sequence B1 ⊇ B2 ⊇ . . . of open nbds of x
such that every nbd of x contains some Bn in the family. We saw that metrizable
spaces clearly are first countable; we will see in this section (Example 17.5) that the
Sorgenfrey line L is first countable and regular (indeed, normal) but nonmetrizable.

A property stronger than first countability is second countability, introduced in
Definition 13.10. We showed in Corollary 13.13 that, for second countable spaces,
ones having countable bases, the notions of compactness and of countable com-
pacness are equivalent. In this section we explore further how second countability
plays a significant role, especially in the theory of metrizable spaces.

Theorem 17.1. Let X be a second countable topological space. Then:

(i) X is separable; i.e., X has a countable dense subset.
(ii) X has the Lindelöf Property (after Ernst L. Lindelöf, 1870–1946); i.e.,

every open cover of X has a countable subcover.

Proof. Ad (i): Let B := {B1, B2, . . . } be a countable base of nonempty open sets
for X. For each n = 1, 2, . . . , pick xn ∈ Bn. Then D := {x1, x2, . . . } is a countable
subset of X, which we now show to be dense. Indeed, if U is a nonempty X-open
set and x ∈ U , then there exists some n such that x ∈ Bn ⊆ U . Hence xn ∈ U , so
U ∩ D 6= ∅.

Ad (ii): Let B be as above, and suppose U is an open cover of X. For each
x ∈ X, pick Ux ∈ U such that x ∈ Ux. Next, pick whole number nx such that
x ∈ Bnx

⊆ Ux. Then {Bnx
: x ∈ X} is a countable open cover of X, each of whose

members is contained in some member of U . So, for each x ∈ X, let Unx
∈ U be

picked so that Bnx
⊆ Unx

. Then {Unx
: x ∈ X} is a countable subfamily of U that

covers X.
�

Remarks 17.2. (i) Because euclidean n-space Rn (usual topology) is second
countable, it is separable. Also, because of the rational numbers, the Sorgen-
frey line L is also separable. (We’ll see later that L is not second countable,
however.)

(ii) Note how nicely the Lindelöf property fits in with countable compactness:
countably compact + Lindelöf = compact.

(iii) Note that second countability is a hereditary property. It turns out that while
neither separability nor the Lindelöf property is hereditary (hard), separa-
bility is open-hereditary and the Lindelöf property is closed-hereditary. (See
Exercises 17.9 below.) Because second countability is hereditary, and be-
cause it implies both separability and the Lindelöf property, we infer that
second countable spaces are both hereditarily separable and hereditarily Lin-
delöf.

(iv) Theorem 13.12 tells us that we may check compactness using members of
an open base for the topology. The same proof (practically verbatim) works
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for checking the Lindelöf property.

The following is a result that proves very useful if you want to study a space
with a particularly nice base for its open sets.

Theorem 17.3. Suppose X is second countable, and C is a (not necessarily count-
able) base for the open sets of X. Then there is a countable base for X consisting
of members of C.

Proof. Let B be a countable base for X. Then X is hereditarily Lindelöf, so each
member of B may be written as a countable union of members of the open base C.
For each B ∈ B, let CB be a countable subfamily of C such that B =

⋃ CB . Then
⋃{CB : B ∈ B} is an open base for X, consisting of members of C.

�

The following is the central result of this section, and underscores the importance
of metrizability in topology.

Theorem 17.4. For metrizable spaces, the notions of second countability, separa-
bility, and the Lindelöf property are all equivalent.

Proof. Suppose X is a metrizable space, say with compatible metric d. Our plan
is to show that second countability follows from either of the two other properties;
in view of Theorem 17.1, this will be enough.

Ad (separable) =⇒ (second countable): Let A be a countable dense subset of X,
and let B := {Bd(a, ρ) : a ∈ A, ρ ∈ Q+}. Then B is a countable family of X-open
sets; it remains to show B is an open base. Indeed, suppose U is an X-open set,
with x ∈ U . Pick ǫ > 0 such that Bd(x, ǫ) ⊆ U . Since A is dense in X, there is some
a ∈ A ∩ Bd(x, ǫ

2 ). Then d(a, x) < ǫ
2 , so ǫ

2 < ǫ − d(a, x). Let ρ ∈ Q+ be such that
ǫ
2 < ρ < ǫ − d(a, x). Then d(a, x) < ǫ

2 < ρ, so x ∈ Bd(a, ρ). On the other hand, if
y ∈ Bd(a, ρ), then d(x, y) ≤ d(a, x)+d(a, y) < d(a, x)+ρ < d(a, x)+(ǫ−d(a, x)) = ǫ.
Thus x ∈ Bd(a, ρ) ⊆ Bd(x, ǫ) ⊆ U .

Ad (Lindelöf) =⇒ (second countable): For each positive integer n, let Un be the
open cover {Bd(a, 1

n
) : x ∈ X}. Then there is a countable subcover; i.e., a countable

subset An of X such that Un := {Bd(a, 1
n
) : a ∈ An} covers X. Let B :=

⋃∞
n=1 Un.

Then B is a countable union of countable collections, and is hence countable. We
claim it is an open base. As before, suppose U is an X-open set, with x ∈ U . Pick
ǫ > 0 such that Bd(x, ǫ) ⊆ U . Let n be a positive whole number large enough so
that 1

n
< ǫ. Then U2n covers X, so there is some a ∈ A2n such that x ∈ Bd(a, 1

2n
).

Suppose y ∈ Bd(a, 1
2n

). Then d(x, y) ≤ d(a, x) + d(a, y) < 1
2n

+ 1
2n

= 1
n

< ǫ. Thus

x ∈ Bd(a, 1
2n

) ⊆ Bd(x, ǫ) ⊆ U .
�

In the hint to Exercise 10.12 (2), we mention that the Sorgenfrey line is a first
countable Hausdorff space that is nonmetrizable, deferring a proof to this section.
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We now are in a position to provide that proof.

Example 17.5 (A First Countable T3 Space that is not Metrizable). Indeed, we
show the Sorgenfrey line L is: (i) first countable, (ii) regular, (iii) separable, (iv)
Lindelöf, but (v) not second countable. By Theorem 17.4, it is therefore nonmetriz-
able.

Ad (i): L is first countable because, for any x ∈ L, the family {[x, x + 1
n
) : n =

1, 2, . . . } is a countable neighborhood base for the open neighborhoods of x.

Ad (ii): This was shown in Example 16.11. (L is even normal, but this was
stated without proof.)

Ad (iii): The countable set Q of rational numbers is not only dense in the usual
real topology, but dense in the finer Sorgenfrey topology as well.

Ad (iv): Let U be an open cover of L. By Remark 17.2 (iv), we may assume
all sets in U to be of the form [a, b), with a < b. Now let V := {(a, b) : [a, b) ∈ U ;
i.e., we form V by removing the left-hand end points from the sets in U . Then V
is a family of R-open sets. Let V :=

⋃V. If x ∈ A := L \ V , then x must be
the left-hand end point of some [x, bx) ∈ U , but cannot be in any [a, b) ∈ U , with
a < x. Suppose x and y are both in A, with x < y. Then it must be the case that
bx ≤ y. Hence [x, bx) and [y, by) are disjoint. Since x < bx for each x ∈ A, there is
a rational number qx, with x < qx < bx. Since qx < qy for x < y in A, and since
there are only countably many rational numbers, we may infer that A is a countable
set.

Now R is second countable, so it is hereditarily Lindelöf (Remark 17.2 (iii)).
Thus there is a countable subcollection {(an, bn) : n = 1, 2, . . . } of V that covers
V . If we add on the end points, we have a countable subcollection {[an, bn) : n =
1, 2, . . . } of U that covers V ; i.e., a countable subcollection of U that covers all but
a countable number of points. For each such point, throw in a member of U that
contains that point. By this process we add only a countable number of extra sets
from U ; hence U has a countable subcover.

Ad (v): Suppose, for the sake of a contradiction, that L is second countable.
Then, by Theorem 17.3, there is a countable base consisting of sets of the form
[a, b), with a < b. Let B := {[an, bn) : n = 1, 2, . . . } be such a base. Since the real
line is uncountabl, though, there must be some x ∈ L which is not equal to any
point an. Let U := [x, x + 1). Since U is an open neighborhood of x, there must be
some n ≥ 1 with x ∈ [an, bn) ⊆ U . But this is clearly impossible; hence L cannot
be second countable.

One of the results of Theorem 14.4 is that the product of two compact spaces is
compact. Considering how similar compactness and the Lindelöf property are on
the surface, it is tempting to conjecture that the corresponding assertion holds for
the latter property as well as the former. It doesn’t. In Example 17.5 above, we
showed that the Sorgenfrey line is Lindelöf; we will finish this section by showing
that the Sorgenfrey plane, the product of the Sorgenfrey line with itself, is not. We
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will use the fact (see Example 16.11) that L2 is not normal, but first we need a
result that connects normality with the Lindelöf property.

Theorem 17.6. Every Lindelöf regular space is normal.

Proof. Let A and B be disjoint closed subsets of X. By the regularity assumption,
we may choose, for each a ∈ A, an open neighborhood Ua of a such that Cl(Ua)∩B =
∅. Likewise, for each b ∈ B, we may choose an open neighborhood Vb of b such that
Cl(Vb) ∩ A = ∅.

By the Lindelöf assumption, since A and B are both closed (see Exercise 17.9
(3)), we may find a countable subcollection {U1, U2, . . . } of {Ua : a ∈ A} that covers
A. Likewise, we may find a countable subcollection {V1, V2, . . . } of {Vb : b ∈ B}
that covers B.

For each n = 1, 2, . . . , define the open sets U ′
n := Un \ (

⋃n
i=1 Cl(Vi)) and V ′

n :=
Vn \ (

⋃n
i=1 Cl(Ui)). If a ∈ A, say a ∈ Un, then a is not in the closure of any Vk, so

a ∈ U ′
n. Thus U :=

⋃∞
n=1 U ′

n is an open set containing A. Likewise V :=
⋃∞

n=1 V ′
n

is an open set containing B.
It remains to show U and V are disjoint. Indeed, suppose not. If x ∈ U ∩ V ,

then there exist m,n ≥ 1 such that x ∈ U ′
m ∩ V ′

n. Suppose m ≤ n. Then we have
x ∈ U ′

m ⊆ Um ⊆ Cl(Um). On the other hand, x ∈ V ′
n, so x /∈ ⋃n

i=1 Cl(Ui); in
particular, x /∈ Cl(Um). If m ≥ n, a similar contradiction occurs; hence U and V
must be disjoint. This shows X is normal.

�

Example 17.7 (A Lindelöf Space whose Square is not Lindelöf). Our example
is the Sorgenfrey line L. We showed it to be regular in Example 16.11 and to be
Lindelöf in Example 17.5. (So, by Theorem 17.6, it is actually normal.) We also
showed in Example 16.11 that the Sorgenfray plane L2 is regular, but not normal.
Therefore it cannot be Lindelöf, again by Theorem 17.6.

Remark 17.8. Because Q2 is a countable dense subset of L2, we see that the Sor-
genfrey plane is also an example of a separable space that is not Lindelöf.

Exercises 17.9. (1) Show that separability is an open-hereditary property.

(2) Show that the Lindelöf property is a closed-hereditary property.

(3) Adapt the argument in Example 17.5 to show that the Sorgenfrey line is
hereditarily Lindelöf.

(4) Let X be a topological space. A point x ∈ X is called a P-point if, when-
ever U1, U2, . . . are countably many open neighborhoods of x, there is an
open set U with x ∈ U ⊆ ⋂∞

n=1 Un. Show that, if every point of X is a
P-point, then the intersection of any countable family of open subsets of X
is open in X. (X is called a P-space when this happens.)
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(5) *Suppose X is a regular P-space (see Exercise 17.9 (5)). Show that X is
zero-dimensional (see Exercise 16.16 (7)).

(6) Show that any second countable P-space must be discrete.

(7) A topological space X is said to satisfy the countable chain condition
if there is no collection of uncountably many pairwise disjoint open subsets
of X. Show that every separable space satisfies the countable chain condi-
tion.

(8) Show that any set with the cofinite topology is a separable space.

(9) A topological space X is said to be a Baire space, after René-Louis Baire
(1874–1932), if the intersection of countably many dense open subsets of X
is dense in X (see Exercise 5.12 (5)). Show that the rational line Q is not
a Baire space. (Any euclidean space Rn is a Baire space, as is any compact
Hausdorff space. This arises from what is known as the Baire category the-
orem.)

(10) *Let f : X → Y be a continuous surjection, where X is compact Hausdorff,
and Y is Hausdorff. Show that if X is second countable, then Y is too.

(11) Let X be a second countable space, and suppose B is any (possibly uncount-
able) base for the topology on X. Then there is a countable base for X that
is contained in B.
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18. Further Reading

Topology is a huge subject, with many branches. We were able to just barely
scratch the surface in this course. The following four texts are some of the best
I have seen; there are many others. (Just query The Marquette Library webpage
under the LC call number QA 611.) All four are on reserve at Memorial Library.

Fred H. Croom: Principles of Topology, 1989.

George F. Simmons: Introduction to Topology and Modern Analysis, 1963.

James R. Munkres: Topology, 2000.

Lynn A. Steen and J. Arthur Seebach: Counterexamples in Topology, 1978.
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