Refer to the function \(f(x, y) = x^3 - 3x + y^3 - 3y \) in answering the following.

(1) Find all four critical points of \(f \), and classify each as local maximum, local minimum, or saddle point.

First solve \(\nabla f(x, y) = (3x^2 - 3)i + (3y^2 - 3)j = \vec{0} \). We get \(x = \pm 1 \) and \(y = \pm 1 \), giving the four critical points \((1, 1), (1, -1), (-1, 1), \) and \((-1, -1)\). To bring in the second derivative test, we have \(f_{xx} = 6x, f_{yy} = 6y, \) and \(f_{xy} = f_{yx} = 0 \), so \(D = D(x, y) \) will be positive just in case \(x \) and \(y \) have the same sign and negative just in case \(x \) and \(y \) have opposite signs. Thus we have saddle points at \((1, -1)\) and \((-1, 1)\) because \(f_{xx}(1, 1) = 6 > 0 \), and a local maximum at \((-1, -1)\) because \(f_{xx}(-1, -1) = -6 < 0 \).

(2) Set up—but do not solve—the three Lagrange equations that determine the constrained critical points for \(f \) on the curve \(x^2 + y^2 = 4 \).

The constraint curve is the level curve \(g(x, y) = 4 \), where \(g(x, y) = x^2 + y^2 \). Then \(\nabla g(x, y) = (2x)i + (2y)j \), so the vector equation \(\nabla f = \lambda \nabla g \), plus the constraint equation \(g(x, y) = 4 \), give the three equations,

\[
\begin{align*}
3x^2 - 3 &= 2x\lambda \\
3y^2 - 3 &= 2y\lambda \\
x^2 + y^2 &= 4 \\
\end{align*}
\]

[Now solving this system is a little tricky: First note, by symmetry, we could have \(x = y \). In that case we have \(2x^2 = 4 \), giving us the two critical points \((\sqrt{2}, \sqrt{2})\) and \((-\sqrt{2}, -\sqrt{2})\). \(\lambda = 3/(2\sqrt{2}) \) in the first case, \(-3/(2\sqrt{2}) \) in the second. So let’s now assume \(x \neq y \). If you add the first two equations, you get \(3(x^2 + y^2) - 6 = 2\lambda(x + y) \). But \(x^2 + y^2 = 4 \), so this becomes the equation \(3 = \lambda(x + y) \). (This will prove useful to know.) Using the quadratic formula, we can solve for \(x \) in terms of \(\lambda \) in the first equation and for \(y \) in terms of \(\lambda \) in the second. We get the same result, though: \(x \) (or \(y \)) is \(\frac{2\lambda \pm \sqrt{4\lambda^2 + 36}}{6} \). But since \(x \neq y \), one of them must have the plus sign and the other must have the minus sign. Regardless of which is the case, \(x + y \) must be \(\frac{4\lambda}{3} = \frac{2\lambda}{3} \). But we showed above that \(x + y = 3/\lambda \). Hence \(2\lambda^2 = 9 \) and \(\lambda = \pm 3/\sqrt{2} \). Now we can solve for \(x \) and \(y \) in each case, giving two new points \((\frac{3\sqrt{2} + \sqrt{54}}{6}, \frac{-3\sqrt{2} + \sqrt{54}}{6})\) and \((\frac{-3\sqrt{2} + \sqrt{54}}{6}, \frac{3\sqrt{2} + \sqrt{54}}{6})\). So we have four critical points. To see which give the global maximum/minimum for \(f \) on the constraint curve, simply plug them into the original equation \(z = f(x, y) \) and compare the \(z \)-values.]