(Each of the following five problems is worth 12 points. Be sure to justify all answers.)

(1) (a) You’ve determined that \(f(x) = \frac{2x}{1-x^2} \) is the generating function for a sequence \((a_1, a_2, \ldots) \). Find this sequence.

(b) Given the initial-value recurrence \(a_n = 2a_{n-1} + 3a_{n-2}, \ n \geq 3, \ a_1 = a_2 = 1 \), and using the method for finding the golden mean from the Fibonacci sequence, find \(\lim_{n \to \infty} \frac{a_n}{a_{n-1}} \).

(2) (a) Given the initial-value recurrence \(b_n = nb_{n-1} + b_{n-2}, \ n \geq 3, \ b_1 = 2, \ b_2 = 3 \), use simple induction to prove that \(b_n > n! \) for \(n \geq 1 \).

(b) Using the fact that the derangement sequence \(d_n \) is very close to \(\frac{n!}{e} \) for large \(n \), find the approximate probability that when a 52-card deck is well shuffled, there is at least one card that occupies its original position.
(3) (a) Let T be a spanning tree for the bipartite graph $K_{m,n}$. How many edges does T have?

(b) Give a simple reason why K_n is not bipartite for $n \geq 3$.

(c) Draw the dual graph for K_3.

(4) A graph G has four vertices arranged to form a square; the edges of G are the four sides of the square, plus one diagonal.

(a) Draw all the spanning trees for G.

(b) What is the smallest number of colors that you can paint the vertices of G with, so that no two adjacent vertices get the same color? (This is called the chromatic number of G.)
(5) (a) Let G be a subdivision of K_n with $2n$ vertices. How many edges does G have?

(b) Verify Euler’s formula for planar graphs, in the special case the graph is a tree.