(1) Find the exact area bounded by the x-axis, the lines $x = 1$ and $x = 8$, and the graph of the curve $y = x^2 + 1$.

(2) A ball is tossed straight upwards from the ledge of a window, with an initial velocity of 10 feet per second. If it hits the ground 4 seconds later, and the constant acceleration due to gravity is -32 feet/second2, calculate the height of the window ledge.

(3) Use integration by simple substitution to evaluate $\int_{-1}^{3} x\sqrt{x + 1} \, dx$.
(4) Use integration by parts to evaluate $\int x \cos x \, dx$.

(5) Decide whether the improper integral $\int_{\ln 2}^{\infty} e^{-2x} \, dx$ converges. If no, give reasons; if yes, what does the integral converge to?

(6) Approximate $\ln 5 = \int_{1}^{5} \frac{dx}{x}$ using MID(2).
(7) The mass density—in grams per centimeter—of a straight metallic rod, three centimeters in length, is given by \(\delta(x) = 1 + x^2 \), where \(x \) represents the distance in centimeters from the light end of the rod. Calculate how far the center of mass is from the light end of the rod.

(8) A probability density function is defined by \(p(x) = \begin{cases} \frac{3}{8} x^2 & \text{if } 0 \leq x \leq 2 \\ 0 & \text{otherwise.} \end{cases} \)

What is the median of \(p(x) \)?

(9) Use the term test to show that \(\sum_{n=0}^{\infty} \frac{n^2 + 1}{3n^2 + 2} \) diverges.
(10) Use the ratio test to find the radius and interval of convergence of the power series \(\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n} \).

(11) Solve the IVP \(\frac{dy}{dx} = \sqrt{y} \sin x, \ y(0) = 4 \).

(12) Use Euler’s method to find \(y(0.5) \) in two steps for the IVP \(\frac{dy}{dx} = y\sqrt{x}, \ y(0) = 4 \).
(13) Radioactive Unobtanium takes 100 years to lose 5% of its mass. What is the half life of this substance?

(14) Write a differential equation that expresses the following assumption: “The rate of increase of a particular quantity at a given time is inversely proportional to the square of the quantity at that time.”

(15) Identify the equilibrium solutions of the autonomous ODE \(\frac{dy}{dx} = y^4 - 1 \). Which equilibrium solutions are stable?