MATH 121, SAMPLE PROBLEMS FOR THE FINAL EXAM (solutions), 10 MAY, 2007

(Expect nine problems, each worth 10 points. The first four of them will be taken-almost verbatim-from the previous exams. The following are sample questions that cover new material.)
(1) Find an orthonormal basis for the orthogonal complement of $\operatorname{span}\{[1,-1,3]\}$ in \mathbb{R}^{3}.

First, find a basis for the orthogonal complement, namely the solution to the system $x-y+3 z=0$. This is a 2-parameter family, $\{[s-3 t, s, t]: s, t \in \mathbb{R}\}$; i.e., $\operatorname{span}\{[1,1,0],[-3,0,1]\}$. For convenience, let these two vectors be \vec{u} and \vec{v}, respectively.

Next, check whether $\vec{u} \cdot \vec{v}=0$. It isn't. Thus we need to do a Gram-Schmidt on the pair. Set $\vec{w}_{1}=\vec{u}$. Then, for \vec{w}_{2}, we take $\vec{v}-$ (the projection of \vec{v} on $\vec{u})$, which is $\vec{v}-\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=[-3,0,1]-(-3 / 2)[1,1,0]=[-3 / 2,3 / 2,1]$. To obtain an orthonormal basis, we need to divide each of \vec{w}_{1}, \vec{w}_{2} by their lengths. The result is: $\left\{\frac{1}{\sqrt{2}}[1,1,0], \frac{1}{\sqrt{22}}[-3,3,2]\right\}$.
(2) What are all possible values for x and y so that the matrix $\left[\begin{array}{ll}.6 & x \\ .8 & y\end{array}\right]$ is an orthogonal matrix?

First note that the left column is a indeed a unit vector. For the right column, you want $.6 x+.8 y=0$ and $x^{2}+y^{2}=1$. The solution set for the first equation is $\{[-4 t, 3 t]: t \in \mathbb{R}\}$. Plugging this into the second equation, we have $16 t^{2}+9 t^{2}=1$; solving for t we get $t= \pm .2$. So our possible right columns are $[-.8, .6]$ and $[.8,-.6]$.
(3) Find the projection matrix for the subspace $W=\operatorname{span}\{[1,1,1],[1,-2,1]\}$.

Let A be the matrix whose columns are the vectors in the spanning set. [Note first that these columns are linearly independent; otherwise we would need to do some row reductions to obtain a basis for the column space of A.] Then the projection matrix P is $A\left(A^{\top} A\right)^{-1} A^{\top}$. We could compute this outright, but note that the columns of A are orthogonal. So an orthonormal basis for W is $\left\{\frac{1}{\sqrt{3}}[1,1,1], \frac{1}{\sqrt{6}}[1,-2,1]\right\}$. Let B now be the matrix whose columns are these. Then $P=B\left(B^{\top} B\right)^{-1} B^{\top}$. But $B^{\top} B$ is the identity matrix because B is an orthogonal matrix. Thus $P=B B^{\top}=\left[\begin{array}{rrr}.5 & 0 & .5 \\ 0 & 1 & 0 \\ .5 & 0 & .5\end{array}\right]$. [You could also have calculated P directly using A. Check for yourself that the result would match this one.]
(4) Find the least squares solution to the system:
$x+2 y=3$
$x+y=1$
$2 x+3 y=3$
Let A be the coefficient matrix, $\vec{b}=[3,1,3]$. Then the least squares solution is the unique (because the rank of A is the number of columns) solution to $A^{\top} A \vec{x}=A^{\top} \vec{b}$; namely the system

$$
\begin{aligned}
& 6 x+9 y=10 \\
& 9 x+14 y=16
\end{aligned}
$$

This solution is: $x=-\frac{4}{3}, y=2$.
(5) Find the quadratic function that best fits the data $\{(0,0),(1,3),(2,4),(3,7)\}$, in the least squares sense.

We plug the data for x and y into the quadratic equation $y=a x^{2}+b x+c$, and solve the overdetermined system of linear equations

$$
\begin{array}{r}
c=0 \\
a+b+c=3 \\
4 a+2 b+c=4 \\
9 a+3 b+c=7
\end{array}
$$

After this system is premultiplied by the transpose of the coefficient matrix, we obtain

$$
\begin{aligned}
98 a+36 b+14 c & =82 \\
36 a+14 b+6 c & =32 \\
14 a+6 b+4 c & =14
\end{aligned}
$$

When you solve this system, you will have the coefficients for the desired quadratic function.
(6) Answer true or false:
(a) The image of a projection matrix is an eigenspace for that matrix.

True: Since $P^{2}=P$, any vector of the form $P \vec{x}$ is fixed by P. Any nonzero such vector is an eigenvector with eigenvalue 1.
(b) Every projection matrix is an orthogonal matrix.

False: Any projection matrix for a proper subspace will have a nontrivial null space. So the columns won't even be linearly independent, let alone mutually orthogonal.
(c) The inverse of a projection matrix is a projection matrix.

False: A projection matrix is hardly ever invertible (see (b) above). However, when it is invertible, it is the identity matrix. In that special case, the inverse is a projection matrix.
(d) The inverse of an orthogonal square matrix is orthogonal.

True: The inverse of an orthogonal square matrix is the transpose of the matrix, which is also orthogonal.
(e) A nonsingular projection matrix is the identity matrix.

True: See the explanation after (c).
(f) An orthogonal linear transformation is angle preserving.

True: Orthogonal linear transformations preserve the dot product, and this ensures preservation of lengths and angles.
(g) An angle-preserving linear transformation is orthogonal.

False: The transformation on \mathbb{R}^{2} whose standard matrix representation is $2 I$ preserves angles, but not length. Hence it cannot be orthogonal.
(h) If the columns of A and the columns of B are bases for the same subspace of \mathbb{R}^{n}, then $A\left(A^{\top} A\right)^{-1} A^{\top}=B\left(B^{\top} B\right)^{-1} B^{\top}$.

True: The projection matrix depends on the subspace being projected upon, not on any particular basis for that subspace.
(i) If the least squares solution to $A \vec{x}=\vec{b}$ is an actual solution, then the coefficient matrix must be square.

False: Several of the rows of the augmented coefficient matrix could be the same, for example.
(7) Show that an invertible idempotent matrix is the identity matrix.

Let A be an invertible idempotent matrix. Then $A^{2}=A$. Multiplying both sides by A^{-1} gives $A=I$.
(8) Show that the product of two orthogonal square matrices is orthogonal.

Let A and B be orthogonal matrices. To show $A B$ is orthogonal, it suffices to show that $(A B)^{-1}=(A B)^{\top}$. Indeed, $(A B)^{\top}(A B)=B^{\top}\left(A^{\top} A\right) B=B^{\top} B$, because A is orthogonal. But $B^{\top} B=I$ because B is orthogonal. $(A B)^{\top}$
looks like $(A B)^{-1}$, it quacks like $(A B)^{-1}$; therefore it must be $(A B)^{-1}$.

