
MATH 121, SAMPLE PROBLEMS (with solutions) FOR EXAM 2, 05
MARCH, 2007

(Expect six problems, each worth 10 points.)

(1) Find the rank, as well as a basis for the column space of, the matrix:

A =





1 3 5 7
2 0 4 2
3 2 8 7





Using row reduction, we determine that

A ∼ H =





1 3 5 7
0 1 1 2
0 0 0 0



 ,

a matrix in row echelon form. Since the number of pivot rows is two, this
gives us the rank of the matrix (= dimension of the row space = dimension
of the column space). The first two columns of the reduced matrix H give a
basis for its column space; so the first two columns of A give a basis for the
column space of A.

(2) Enlarge {[2, 1, 1], [1, 0, 1]} to a basis for R
3.

Denote this set of two vectors by S. Then S is an independent set because
neither of its vectors is a scalar multiple of the other. We may enlarge S to
a spanning set by adding in the three standard basis vectors, and then elimi-
nating those that fall within the span of S; alternatively we may test each of
those vectors to find the first one that isn’t in span(S). It’s easy to check that
[1, 0, 0] works, so we know that {[2, 1, 1], [1, 0, 1], [1, 0, 0]} is an independent
set. Since the dimension of R

3 is 3, this set must be a basis.

(3) Answer true or false:

(a) In any matrix, the number of independent row vectors equals the number of inde-
pendent column vectors.

True: This is the rank of the matrix.

(b) The rank of an invertible square matrix equals the number of rows.

True: For a matrix to be invertible, it must be row-reducible to the identity
matrix.
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(c) No matrix has rank zero.

False: Any matrix of zeros has rank zero.

(d) The zero vector may fail to be in the range of a linear transformation.

False: Any linear transformation sends the zero vector in the domain to the
zero vector in the range.

(e) A linear transformation is determined by where it sends the vectors in a basis.

True: Each vector in the domain has a unique representation as a linear
combination of the basis vectors.

(f) Distinct vectors in a finite-dimensional vector space V have distinct coordinate vec-
tors relative to a given ordered basis B for V .

True: Each ordered basis B for V sets up a one-one correspondence between
the vectors of V and the vectors of R

n, where n = dim(V ).

(g) The vector space P8 of polynomials of degree ≤ 8 is isomorphic to R
8.

False: The dimension of Pn is always n + 1.

(4) Suppose T : R
2 → R

3 is a linear transformation taking [−1, 2] to [1, 0, 0] and [2, 1] to
[0, 1, 2]. Find a general rule for computing T ([x, y]), and compute T ([3, 1]).

First determine that [1, 0] = (−.2)[−1, 2]+(.4)[2, 1], and that [0, 1] = (.4)[−1, 2]+
(.2)[2, 1]; so T ([1, 0]) = (−.2)[1, 0, 0]+(.4)[0, 1, 2] = [−.2, .4, .8] and T ([0, 1]) =
(.4)[1, 0, 0] + (.2)[0, 1, 2] = [.4, .2, .4]. These, respectively, give us the first and
second columns of the standard matrix representation of T , so T ([x, y]) =
[−.2x + .4y, .4x + .2y, .8x + .4y]. In particular, T ([3, 1]) = [−.2, 1.4, 2.8].

(5) Suppose T : R
3 → R

3 is defined by the rule T ([x, y, z]) := [2x + y + z, x + z, y]. Find the
standard matrix representation for T .

T ([1, 0, 0]) = [2, 1, 0], T ([0, 1, 0]) = [1, 0, 1], and T ([0, 0, 1]) = [1, 1, 0]. So the
standard matrix representation is

AT =





2 1 1
1 0 1
0 1 0



 .
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(6) Decide (with justification) whether the set R
2, with usual vector addition and scalar

multiplication defined by r[x, y] := [ry, rx], is a vector space.

One of the axioms for how scalar multiplication works is that 1~v = ~v always
holds. In this instance, when r = 1, we have 1[x, y] = [y, x], which is not equal
to [x, y] unless x = y. This immediately disqualifies this notion of scalar mul-
tiplication from being legitimate for the purposes of being a vector space.

(7) Show that the set D of all diagonal 2 × 2 matrices–i.e., zeros off the main diagonal–is a
subspace of the space M2 of all 2 × 2 matrices.

All you have to do is show that the sum of two diagonal matrices is a diagonal
matrix (zeros off the main diagonal stay zero) and that multiplying a diagonal
matrix by a scalar gives a diagonal matrix. Both these verifications are easy.
[What’s not acceptable is verification using examples of specific matrices.]

(8) Show that, for each natural number n, the set {1, x, x2, x3, ..., xn} is not a basis for the
vector space R(x) of all polynomials in the indeterminate x.

It is impossible to express xn+1 as a linear combination of polynomials of de-
gree ≤ n.

(9) Prove that {1, sin x, sin 2x} is an independent set of functions in the vector space R
R of

all functions from R to R.

To say that the linear combination a+b sin x+c sin 2x is zero, means that the
equality a + b sin x + c sin 2x = 0 holds identically. So, if we plug in x = 0, we
obtain a = 0 immediately. Next, if we plug in x = π/2, we obtain a + b = 0.
But, since a = 0 already, we know that b = 0 too. Finally, if we plug in, say,
x = π/4, we have (because a = b = 0) c sin π

2
= c = 0. This shows the given

set of functions to be independent.

(10) Find the polynomial in P2 whose coordinate vector relative to the ordered basis
(x2 + 1, x2 − 1, x) is [2, 5,−1].

First we verify that the given set is linearly independent by noting: (i) that
neither of the first two polynomials is a scalar multiple of the other; and (ii)
that the monomial x is not in the span of the first two polynomials. The
polynomial we seek is 2(x2 + 1) + 5(x2 − 1) + (−1)x = 7x2 − x − 3.
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(11) Let T : P2 → P2 be differentiation. Find the matrix representation for T relative to
the ordered basis in Problem 10.

First the ordered basis (x2 + 1, x2 − 1, x) is mapped to the standard ordered
basis ([1, 0, 0], [0, 1, 0], [0, 0, 1]). Next, the differentiation operator takes the
original ordered basis to the ordered triple (2x, 2x, 1)–of course not an or-
dered basis. Expressing each of these in terms of the standard ordered basis
gives us the triple ([0, 0, 2], [0, 0, 2], [.5,−.5, 0]). These give us the columns for
the standard matrix representation for T :





0 0 .5
0 0 −.5
2 2 0



 .

(12) Let C be the vector space of all continuous functions from R to R, and let T : C → R

be defined by the definite integral as follows: T (f) :=
∫

1

0
f(x) dx. Find two distinct vectors

in the kernel of T .

The kernel of a linear transformation is the set of vectors in the domain which
the transformation sends to the zero vector in the codomain. So we are look-
ing for continuous functions f : R → R such that T (f) =

∫

1

0
f(x) dx = 0.

Any continuous function that is zero in the interval [0, 1] will do (there are
oodles of others, too). For example, for each n = 1, 2, . . . , you could let fn(x)
be zero for x ≤ 1 and set fn(x) = xn − 1 for x ≥ 1. This gives us an infinite
family of members of C that lie in the kernel of T .


