MATH 121, SAMPLE PROBLEMS FOR EXAM 2, 05 MARCH, 2007

(Expect six problems, each worth 10 points.)

(1) Find the rank, as well as a basis for the column space of, the matrix:

$$A = \left[\begin{array}{rrrr} 1 & 3 & 5 & 7 \\ 2 & 0 & 4 & 2 \\ 3 & 2 & 8 & 7 \end{array} \right]$$

- (2) Enlarge $\{[2, 1, 1], [1, 0, 1]\}$ to a basis for \mathbb{R}^3 .
- (3) Answer true or false:
 - (a) In any matrix, the number of independent row vectors equals the number of independent column vectors.
 - (b) The rank of an invertible square matrix equals the number of rows.
 - (c) No matrix has rank zero.
 - (d) The zero vector may fail to be in the range of a linear transformation.
 - (e) A linear transformation is determined by where it sends the vectors in a basis.
 - (f) Distinct vectors in a finite-dimensional vector space V have distinct coordinate vectors relative to a given ordered basis B for V.
 - (g) The vector space P_8 of polynomials of degree ≤ 8 is isomorphic to \mathbb{R}^8 .

(4) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation taking [-1, 2] to [1, 0, 0] and [2, 1] to [0, 1, 2]. Find a general rule for computing T([x, y]), and compute T([3, 1]).

(5) Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by the rule T([x, y, z]) := [2x + y + z, x + z, y]. Find the standard matrix representation for T.

(6) Decide (with justification) whether the set \mathbb{R}^2 , with usual vector addition and scalar multiplication defined by r[x, y] := [ry, rx], is a vector space.

(7) Show that the set D of all diagonal 2×2 matrices—i.e., zeros off the main diagonal—is a subspace of the space M_2 of all 2×2 matrices.

(8) Show that, for each natural number n, the set $\{1, x, x^2, x^3, ..., x^n\}$ is not a basis for the vector space $\mathbb{R}(x)$ of all polynomials in the indeterminate x.

(9) Prove that $\{1, \sin x, \sin 2x\}$ is an independent set of functions in the vector space $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} to \mathbb{R} .

(10) Find the polynomial in P_2 whose coordinate vector relative to the ordered basis $(x^2 + 1, x^2 - 1, x)$ is [2, 5, -1].

(11) Let $T: P_2 \to P_2$ be differentiation. Find the matrix representation for T relative to the ordered basis in Problem 10.

(12) Let C be the vector space of all continuous functions from \mathbb{R} to \mathbb{R} , and let $T: C \to \mathbb{R}$ be defined by the definite integral as follows: $T(f) := \int_0^1 f(x) \, dx$. Find two distinct vectors in the kernel of T.