MATH 121, SAMPLE PROBLEMS (with solutions) FOR EXAM 1, 09 FEB, 2007

(1) Find a unit vector parallel to [5, 0, -12].

Our vector has length $\sqrt{5^2 + 0^2 + (-12)^2} = 13$, so there are two unit vectors that meet the requirements: $\pm \frac{1}{13}[5, 0, -12]$.

(2) Find a vector in \mathbb{R}^3 that is perpendicular to both [1, 1, 1] and [1, 0, 1].

We're looking for a vector [x, y, z] whose dot product with each of the given vectors is 0. This amounts to solving the system

 $\begin{array}{rcl} x &+ y &+ z &= 0\\ x &+ z &= 0\\ \end{array}$ whose solution set may be expressed parametrically as $\begin{array}{rcl} x &= -t\\ y &= 0\\ z &= t \end{array}$

Any nonzero choice of t will give a vector that satisfies the given conditions.

(3) Answer the following statements true or false, where all matrices are square, of the same dimensions:

(a) If A is invertible, then so is its transpose, A^T .

True: Multiply A^T by $(A^{-1})^T$ to obtain *I*. Conclude that $(A^T)^{-1} = (A^{-1})^T$.

(b) If AC = BC for some matrix C, then A = B.

False: This is not guaranteed to work unless C is invertible.

(c) If AB = BA, then A = B.

False: B could be A^2 , which is not necessarily equal to A.

(d) If A is symmetric, then so is A^T .

True: A symmetric means $A = A^T$.

(e) If A and B are symmetric, then so is AB.

True: Use the theorem about taking transposes of products.

(4) Compute the *reduced* row echelon form H for the matrix A below, and write H in the form BA, where B is a product of elementary matrices.

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

You can get from A to H by applying $R_1 \leftrightarrow R_2$, then $-R_2 + R_1 \to R_1$, then $-R_3 + R_2 \to R_2$. The rref is $H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) A$

(5) Express as a parameterized family of vectors, the solution set for the system:

The augmented coefficient matrix for this system is already in rref, so the lead variables are x_1 and x_2 , with x_3 and x_4 free. The required parameterized family is:

$$\begin{array}{rcl} x_1 &=& 1-2s\\ x_2 &=& 2-3t\\ x_3 &=& s\\ x_4 &=& t \end{array}$$

This is a two-parameter family; any independent real values of s and t will give rise to a particular solution for the system.

(6) Show that [1, 2] is in the span of the set $\{[1, 3], [2, -6]\}$.

We need to find scalars x and y so that x[1,3] + y[2,-6] = [1,2]. This translates to solving the system

The unique solution is $x = \frac{5}{6}$, $y = \frac{1}{12}$, and we're done.

(7) Find a 2×2 non-invertible matrix A with no zero entries.

All you need is to be able to get the rref to fail to be the identity matrix. One possibility (out of oodles) is the 2×2 matrix with entries all equal to, say, 1.

(8) Determine (with justification) whether the set of column vectors of A is a basis for the column space of A, where A is the matrix:

 $\left[\begin{array}{rrrr} 2 & 1 & 3 \\ 1 & 4 & 0 \end{array}\right]$

We try to find a nontrivial linear combination of the column vectors that adds up to the zero vector. If this is impossible, the given set is linearly independent, a basis for its span; otherwise we don't have a basis. The latter is true because $\frac{12}{7}[2,1] + (-\frac{3}{7})[1,4] + (-1)[3,0] = [0,0]$.

(9) Find a basis for the null space of the matrix:

```
\left[\begin{array}{rrrrr} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 \end{array}\right]
```

We're looking for all vectors $\vec{x} \in \mathbb{R}^4$ such that $A\vec{x} = \vec{0}$, where A is the given matrix. The coefficient matrix is already in rref, and (see Problem 5 above) a parameterization for the solution set is

$$\begin{array}{rcl} x_1 & = & -2s \\ x_2 & = & -3t \\ x_3 & = & s \\ x_4 & = & t \end{array}$$

This may also be written as

$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} -2 \end{bmatrix}$		[0]
x_2	= s	0	+t	-3
x_3		1		0
x_4		0		1

So the vectors [-2, 0, 1, 0] and [0, -3, 0, 1] span the null space for the matrix; they form a basis because they are linearly independent. (This being due to the reduction to ref.)