MATH 121, SAMPLE PROBLEMS (with solutions) FOR EXAM 1, 09 FEB, 2007

(1) Find a unit vector parallel to $[5,0,-12]$.

Our vector has length $\sqrt{5^{2}+0^{2}+(-12)^{2}}=13$, so there are two unit vectors that meet the requirements: $\pm \frac{1}{13}[5,0,-12]$.
(2) Find a vector in \mathbb{R}^{3} that is perpendicular to both $[1,1,1]$ and $[1,0,1]$.

We're looking for a vector $[x, y, z]$ whose dot product with each of the given vectors is 0 . This amounts to solving the system

$$
\begin{aligned}
x+y+z & =0 \\
x & +z
\end{aligned}=0,
$$

whose solution set may be expressed parametrically as

$$
\begin{array}{rlr}
x & = & -t \\
y & = & 0 \\
z & = & t
\end{array}
$$

Any nonzero choice of t will give a vector that satisfies the given conditions.
(3) Answer the following statements true or false, where all matrices are square, of the same dimensions:
(a) If A is invertible, then so is its transpose, A^{T}.

True: Multiply A^{T} by $\left(A^{-1}\right)^{T}$ to obtain I. Conclude that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(b) If $A C=B C$ for some matrix C, then $A=B$.

False: This is not guaranteed to work unless C is invertible.
(c) If $A B=B A$, then $A=B$.

False: B could be A^{2}, which is not necessarily equal to A.
(d) If A is symmetric, then so is A^{T}.

True: A symmetric means $A=A^{T}$.
(e) If A and B are symmetric, then so is $A B$.

True: Use the theorem about taking transposes of products.
(4) Compute the reduced row echelon form H for the matrix A below, and write H in the form $B A$, where B is a product of elementary matrices.

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

You can get from A to H by applying $R_{1} \leftrightarrow R_{2}$, then $-R_{2}+R_{1} \rightarrow R_{1}$, then $-R_{3}+R_{2} \rightarrow R_{2}$. The rref is

$$
H=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left(\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right) A
$$

(5) Express as a parameterized family of vectors, the solution set for the system:

$$
x_{1} \quad+2 x_{3} \quad=1103 x_{4}=2
$$

The augmented coefficient matrix for this system is already in rref, so the lead variables are x_{1} and x_{2}, with x_{3} and x_{4} free. The required parameterized family is:

$$
\begin{aligned}
x_{1} & =1-2 s \\
x_{2} & =2-3 t \\
x_{3} & =s \\
x_{4} & =t
\end{aligned}
$$

This is a two-parameter family; any independent real values of s and t will give rise to a particular solution for the system.
(6) Show that $[1,2]$ is in the span of the set $\{[1,3],[2,-6]\}$.

We need to find scalars x and y so that $x[1,3]+y[2,-6]=[1,2]$. This translates to solving the system

$$
\begin{aligned}
x+2 y & =1 \\
3 x-6 y & =2
\end{aligned} .
$$

The unique solution is $x=\frac{5}{6}, y=\frac{1}{12}$, and we're done.
(7) Find a 2×2 non-invertible matrix A with no zero entries.

All you need is to be able to get the rref to fail to be the identity matrix. One possibility (out of oodles) is the 2×2 matrix with entries all equal to, say, 1 .
(8) Determine (with justification) whether the set of column vectors of A is a basis for the column space of A, where A is the matrix:

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 0
\end{array}\right]
$$

We try to find a nontrivial linear combination of the column vectors that adds up to the zero vector. If this is impossible, the given set is linearly independent, a basis for its span; otherwise we don't have a basis. The latter is true because $\frac{12}{7}[2,1]+\left(-\frac{3}{7}\right)[1,4]+(-1)[3,0]=[0,0]$.
(9) Find a basis for the null space of the matrix:

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 3
\end{array}\right]
$$

We're looking for all vectors $\vec{x} \in \mathbb{R}^{4}$ such that $A \vec{x}=\overrightarrow{0}$, where A is the given matrix. The coefficient matrix is already in rref, and (see Problem 5 above) a parameterization for the solution set is

$$
\begin{aligned}
x_{1} & =-2 s \\
x_{2} & =-3 t \\
x_{3} & =s \\
x_{4} & =t
\end{aligned} .
$$

This may also be written as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=s\left[\begin{array}{r}
-2 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
0 \\
-3 \\
0 \\
1
\end{array}\right] .
$$

So the vectors $[-2,0,1,0]$ and $[0,-3,0,1]$ span the null space for the matrix; they form a basis because they are linearly independent. (This being due to the reduction to ref.)

