MATH 121, SAMPLE PROBLEMS FOR EXAM 1, 09 FEB, 2007

(Expect six problems, each worth 10 points.)
(1) Find a unit vector parallel to $[5,0,-12]$.
(2) Find a vector in \mathbb{R}^{3} that is perpendicular to both $[1,1,1]$ and $[1,0,1]$.
(3) Answer the following statements true or false, where all matrices are square, of the same dimensions:
(a) If A is invertible, then so is its transpose, A^{T}.
(b) If $A C=B C$ for some matrix C, then $A=B$.
(c) If $A B=B A$, then $A=B$.
(d) If A is symmetric, then so is A^{T}.
(e) If A and B are symmetric, then so is $A B$.
(4) Compute the reduced row echelon form H for the matrix A below, and write H in the form $B A$, where B is a product of elementary matrices.

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(5) Express as a parameterized family of vectors, the solution set for the system:

$$
x_{1} \quad+2 x_{3}+3 x_{4}=12
$$

(6) Show that $[1,2]$ is in the span of the set $\{[1,3],[2,-6]\}$.
(7) Find a 2×2 non-invertible matrix A with no zero entries.
(8) Determine (with justification) whether the set of column vectors of A is a basis for the column space of A, where A is the matrix:

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 0
\end{array}\right]
$$

(9) Find a basis for the null space of the matrix:

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 3
\end{array}\right]
$$

